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There is a Subhashitam (Worthy Saying) in Sanskrit, which says:

Annadaanam param daanam
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Annena kshanikam triptih yaavajjiivamcha vidyayaa.

The gift of food is a great gift
Greater still is the gift of knowledge
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lasting fulfillment.
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department, of the knowledge of the subject of electromagnetics, based 
on Maxwell’s equations, which “today underpin all modern 
information and communication technologies.”
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Introducing 
the Illinois ECE Series

The Illinois ECE Series continues a tradition in undergraduate education that
has been practiced for more than a century by faculty in the Department of Elec-
trical and Computer Engineering at the University of Illinois. That tradition,
which has come to be called “the Illinois Way,” balances adherence to the tried-
and-true with readiness to change decisively in order to shape a better future.

The Illinois Way encompasses more than textbooks. Early curricula in the
department (then called Electrical Engineering) included courses in military
drills, drafting, and surveying. Later, Illinois would be the first program in the
nation offering a freshman introduction to concepts in circuits, electromagnet-
ics, electronics, control, and digital systems. Computer-based education in the
department dates back to 1960 with PLATO (Programmed Logic for Automat-
ed Teaching Operations), a time-shared network that gave rise to one of the
world’s first online communities. Now, students all over the world take ECE
courses using Web-based learning environments developed and used by our fac-
ulty. The department’s greatest pride is its world-class undergraduate instruc-
tional laboratories. A century ago, facilities consisted of batteries, electrical
machinery, and illumination equipment. Now, the department houses unsur-
passed educational laboratories for integrated circuit fabrication, digital signal
processing, control systems, computer architecture, and more.

Of course, popular and innovative textbooks have long been a part of the
Illinois Way. Former department head and longtime engineering dean at Illi-
nois, William L. Everitt, edited over 100 titles for a series of engineering text-
books published by Prentice Hall in the middle of the last century. Everitt also
wrote textbooks. His Communication Engineering, first published in 1932 and
revised into the 1950s with Illinois colleague G. E. Anner, deserves credit for
helping push the electrical engineering profession from its pre-World War II
emphasis on power systems to its postwar emphasis on information technology
and electronics. Edward C. Jordan, head of the department from 1954 to 1979,
wrote Electromagnetic Waves and Radiating Systems, long a standard textbook
in the field, first published by Prentice Hall in 1950 and revised in 1968. Addi-
tionally, M. E. Van Valkenburg, another long-standing faculty member who also

xiii
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xiv Introducing the Illinois ECE Series

served as head and dean, wrote several influential textbooks, including Network
Analysis, one of the most internationally popular engineering texts of all time,
first published by Prentice Hall in 1955 and revised in 1964 and 1974.

It is fitting, then, that the Illinois ECE Series begins with the sixth edition
of N. N. Rao’s Elements of Engineering Electromagnetics. Professor Rao was
hired to join the Illinois faculty in 1965 by Jordan. Prentice Hall published the
first edition of Elements in 1977; by the time of its fifth edition, dedicated in
2000 to none other than Ed Jordan, the text had established an international
reputation for its grounding in time-honored practices even as it evolved pro-
gressively from one edition to the next. That is the essence of the Illinois Way.

The Department of Electrical Engineering was established in 1891 when
the University of Illinois, one of the first public land-grant institutions chartered
after President Abraham Lincoln’s signing of the Morrill Land Grant Act, was
just 24 years old. Enrollments increased, but steadily, until World War II when
the U.S. armed services contracted with the university to train recruits, prompt-
ing a boom in the student body. The war also boosted the volume of research
contracts handed out by the government, and when Everitt became head in
1944 he took advantage of the new circumstances and led the department to
embrace research and teaching in a wide array of electrical engineering-related
fields. A computer engineering curriculum was established in the department in
1972, reflecting the department’s close involvement with computer work on
campus dating back to 1952 with ILLIAC I, one of the first computers built and
owned by an educational institution (and which later served as the mainframe
for PLATO). In 1984 the department was renamed the Department of Electri-
cal and Computer Engineering.

Today the department enjoys a longstanding, international reputation as
one of the premier places in the world for the study of electrical and computer
engineering. As of 2003, ECE faculty members advise and instruct more than
1600 undergraduate and over 550 graduate students, while carrying out research
funded at a level of $25 million per year. The department is headquartered in
the venerable Everitt Laboratory and enjoys world-class, interdisciplinary,
Urbana–Champaign campus facilities such as the Beckman Institute for Ad-
vanced Science and Technology, the Coordinated Science Laboratory, the
Grainger Engineering Library, the Micro and Nanotechnology Laboratory, the
National Center for Supercomputing Applications, and the University of Illinois
Research Park. Faculty, students, and alumni of the department have estab-
lished the state of the art in fields ranging from microelectronics to telecommuni-
cations, photonics, signal processing, electromagnetics, bioengineering, computer
architecture, circuits, and more. A sampling of their achievements follows.

• Professor Josef Tykociner invented a process for making moving pictures
with sound. In 1922, he was the first person in the world to demonstrate
sound-on-film technology.

• Professor John Bardeen joined the faculty in 1951 after co-inventing the
transistor at Bell Labs in 1947. Bardeen would go on to develop the theory
of superconductivity at Illinois in 1957. He shared the 1956 Nobel Prize in
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Introducing the Illinois ECE Series xv

physics for the invention of the transistor, and the same prize again in 1972
for the theory of superconductivity. He remained on the ECE staff until his
death in 1991.

• Professors Floyd Dunn and William Fry conducted pioneering research in
the use of ultrasound as a noninvasive diagnostic and surgical tool as early
as the 1950s.

• Alumnus Jack Kilby invented the integrated circuit in 1958 while working
for Texas Instruments. Kilby won the 2001 Nobel Prize in physics for his
invention.

• Graduate student Dwight Isbell invented the frequency-independent log-
periodic antenna in 1959, laying the groundwork for Professor Paul Mayes
and graduate student Robert Carrel, who the following year developed
the log-periodic resonant-V antenna, which would become the most pop-
ular antenna for television reception.

• Professor Y. T. Lo created antenna designs that improved the efficiency of
giant radio telescopes, military and civilian radar, airborne and space vehi-
cles, and ground-based communication systems during the Cold War.

• Professors and alumni Donald Bitzer and H. Gene Slottow, along with
graduate student Robert Willson, invented the plasma display panel in
1964 as an interface with PLATO workstations. In 2002 they received an
Emmy recognizing the importance of their work to the television industry.

• Alumnus Alfred Cho developed molecular beam epitaxy during the 1970s
while working at Bell Labs.

• Professor and alumnus Nick Holonyak Jr., who had been Bardeen’s first
graduate student at Illinois, joined the ECE faculty in 1964 after inventing
the first practical light-emitting diode at General Electric. Holonyak and
graduate student Ed Rezek demonstrated the first quantum-well laser in
1977. Holonyak, still an active member of the ECE faculty, received the
2003 IEEE Medal of Honor.

The Illinois ECE Series has been conceived with the aim of reintroduc-
ing electrical and computer engineering students worldwide to the Illinois
Way. Students who appreciate these books are encouraged to visit ECE-Illi-
nois on the web at www.ece.uiuc.edu, or in person at the Everitt Laboratory
on the Urbana–Champaign campus.

RICHARD E. BLAHUT

Head, ECE Department, University of Illinois, Urbana–Champaign, IL

JAMES HUTCHINSON

Editor, Publications, ECE Department, University of Illinois,
Urbana–Champaign, IL

TOM ROBBINS

Publisher, Pearson Prentice Hall, Pearson Education, Upper Saddle River, NJ
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Preface

Introductory textbooks on engineering electromagnetics can be classified broad-
ly into three categories:

1. One-semester textbooks based on a traditional approach of covering es-
sentially electrostatics and magnetostatics, and culminating in Maxwell’s
equations and some discussion of their applications.

2. Two-semester textbooks, with the first half or more covering electrostatics
and magnetostatics, as in category 1, and the remainder devoted to topics
associated with electromagnetic waves.

3. One- or two-semester textbooks that deviate from the traditional approach,
with the degree and nature of the deviation dependent on the author.

Most textbooks fall into categories 1 and 2, and only a small minority, in-
cluding this book, belong to category 3. The deviation from the traditional ap-
proach originated with the first edition, a one-semester text in which the basic
material was built on time-varying fields and their engineering applications.
This enhanced its utility for the one-semester student of engineering electro-
magnetics, while enabling students who planned to take further (elective)
courses in electromagnetics to learn many of the same field concepts and math-
ematical tools provided by the traditional treatment.

In preparing the second edition, a major revision of the first edition was
undertaken by expanding the text for one- or two-semester usage to provide
flexibility, while preserving the basic philosophy of the first edition, which arose
from the assertion that, as a prerequisite to the first EE course in fields, most
schools have an engineering physics course in which the students are exposed to
the historical treatment of electricity and magnetism. Subsequent editions have
further enhanced the usage by incorporating changes and adding material to
satisfy the prerequisite needs pertinent to emerging technologies. For example,
the substantial changes leading to the fourth edition were prompted by the in-
creasing need for introductory-level coverage to extend beyond the microwave
region and into the optical region of the electromagnetic spectrum, in recogni-
tion of the advent of the era of photonics, overlapping with that of electronics.

xvii

Electro-
magnetics 
textbooks
and this 
edition
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xviii Preface

In the fifth edition, the deviation from the traditional approach was carried fur-
ther by reorganizing the material and adding topics to associate chapters or
parts of chapters with electromagnetic technologies.

An important factor guiding the revisions has been the organization of
topics for a first course in electrical engineering, as well as in computer engi-
neering, followed by one or more required or elective courses for electrical en-
gineering students that build on the first course. When the first edition was
written for a one-semester course to meet the needs of both groups of students,
most of the students were electrical engineering majors, a situation that contin-
ued for many years. In recent years, the ratio has changed dramatically, and at
present, the numbers for computer engineering majors are comparable to those
for electrical engineering majors. Recognizing this development, and to make
the intended usage of the book even more explicit than before, I have carried
the organization of the topics even further in this edition by dividing the book
into two parts.

Part I, entitled “Essential Elements for Electrical and Computer Engineer-
ing,” is comprised of six chapters:

1. “Vectors and Fields”
2. “Maxwell’s Equations in Integral Form”
3. “Maxwell’s Equations in Differential Form, and Uniform Plane Waves in

Free Space”
4. “Fields and Waves in Material Media”
5. “Electromagnetic Potentials and Topics for Circuits and Systems”
6. “Transmission-Line Essentials for Digital Electronics”

These chapters contain essentially the material in Chapters 1–8 of the
fifth edition, except that the organization and treatment of topics is tilted more
toward time-varying fields, compared with the fifth edition. Part II, entitled
“Essential/Elective Elements” to indicate that they are essential or elective,
depending upon the needs of the curriculum, comprises the next five chapters:

7. “Transmission Lines for Communications”
8. “Guided Wave Principles for Electronics and Optoelectronics”
9. “Several Topics for Electronics and Photonics”

10. “Principles of Radiation and Antennas”
11. “Several Solution Techniques”

Chapters 7, 8, 9, and 10 are the same as Chapters 7, 9, 10, and 11, respec-
tively, in the fifth edition, except that I have added the topic of pulses on lossy
lines in Chapter 7. Chapter 11, an expanded version of Chapter 12 in the fifth
edition, includes the analytical technique of separation of variables and the geo-
metrical method of field mapping, in addition to the four numerical techniques
in that chapter.
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Thread of
development
of material

Some of the salient features of the thread of development of the material,
evident from a reading of the table of contents, are the following:

1. Introduce basic concepts of vectors and fields for static as well as time-
varying cases at the outset and bring in vector calculus concepts later as
needed.

2. Present electric and magnetic field concepts early, and then introduce
Maxwell’s equations for time-varying fields, first in integral form and then
in differential form.

3. Introduce waves and associated concepts by obtaining uniform plane
wave solutions from the infinite plane current sheet source, first in free
space and then in a material medium.

4. Introduce electromagnetic potentials and cover topics pertinent to devices,
circuits, and systems, beginning with p-n junction and circuit elements, and
progressing through electric- and magnetic-field systems to other topics
pertinent to electromechanical systems.

5. Introduce the transmission line concept and develop transmission line
time-domain analysis, essential for digital electronics, in a progressive
manner, beginning with the case of a resistive load to interconnections be-
tween logic gates and culminating in crosstalk on transmission lines.

6. Present sinusoidal steady-state analysis of transmission lines comprising
the topics of standing waves, resonance, power transfer, and matching,
with emphasis on computer and graphical solutions.

7. Develop principles of guided waves for both electronics and optoelectron-
ics, by confining the treatment to one-dimensional waveguides comprising
parallel-plate metallic waveguides and dielectric slab waveguides.

8. Devote a chapter to several topics pertinent to electronics and photonics,
including two-dimensional metallic waveguides and optical fibers, pulse
broadening due to dispersion, interference and diffraction, and wave
propagation in an anisotropic medium.

9. Introduce radiation by obtaining the complete field solution to the Hertz-
ian dipole field through the magnetic vector potential, and then develop
the basic concepts of antennas.

10. Devote a chapter to solution techniques, comprising primarily the numer-
ical techniques of the finite-difference method, the method of moments,
the finite-element method, and the finite-difference time-domain method,
but also including the analytical technique of separation of variables and
the geometrical method based on field mapping.

As in the previous editions, a number of teaching and learning aids are
employed: (1) examples distributed throughout the text, (2) practical applica-
tions of field concepts and phenomena interspersed among presentations of
basic subject matter, (3) descriptions of brief experimental demonstrations suit-
able for classroom presentation, (4) summary of material and review questions
(Q) for each chapter, (5) drill problems (D) at the end of each section, (6) margin

Teaching and
learning aids
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xx Preface

notes, (7) keywords (K) at the end of each section, and (8) review problems (R)
at the end of each chapter, following the homework problems (P). For the book,
there are a total of 108 Examples, 158 D Problems, 413 Q Questions, 422 P Prob-
lems, and 81 R Problems. Answers are provided for 40% of the P Problems.

I wish to express my appreciation to the more than sixty colleagues at the
University of Illinois at Urbana-Champaign who have taught from the previous
editions of the book during the 26-year period from 1977 to 2003. Thanks are
also due to the numerous users at other schools. The evolution of this book
would not have been possible without the many opportunities provided to me
by my department heads since I joined the University of Illinois in 1965, begin-
ning with the late E. C. Jordan and followed by G. W. Swenson, Jr., E. W. Ernst,
T. N. Trick, S. M. Kang, and R. E. Blahut. Many individuals in the department
have provided support over the years. Sheryle Carpenter and Laurie Fisher per-
formed the office duties in an admirable manner, ensuring the smooth function-
ing of the office at all times during my tenure as Associate Head of the
department since 1987. The typing of the manuscript for several editions was
done by Kelly Collier in a prompt and skillful manner. It has been a pleasure
working with Tom Robbins, my publisher, throughout the endeavor of the in-
ception of the Illinois ECE Series and the production of this book as the first
volume in the series.As always, I am deeply indebted to my wife Sarojini for her
continued understanding and patience.

N. NARAYANA RAO

Urbana, Illinois

Acknowledg-
ments
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A Tribute to Edward C. Jordan

Just as one’s personal life is influenced by others, most notably parents, one’s
professional life can be influenced by certain individuals. In some cases, the in-
fluence can be profound. Edward C. Jordan has had such profound influence on
my long professional career at Illinois.

Edward C. Jordan was born in Edmonton, Alberta, Canada, on December
31, 1910. He received the B.S. degree in 1934 and the M.S. degree in 1936 from the
University of Alberta, and the Ph.D. degree from The Ohio State University in
1940. Upon completing his doctoral degree, he served for one year as instructor
at Worcester Polytechnic Institute. He returned to Ohio State University in 1941,
where he was on the faculty until 1945. In 1945, he followed his mentor, William
L. Everitt, to the University of Illinois. At the University of Illinois, Dr. Jordan
served as associate professor from 1945 to 1947, and professor from 1947 to 1979.
In 1954, he was named Head of the Department of Electrical Engineering, in
which capacity he served for 25 years until his retirement in 1979. Edward C. Jor-
dan passed away on October 18, 1991.

Professor Jordan’s legendary contributions were in electrical engineering
education and educational administration. His popular textbook, Electromagnet-
ic Waves and Radiating Systems, was first published by Prentice Hall in 1950. A
second edition, co-authored with K.G. Balmain, was published in 1968. He re-
ceived many honors in his career, notable among them being the prestigious
IEEE Education Medal. He was regarded as the most revered department head,
for his commitment to building a broad-based department of national repute
and for his skillful administration.

I am deeply grateful for Professor Jordan’s influence on my professional ca-
reer, and I am immensely honored by my connection to him: To have studied
from his classic 1950 textbook while a student in India in the 1950’s; to have been a
member of the faculty and the administration of the department built by this noble
individual; to have authored textbooks on the same subject as that of his famous
book; to be the first holder of the professorship named after this “father” of the
department; and to pay tribute to this individual of “electromagnetic” personality
in this book on electromagnetics, the lead volume in the new Illinois ECE Series.

N. NARAYANA RAO

Urbana, Illinois
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C H A P T E R  1

Vectors and Fields

Electromagnetics deals with the study of electric and magnetic fields. It is at once
apparent that we need to familiarize ourselves with the concept of a field, and in
particular with electric and magnetic fields.These fields are vector quantities and
their behavior is governed by a set of laws known as Maxwell’s equations. The
mathematical formulation of Maxwell’s equations and their subsequent applica-
tion in our study of the elements of engineering electromagnetics require that
we first learn the basic rules pertinent to mathematical manipulations involving
vector quantities. With this goal in mind, we devote this chapter to vectors and
fields in general and electric and magnetic fields in particular.

We first study certain simple rules of vector algebra without the implica-
tion of a coordinate system and then introduce the Cartesian, cylindrical, and
spherical coordinate systems. After learning the vector algebraic rules, we turn
our attention to a discussion of scalar and vector fields, static as well as time-
varying, by means of some familiar examples. Following this general introduc-
tion to vectors and fields, we study the concepts of electric and magnetic fields
by considering the experimental laws of Coulomb and Ampere, and illustrate by
example the computation of electric fields due to charge distributions and mag-
netic fields due to current distributions. Finally, by combining the electric and
magnetic field concepts, we introduce the Lorentz force equation and use it to
discuss charged particle motion in electric and magnetic fields.

1.1 VECTOR ALGEBRA

In the study of elementary physics, we come across quantities such as mass, tem-
perature, velocity, acceleration, force, and charge. Some of these quantities have
associated with them not only a magnitude but also a direction in space, where-
as others are characterized by magnitude only. The former class of quantities
are known as vectors and the latter class of quantities are known as scalars.
Mass, temperature, and charge are scalars, whereas velocity, acceleration, and

3

Vectors 
versus scalars
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4 Chapter 1 Vectors and Fields

A B

DC

(a) (b)

(d)(c)

FIGURE 1.1

Graphical representation of vectors.

force are vectors. Other examples are voltage and current for scalars and elec-
tric and magnetic fields for vectors.

Vector quantities are represented by symbols in boldface roman type
(e.g., A), to distinguish them from scalar quantities, which are represented by
symbols in lightface italic type (e.g., A). Graphically, a vector, say, A, is repre-
sented by a straight line with an arrowhead pointing in the direction of A and
having a length proportional to the magnitude of A, denoted or simply A.
Figure 1.1 shows four vectors drawn to the same scale. If the top of the page rep-
resents north, then vectors A and B are directed eastward, with the magnitude
of B being twice that of A. Vector C is directed toward the northeast and has a
magnitude three times that of A.Vector D is directed toward the southwest and
has a magnitude equal to that of C. Since C and D are equal in magnitude but
opposite in direction, one is the negative of the other.

Since a vector may have in general an arbitrary orientation in three di-
mensions, we need to define a set of three reference directions at each and
every point in space in terms of which we can describe vectors drawn at that
point. It is convenient to choose these three reference directions to be mutually
orthogonal, as, for example, east, north, and upward, or the three contiguous
edges of a rectangular room. Thus, let us consider three mutually orthogonal
reference directions and direct unit vectors along the three directions as shown,
for example, in Fig. 1.2(a).A unit vector has magnitude unity.We shall represent
a unit vector by the symbol a and use a subscript to denote its direction.We shall
denote the three directions by subscripts 1, 2, and 3.We note that for a fixed ori-
entation of two combinations are possible for the orientations of and 
as shown in Figs. 1.2(a) and (b). If we take a right-hand screw and turn it from 
to through the 90° angle, it progresses in the direction of in Fig. 1.2(a) but
opposite to the direction of in Fig. 1.2(b). Alternatively, a left-hand screw
when turned from to in Fig. 1.2(b) will progress in the direction of 
Hence the set of unit vectors in Fig. 1.2(a) corresponds to a right-handed sys-
tem, whereas the set in Fig. 1.2(b) corresponds to a left-handed system.We shall
work consistently with the right-handed system.

A vector of magnitude different from unity along any of the reference direc-
tions can be represented in terms of the unit vector along that direction. Thus 
represents a vector of magnitude 4 units in the direction of represents aa1, 6a2

4a1

a3.a2a1

a3

a3a2

a1

a3,a2a1,

ƒ A ƒ

Unit vector
defined
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1.1 Vector Algebra 5

(a) (b)

a3

a3a2

a2

a1 a1

FIGURE 1.2

(a) Set of three orthogonal unit vectors in a right-handed system. (b) Set of three
orthogonal unit vectors in a left-handed system.

vector of magnitude 6 units in the direction of and represents a vector of
magnitude 2 units in the direction opposite to that of as shown in Fig. 1.3. Two
vectors are added by placing the beginning of the second vector at the tip of the
first vector and then drawing the sum vector from the beginning of the first vector
to the tip of the second vector. Thus, to add and we simply slide with-
out changing its direction until its beginning coincides with the tip of and then
draw the vector from the beginning of to the tip of as shown
in Fig. 1.3.To see this, imagine that on the floor of an empty rectangular room, you
are going from one corner to the opposite corner. Then to reach the destination,
you can first walk along one edge and then along the second edge. Alternatively,
you can go straight to the destination along the diagonal. By adding to the
vector in a similar manner, we obtain the vector 

as shown in Fig. 1.3. We note that the magnitude of is or

7.211 and that the magnitude of is or 7.483.
Conversely to the foregoing discussion, a. vector A at a given point is simply the

242 + 62 + 22,14a1 + 6a2 - 2a32
242 + 6214a1 + 6a22

14a1 + 6a2 - 2a32,14a1 + 6a22
-2a3

6a2,4a114a1 + 6a22
4a1

6a26a2,4a1

a3,
-2a3a2,

a3
a2

a1

4a1

6a2

4a1 � 6a2 � 2a3

4a1 � 6a2

6a2

–2a3

�2a3 FIGURE 1.3

Graphical addition of vectors.
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6 Chapter 1 Vectors and Fields

superposition of three vectors and which are the projections of
A onto the reference directions at that point. and are known as the
components of A along the 1, 2, and 3 directions, respectively.Thus

(1.1)

We now consider three vectors, A, B, and C, given by

(1.2a)
(1.2b)
(1.2c)

at a point and discuss several algebraic operations involving vectors as follows.

Vector addition and subtraction. Since a given pair of like components of two
vectors are parallel, addition of two vectors consists simply of adding the three
pairs of like components of the vectors. Thus,

(1.3)

Vector subtraction is a special case of addition. Thus,

(1.4)

Multiplication and division by a scalar. Multiplication of a vector A by a scalar
m is the same as repeated addition of the vector. Thus,

(1.5)

Division by a scalar is a special case of multiplication by a scalar. Thus,

(1.6)

Magnitude of a vector. From the construction of Fig. 1.3 and the associated
discussion, we have

(1.7)

Unit vector along A. The unit vector has a magnitude equal to unity, but its
direction is the same as that of A. Hence,

(1.8)aA =
A
ƒ A ƒ

=
A1

ƒ A ƒ
 a1 +

A2

ƒ A ƒ
 a2 +

A3

ƒ A ƒ
 a3

aA

ƒ A ƒ = ƒ A1 a1 + A2 a2 + A3 a3 ƒ = 4A1
2 + A2

2 + A3
2

B
n

=
1
n

 1B2 =
B1

n
 a1 +

B2

n
 a2 +

B3

n
 a3

mA = m1A1 a1 + A2 a2 + A3 a32 = mA1 a1 + mA2 a2 + mA3 a3

 = 1B1 - C12a1 + 1B2 - C22a2 + 1B3 - C32a3

 = 1B1 a1 + B2 a2 + B3 a32 + 1-C1 a1 - C2 a2 - C3 a32
 B - C = B + 1-C2

 = 1A1 + B12a1 + 1A2 + B22a2 + 1A3 + B32a3

 A + B = 1A1 a1 + A2 a2 + A3 a32 + 1B1 a1 + B2 a2 + B3 a32

 C = C1 a1 + C2 a2 + C3 a3

 B = B1 a1 + B2 a2 + B3 a3

 A = A1 a1 + A2 a2 + A3 a3

A = A1 a1 + A2 a2 + A3 a3

A3A1, A2,
A3 a3,A1 a1, A2 a2,
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1.1 Vector Algebra 7

Scalar or dot product of two vectors. The scalar or dot product of two vectors
A and B is a scalar quantity equal to the product of the magnitudes of A and B
and the cosine of the angle between A and B. It is represented by a boldface dot
between A and B. Thus, if is the angle between A and B, then

(1.9)

For the unit vectors we have

(1.10a)
(1.10b)
(1.10c)

By noting that we observe that the
dot product operation consists of multiplying the magnitude of one vector by
the scalar obtained by projecting the second vector onto the first vector, as
shown in Figs. 1.4(a) and (b). The dot product operation is commutative since

(1.11)

The distributive property also holds for the dot product, as can be seen from the
construction of Fig. 1.4(c), which illustrates that the projection of onto A
is equal to the sum of the projections of B and C onto A. Thus,

(1.12)

Using this property, we have

 + A3 a3
# B1 a1 + A3 a3

# B2 a2 + A3 a3
# B3 a3

 + A2 a2
# B1 a1 + A2 a2

# B2 a2 + A2 a2
# B3 a3

 = A1 a1
# B1 a1 + A1 a1

# B2 a2 + A1 a1
# B3 a3

 A # B = 1A1 a1 + A2 a2 + A3 a32 # 1B1 a1 + B2 a2 + B3 a32

A # 1B + C2 = A # B + A # C

B + C

B # A = BA cos a = AB cos a = A # B

A # B = A1B cos a2 = B1A cos a2,
 a3

# a1 = 0 a3
# a2 = 0 a3

# a3 = 1
 a2

# a1 = 0 a2
# a2 = 1 a2

# a3 = 0
 a1

# a1 = 1 a1
# a2 = 0 a1

# a3 = 0

a1, a2, a3,

A # B = ƒ A ƒ ƒ B ƒ  cos a = AB cos a

a

Dot product

(a) (b) (c)

a a

B cos a

A
 c

os
 a

A
A

A

B B B
C

B � C

FIGURE 1.4

(a) and (b) For showing that the dot product of two vectors A and B is the product of the
magnitude of one vector and the projection of the second vector onto the first vector.
(c) For proving the distributive property of the dot product operation.

RaoCh01v3.qxd  12/18/03  2:44 PM  Page 7



8 Chapter 1 Vectors and Fields

Finding angle
between two
vectors

Then using the relationships (1.10a)–(1.10c), we obtain

(1.13)

Thus, the dot product of two vectors is the sum of the products of the like com-
ponents of the two vectors.

From (1.9) and (1.13), we note that the angle between the vectors A and B
is given by

(1.14)

Thus, the dot product operation is useful for finding the angle between two
vectors. In particular, the two vectors are perpendicular if 

Vector or cross product of two vectors. The vector or cross product of two vec-
tors A and B is a vector quantity whose magnitude is equal to the product of the
magnitudes of A and B and the sine of the smaller angle between A and B
and whose direction is normal to the plane containing A and B and toward the
side of advance of a right-hand screw as it is turned from A to B through the
angle as shown in Fig. 1.5. It is represented by a boldface cross between A
and B. Thus, if is the unit vector in the direction of advance of the right-hand
screw, then

(1.15)

For the unit vectors we have

(1.16a)
(1.16b)
(1.16c)

Note that the cross product of two identical unit vectors is the null vector 0, that
is, a vector whose components are all zero. If we arrange the unit vectors in the
manner then going to the right, the cross product of any two succes-
sive unit vectors is the following unit vector, whereas going to the left, the cross

a1 a2 a3 a1 a2,

a3 � a3 = 0a3 � a2 = -a1a3 � a1 = a2

a2 � a3 = a1a2 � a2 = 0a2 � a1 = -a3

a1 � a3 = -a2a1 � a2 = a3a1 � a1 = 0

a1, a2, a3,

A � B = ƒ A ƒ ƒ B ƒ  sin a aN = AB sin a aN

aN

a,

a

A2 B2 + A3 B3 = 0.
A # B = A1 B1 +

a = cos-1 
A # B
AB

= cos-1 
A1 B1 + A2 B2 + A3 B3

AB

A # B = A1 B1 + A2 B2 + A3 B3

Cross
product

aN

a

A

B

FIGURE 1.5

Cross product operation A � B.
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1.1 Vector Algebra 9

product of any two successive unit vectors is the negative of the following unit
vector.

The cross product operation is not commutative since

(1.17)

The distributive property holds for the cross product (as we shall prove later in
this section), so that

(1.18)

Using this property and the relationships (1.16a)–(1.16c), we obtain

This can be expressed in determinant form in the manner

(1.19)

The cross product operation is useful for obtaining the unit vector normal
to two given vectors at a point. This can be seen by rearranging (1.15) in the
manner

(1.20)

Triple cross product. A triple cross product involves three vectors in two cross
product operations. Caution must be exercised in evaluating a triple cross prod-
uct since the order of evaluation is important; that is, is not in
general equal to This can be illustrated by means of a simple ex-
ample involving unit vectors. Thus, if and then

whereas

1A � B2 � C = 1a1 � a12 � a2 = 0 � a2 = 0

A � 1B � C2 = a1 � 1a1 � a22 = a1 � a3 = -a2

C = a2,A = a1, B = a1,
1A � B2 � C.

A � 1B � C2

aN =
A � B

AB sin a
=

A � B
ƒ A � B ƒ

A � B = 3 a1 a2 a3

A1 A2 A3

B1 B2 B3

3

 + 1A1 B2 - A2 B12a3

 = 1A2 B3 - A3 B22a1 + 1A3 B1 - A1 B32a2

 + A3 B1 a2 - A3 B2 a1

 = A1 B2 a3 - A1 B3 a2 - A2 B1 a3 + A2 B3 a1

 + A3 a3 � B1 a1 + A3 a3 � B2 a2 + A3 a3 � B3 a3

 + A2 a2 � B1 a1 + A2 a2 � B2 a2 + A2 a2 � B3 a3

 = A1 a1 � B1 a1 + A1 a1 � B2 a2 + A1 a1 � B3 a3

 A � B = 1A1 a1 + A2 a2 + A3 a32 � 1B1 a1 + B2 a2 + B3 a32

A � 1B + C2 = A � B + A � C

B � A = ƒ B ƒ ƒ A ƒ  sin a1-aN2 = -AB sin a aN = -A � B

Finding unit
vector normal
to two vectors
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10 Chapter 1 Vectors and Fields

Scalar triple product. The scalar triple product involves three vectors in a dot
product operation and a cross product operation as, for example, It
is not necessary to include parentheses since this quantity can be evaluated in
only one manner, that is, by evaluating first and then dotting the result-
ing vector with A. It is meaningless to try to evaluate the dot product first since
it results in a scalar quantity, and hence we cannot proceed any further. From
(1.19), we have

From (1.13), we then have

(1.21)

Since the value of the determinant on the right side of (1.21) remains un-
changed if the rows are interchanged in a cyclical manner,

(1.22)

The scalar triple product has the geometrical meaning that its absolute value is
the volume of the parallelepiped having the three vectors as three of its con-
tiguous edges, as will be shown in Section 1.2.

We shall now show that the distributive law holds for the cross product
operation by using (1.22). Thus, let us consider Then, if D is any
arbitrary vector, we have

where we have used the distributive property of the dot product operation.
Since this equality holds for any D, it follows that

Example 1.1 Vector algebraic operations

Given three vectors

 C = a2 + 2a3

 B = a1 + 2a2 - 2a3

 A = a1 + a2

A � 1B + C2 = A � B + A � C

 = D # A � B + D # A � C = D # 1A � B + A � C2
 D # A � 1B + C2 = 1B + C2 # 1D � A2 = B # 1D � A2 + C # 1D � A2

A � 1B + C2.

A # B � C = B # C � A = C # A � B

A # B � C = 3A1 A2 A3

B1 B2 B3

C1 C2 C3

3

A # B � C = 1A1 a1 + A2 a2 + A3 a32 # 3 a1 a2 a3

B1 B2 B3

C1 C2 C3

3

B � C

A # B � C.
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1.1 Vector Algebra 11

let us carry out several of the vector algebraic operations:

(a)

(b)

(c)

(d)

(e)

(f)

(g) Angle between A and 

(h)

(i) Unit vector normal to A and 

(j)

(k)

K1.1. Scalars; Vectors; Unit vectors; Right-handed system; Components of a vector;
Vector addition; Multiplication of vector by a scalar; Magnitude of a vector; Dot
product; Cross product; Triple cross product; Scalar triple product.

D1.1. Vector A has a magnitude of 4 units and is directed toward north.Vector B has a
magnitude of 3 units and is directed toward east. Vector C has a magnitude of 4
units and is directed 30° toward south from west. Find the following: (a)
(b) (c) (d) and (e)
Ans. (a) 4 units directed 60° west of north; (b) 5; (c) 6.212 units directed
15° east of north; (d) 10.392; (e) 24 units directed westward.

D1.2. Given three vectors

Find the following: (a) (b) unit vector along 
(c) (d) and (e)
Ans. (a) 13; (b) (c) 10; (d) (e) 8.5a1 - 4a2 + a3;12a1 + a2 - 2a32>3;

A # B � C.B � C;A # C;
1A + 2B - C2;ƒ A + B - 4C ƒ ;

 C = a1 + 2a2 + 3a3

 B = a1 + a2 - a3

 A = 3a1 + 2a2 + a3

A � 1B � C2.B # 1A - C2;3A + 4B + 3C;ƒ A - B ƒ ;
A + C;

A # B � C = 3 1 1 0
1 2 -2
0 1 2

3 = 112162 + 1121-22 + 102112 = 4

1A � B2 � C = 3 a1 a2 a3

-2 2 1
0 1 2

3 = 3a1 + 4a2 - 2a3

B =
A � B
ƒ A � B ƒ

= -  
2
3

 a1 +
2
3

 a2 +
1
3

 a3

 = -2a1 + 2a2 + a3

 A � B = 3 a1 a2 a3

1 1 0
1 2 -2

3 = 1-2 - 02a1 + 10 + 22a2 + 12 - 12a3

B = cos-1
 
A # B
AB

= cos-1
 

3
1122132 = 45°

A # B = 1a1 + a22 # 1a1 + 2a2 - 2a32 = 112112 + 112122 + 1021-22 = 3

iB =
B
ƒ B ƒ

=
a1 + 2a2 - 2a3

3
=

1
3

 a1 +
2
3

 a2 -
2
3

 a3

ƒ B ƒ = ƒ a1 + 2a2 - 2a3 ƒ = 41122 + 1222 + 1-222 = 3

4C = 41a2 + 2a32 = 4a2 + 8a3

B - C = 1a1 + 2a2 - 2a32 - 1a2 + 2a32 = a1 + a2 - 4a3

A + B = 1a1 + a22 + 1a1 + 2a2 - 2a32 = 2a1 + 3a2 - 2a3
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12 Chapter 1 Vectors and Fields

D1.3. Three vectors A, B, and C are given by

Find the following: (a) (b) and (c)
Ans. (a) (b) (c)

1.2 CARTESIAN COORDINATE SYSTEM

In the preceding section, we introduced the technique of expressing a vector at a
point in space in terms of its component vectors along a set of three mutually or-
thogonal directions defined by three mutually orthogonal unit vectors at that
point. Now to relate vectors at one point in space to vectors at another point in
space, we must define the set of three reference directions at each and every point
in space. To do this in a systematic manner, we need to use a coordinate system.
Although there are several different coordinate systems, we shall be concerned
with only three of those, namely, the Cartesian, cylindrical, and spherical coordi-
nate systems. The Cartesian coordinate system, also known as the rectangular co-
ordinate system, is the simplest of the three since it permits the geometry to be
simple, yet sufficient to study many of the elements of engineering electromag-
netics. We introduce the Cartesian coordinate system in this section and devote
the next section to the cylindrical and spherical coordinate systems.

The Cartesian coordinate system is defined by a set of three mutually or-
thogonal planes, as shown in Fig. 1.6(a). The point at which the three planes
intersect is known as the origin O. The origin is the reference point relative to
which we locate any other point in space. Each pair of planes intersects in a
straight line. Hence, the three planes define a set of three straight lines that

-3a1 - 3a2.a1 + 2a2 + 2a3;2a1 + a2 - 2a3;
C � 1A � B2.B � 1C � A2;A � 1B � C2;

 C = a1 - a2 + a3

 B = 2a1 + a2 - 2a3

 A = a1 + 2a2 + 2a3

(a) (b)

x � 0 y � 0

z � 0
y � 5

x � 2

z � 4

x

x

y

y

z

z

az

az

az

ay

ay

ax

ax

2
5

4

(2, 5, 4)

O

O ay
ax

FIGURE 1.6

Cartesian coordinate system. (a) The three orthogonal planes defining the coordinate system.
(b) The unit vectors in the Cartesian coordinate system are uniform.
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1.2 Cartesian Coordinate System 13

form the coordinate axes. These coordinate axes are denoted as the x-, y-, and
z-axes. Values of x, y, and z are measured from the origin; hence, the coordi-
nates of the origin are (0, 0, 0), that is, and Directions in
which values of x, y, and z increase along the respective coordinate axes are
indicated by arrowheads. The same set of three directions is used to erect a set
of three unit vectors, denoted and as shown in Fig. 1.6(a), for the
purpose of describing vectors drawn at the origin. Note that the positive x-,
y-, and z-directions are chosen such that they form a right-handed system, that
is, a system for which 

On one of the three planes, namely, the yz-plane, the value of x is constant
and equal to zero, its value at the origin, since movement on this plane does not
require any movement in the x-direction. Similarly, on the zx-plane, the value of
y is constant and equal to zero, and on the xy-plane, the value of z is constant
and equal to zero. Any point other than the origin is now given by the intersec-
tion of three planes

(1.23)

obtained by incrementing the values of the coordinates by appropriate amounts.
For example, by displacing the plane by 2 units in the positive x-direction,
the plane by 5 units in the positive y-direction, and the plane by 4
units in the positive z-direction, we obtain the planes and 
respectively, which intersect at point (2, 5, 4), as shown in Fig. 1.6(b). The inter-
sections of pairs of these planes define three straight lines along which we can
erect the unit vectors and toward the directions of increasing values of
x, y, and z, respectively, for the purpose of describing vectors drawn at that point.
These unit vectors are parallel to the corresponding unit vectors drawn at the
origin, as can be seen from Fig. 1.6(b). The same is true for any point in space in
the Cartesian coordinate system. Thus, each one of the three unit vectors in the
Cartesian coordinate system has the same direction at all points, and hence it is
uniform. This behavior does not, however, hold for all unit vectors in the cylin-
drical and spherical coordinate systems, as we shall see in the next section.

It is now a simple matter to apply what we have learned in Section 1.1 to vec-
tors in Cartesian coordinates.All we need to do is to replace the subscripts 1, 2, and
3 for the unit vectors and the components along the unit vectors by the subscripts
x, y, and z, respectively, and also utilize the property that and are uniform
vectors. Thus, let us, for example, obtain the expression for the vector drawn
from point to point as shown in Fig. 1.7. To do this, we
note that the position vector drawn from the origin to the point is given by

(1.24a)

The position vector is so called because it defines the position of the point in
space relative to the origin. Similarly, the position vector drawn from the ori-
gin to the point is given by

(1.24b)r2 = x2 ax + y2 ay + z2 az

P2

r2

r1 = x1 ax + y1 ay + z1 az

P1r1

P21x2, y2, z22,P11x1, y1, z12
R12

azax, ay,

azax, ay,

z = 4,x = 2, y = 5,
z = 0y = 0

x = 0

 z = constant
 y = constant
 x = constant

ax � ay = az.

az,ax, ay,

z = 0.x = 0, y = 0,

Expression
for vector
joining two
points
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14 Chapter 1 Vectors and Fields

x

y

z

x2

x1

y1 y2

z2

z1

P1

O

P2R12

r2

r1

(x2 � x1)ax

(z2 � z1)az

(y2 � y1)ay

FIGURE 1.7

For obtaining the expression for the vector from to P21x2, y2, z22.P11x1, y1, z12R12

Since, from the rule for vector addition, we obtain the vector 
to be

(1.25)

Thus, to find the components of the vector drawn from one point to another in
the Cartesian coordinate system, we simply subtract the coordinates of the ini-
tial point from the corresponding coordinates of the final point. These compo-
nents are just the distances one has to travel along the x-, y-, and z-directions,
respectively, if one chooses to go from to by traveling parallel to the coor-
dinate axes instead of traveling along the direct straight-line path.

Proceeding further, we can obtain the unit vector along the line drawn
from to to be

(1.26)

For a numerical example, if is and is (4, 2, 5), then

 a12 =
1

512
 13ax + 4ay + 5az2

 R12 = 3ax + 4ay + 5az

P211, -2, 02P1

a12 =
R12

R12
=
1x2 - x12ax + 1y2 - y12ay + 1z2 - z12az

[1x2 - x122 + 1y2 - y122 + 1z2 - z122]1>2

P2P1

P2P1

 = 1x2 - x12ax + 1y2 - y12ay + 1z2 - z12az

 R12 = r2 - r1

R12r1 + R12 = r2,
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1.2 Cartesian Coordinate System 15

In our study of electromagnetic fields, we have to work with line, surface,
and volume integrals. These involve differential lengths, surfaces, and volumes,
obtained by incrementing the coordinates by infinitesimal amounts. Since, in
the Cartesian coordinate system, the three coordinates represent lengths, the
differential length elements obtained by incrementing one coordinate at a time,
keeping the other two coordinates constant, are and for the
x-, y-, and z-coordinates, respectively.

Differential length vector. The differential length vector dl is the vector drawn
from a point P(x, y, z) to a neighboring point ob-
tained by incrementing the coordinates of P by infinitesimal amounts. Thus, it is
the vector sum of the three differential length elements, as shown in Fig. 1.8, and
given by

(1.27)

The differential lengths dx, dy, and dz in (1.27) are, however, not independent of
each other since in the evaluation of line integrals, the integration is performed
along a specified path on which the points P and Q lie.We shall illustrate this by
means of an example.

Example 1.2 Finding differential length vector along a curve

Let us consider the curve and obtain the expression for the differential
length vector dl along the curve at the point (1, 1, 1) and having the projection dz on the
z-axis.

The geometry pertinent to the problem is shown in Fig. 1.9. From elementary cal-
culus, we know that for In particular, at the point (1, 1, 1),

Thus,

 = 12ax + 2ay + az2 dz

 = 2 dz ax + 2 dz ay + dz az

 dl = dx ax + dy ay + dz az

dx = dy = 2 dz.
x = y = z2, dx = dy = 2z dz.

x = y = z2

dl = dx ax + dy ay + dz az

Q1x + dx, y + dy, z + dz2

dz azdx ax, dy ay,

Finding
differential
length vector
along a curve

az

ay

ax

Q(x � dx, y � dy, z � dz)

dy

dzdx

d l

P(x, y, z)

FIGURE 1.8

Differential length vector dl.
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16 Chapter 1 Vectors and Fields

x

y

z

O

x � y � z2d l

1

1

1

FIGURE 1.9

For finding the differential length
vector along the curve x = y = z2.

an

d l2

d l1

Curve 2

Curve 1

Surface
FIGURE 1.10

Finding the unit vector normal to a
surface by using differential length
vectors.

Note that the z-component of the dl vector found is dz, thereby satisfying the require-
ment of projection dz on the z-axis specified in the problem.

Differential length vectors are useful for finding the unit vector normal to
a surface at a point on that surface. This is done by considering two differential
length vectors at the point under consideration and tangential to two curves on
the surface and then using (1.20). Thus, with reference to Fig. 1.10, we have

(1.28)

Let us consider an example.

an =
dl1 � dl2

ƒ dl1 � dl2 ƒ
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1.2 Cartesian Coordinate System 17

an

d l2

d l1

z

1

2

x

yO

2x2 � y2 � 6

FIGURE 1.11

Example of finding the unit vector
normal to a surface.

Example 1.3 Finding unit vector normal to a surface

Find the unit vector normal to the surface at the point (1, 2, 0).
With reference to the construction shown in Fig. 1.11, we consider two differential

length vectors and at the point (1, 2, 0). The vector is along the straight line
whereas the vector is tangential to the curve For

and Hence,

For and and Specifically, at the point
(1, 2, 0), and Hence,

The unit normal vector is then given by

Differential surface vector. Two differential length vectors and originating
at a point define a differential surface whose area dS is that of the parallelogram
having and as two of its adjacent sides, as shown in Fig. 1.12(a). From simple
geometry and the definition of the cross product of two vectors, it can be seen that

(1.29)

In the evaluation of surface integrals, it is convenient to define a differential sur-
face vector dS whose magnitude is the area dS and whose direction is normal to
the differential surface.Thus, recognizing that the normal vector can be directed

dS = dl1 dl2 sin a = ƒ dl1 � dl2 ƒ

dl2dl1

dl2dl1

 =
112

 1ax + ay2
 an =

dz az � dx 1ax - ay2
ƒ dz az � dx 1ax - ay2 ƒ

dl2 = dx ax - dx ay = dx 1ax - ay2
dz = 0.dy = -dx

dz = 0.z = 0, 4x dx + 2y dy = 02x2 + y2 = 6

dl1 = dz az

y = 2, dx = dy = 0.x = 1
2x2 + y2 = 6, z = 0.dl2x = 1, y = 2,

dl1dl2dl1

2x2 + y2 = 6 Finding unit
normal vector
at a point on
a surface
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18 Chapter 1 Vectors and Fields

an

ay

ax

az

d l1

dS

dx

dx

dy

dy

dz

dz

d l2

z

x

y

a

(a) (b)

FIGURE 1.12

(a) Illustrating the differential surface vector concept. (b) Differential surface vectors in the
Cartesian coordinate system.

to either side of a surface, we can write

or

(1.30)

Applying (1.30) to pairs of three differential length elements 
and we obtain the differential surface vectors

(1.31a)
(1.31b)
(1.31c)

associated with the planes and re-
spectively. These are shown in Fig. 1.12(b) for the plus signs in (1.31a)–(1.31c).

Differential volume. Three differential length vectors and origi-
nating at a point define a differential volume which is that of the paral-
lelepiped having and as three of its contiguous edges, as shown in
Fig. 1.13(a). From simple geometry and the definitions of cross and dot prod-
ucts, it can be seen that

 = ƒ dl3
# dl1 � dl2 ƒ

 = ƒ dl1 � dl2 ƒ  
ƒ dl3

# dl1 � dl2 ƒ
ƒ dl1 � dl2 ƒ

 = ƒ dl1 � dl2 ƒ ƒ dl3
# an ƒ

 dv = area of the base of the parallelepiped * height of the parallelepiped

dl3dl1, dl2,
dv

dl3dl1, dl2,

z = constant,x = constant, y = constant,

 ;dx ax � dy ay = ;dx dy az

 ;dz az � dx ax = ;dz dx ay

 ;dy ay � dz az = ;dy dz ax

dz az,
dx ax, dy ay,

dS = ;dl1 � dl2

dS = ;dS an = ; ƒ dl1 � dl2 ƒ an
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1.2 Cartesian Coordinate System 19

an

ay

ax

az

d l1

dv dx

dy

dz

d l2

d l3

(a) (b)

FIGURE 1.13

(a) Parallelepiped defined by three differential length vectors originating at a point.
(b) Differential volume in the Cartesian coordinate system.

or

(1.32)

Thus, the scalar triple product of three vectors originating from a point has the
meaning that its absolute value is the volume of the parallelepiped having the
three vectors as three of its contiguous edges.

For the three differential length elements and associat-
ed with the Cartesian coordinate system, we obtain the differential volume to be

(1.33)

which is that of the rectangular parallelepiped shown in Fig. 1.13(b).
We shall conclude this section with a brief review of some elementary an-

alytic geometrical details that will be useful in our study of electromagnetics.An
arbitrary surface is defined by an equation of the form

(1.34)

In particular, the equation for a plane surface making intercepts a, b, and c on
the x-, y-, and z-axes, respectively, is given by

(1.35)

Since a curve is the intersection of two surfaces, an arbitrary curve is defined by
a pair of equations

(1.36)

Alternatively, a curve is specified by a set of three parametric equations

(1.37)x = x1t2, y = y1t2, z = z1t2

f1x, y, z2 = 0 and g1x, y, z2 = 0

x
a

+
y

b
+

z
c

- 1 = 0

f1x, y, z2 = 0

dv = dx dy dz

dz azdx ax, dy ay,

dv = ƒ dl1
# dl2 � dl3 ƒ
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20 Chapter 1 Vectors and Fields

where t is an independent parameter. For example, a straight line passing through
the origin and making equal angles with the positive x-, y-, and z-axes is given by
the pair of equations and or by the set of three parametric equa-
tions and 

K1.2. Cartesian or rectangular coordinate system; Orthogonal surfaces; Unit vectors;
Position vector; Vector joining two points; Differential length vector; Differen-
tial surface vector; Differential volume.

D1.4. Three points and are given by (3, 1, 0), and re-
spectively. Obtain the following: (a) the vector drawn from to (b) the
straight-line distance from to and (c) the unit vector along the line from

to 
Ans. (a) (b) 3; (c)

D1.5. For each of the following straight lines, find the differential length vector
along the line and having the projection dz on the z-axis: (a)
(b) and (c) the line passing through the points (2, 0, 0)
and (0, 0, 1).
Ans. (a) (b) (c)

D1.6. For each of the following pairs of points, obtain the equation for the straight line
passing through the points: (a) (1, 2, 0) and (3, 4, 0); (b) (0, 0, 0) and 
and (c) (1, 1, 1) and 
Ans. (a) (b) (c)

1.3 CYLINDRICAL AND SPHERICAL COORDINATE SYSTEMS

In the preceding section, we learned that the Cartesian coordinate system is de-
fined by a set of three mutually orthogonal surfaces, all of which are planes. The
cylindrical and spherical coordinate systems also involve sets of three mutually
orthogonal surfaces. For the cylindrical coordinate system, the three surfaces
are a cylinder and two planes, as shown in Fig. 1.14(a). One of these planes is the
same as the plane in the Cartesian coordinate system. The second
plane contains the z-axis and makes an angle with a reference plane, conve-
niently chosen to be the xz-plane of the Cartesian coordinate system.This plane
is therefore defined by The cylindrical surface has the z-axis as its
axis. Since the radial distance r from the z-axis to points on the cylindrical sur-
face is a constant, this surface is defined by Thus, the three or-
thogonal surfaces defining the cylindrical coordinates of a point are

(1.38)

Only two of these coordinates (r and z) are distances; the third coordinate 
is an angle.We note that the entire space is spanned by varying r from 0 to 
from 0 to and z from to q .- q2p,

q , f
1f2

 z = constant
 f = constant
 r = constant

r = constant.

f = constant.

f

z = constant

3x + 2y = 5, 3x - 2z = 1.x = y = -2z;y = x + 1, z = 0;
13, -2, 42.

12, 2, -12;
1-2ax + az2 dz.1ax - ay + az2 dz;dz az;

x + y = 0, y + z = 1;
x = 3, y = -4;

1ax + ay - az2>13.12ax + 3ay - 2az2;
P3.P1

P3;P2

P2;P1

15, 2, -22,11, -2, 22,P3P1, P2,

z = t.x = t, y = t,
z = x,y = x

Cylindrical
coordinate
system
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1.3 Cylindrical and Spherical Coordinate Systems 21

(a) (b)

p
f

f

f df

4
 �

af

af

ar

az

ar

az

r � 2

z � 3

A

x

r

x x

y y

z z

B

r

r df
dr

z

dr
P

Q

dz

r df

FIGURE 1.14

Cylindrical coordinate system. (a) Orthogonal surfaces and unit vectors.
(b) Differential volume formed by incrementing the coordinates.

The origin is given by and Any other point in space
is given by the intersection of three mutually orthogonal surfaces obtained
by incrementing the coordinates by appropriate amounts. For example, the
intersection of the three surfaces and defines the point

as shown in Fig. 1.14(a). These three orthogonal surfaces define
three curves that are mutually perpendicular.Two of these are straight lines and
the third is a circle. We draw unit vectors, and tangential to these
curves at the point A and directed toward increasing values of r, and z, re-
spectively. These three unit vectors form a set of mutually orthogonal unit vec-
tors in terms of which vectors drawn at A can be described. In a similar manner,
we can draw unit vectors at any other point in the cylindrical coordinate system,
as shown, for example, for point in Fig. 1.14(a). It can now be seen
that the unit vectors and at point B are not parallel to the corresponding
unit vectors at point A.Thus, unlike in the Cartesian coordinate system, the unit
vectors and in the cylindrical coordinate system do not have the same di-
rections everywhere; that is, they are not uniform. Only the unit vector which
is the same as in the Cartesian coordinate system, is uniform. Finally, we note
that for the choice of as in Fig. 1.14(a), that is, increasing from the positive x-
axis toward the positive y-axis, the coordinate system is right-handed, that is,
ar � af = az.

f

az,
afar

afar

B11, 3p>4, 52

f,
azar, af,

A12, p>4, 32, z = 3r = 2, f = p>4,

z = 0.r = 0, f = 0,
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22 Chapter 1 Vectors and Fields

To obtain expressions for the differential lengths, surfaces, and volumes
in the cylindrical coordinate system, we now consider two points and

where Q is obtained by incrementing infinitesi-
mally each coordinate from its value at P, as shown in Fig. 1.14(b). The three
orthogonal surfaces intersecting at P, and the three orthogonal surfaces inter-
secting at Q, define a box that can be considered to be rectangular since 
and dz are infinitesimally small. The three differential length elements forming
the contiguous sides of this box are and The differential
length vector dl from P to Q is thus given by

(1.39)

The differential surface vectors defined by pairs of the differential length ele-
ments are

(1.40a)
(1.40b)
(1.40c)

These are associated with the and 
surfaces, respectively. Finally, the differential volume formed by the three
differential lengths is simply the volume of the box; that is,

(1.41)

For the spherical coordinate system, the three mutually orthogonal sur-
faces are a sphere, a cone, and a plane, as shown in Fig. 1.15(a). The plane is the
same as the plane in the cylindrical coordinate system.The sphere
has the origin as its center. Since the radial distance r from the origin to points
on the spherical surface is a constant, this surface is defined by 
The spherical coordinate r should not be confused with the cylindrical coordi-
nate r. When these two coordinates appear in the same expression, we shall use
the subscripts c and s to distinguish between cylindrical and spherical. The cone
has its vertex at the origin and its surface is symmetrical about the z-axis. Since
the angle is the angle that the conical surface makes with the z-axis, this sur-
face is defined by Thus, the three orthogonal surfaces defining the
spherical coordinates of a point are

(1.42)

Only one of these coordinates (r) is distance; the other two coordinates ( and )
are angles. We note that the entire space is spanned by varying r from 0 to 
from 0 to and from 0 to 2p.fp,

q , u
fu

 f = constant
 u = constant
 r = constant

u = constant.
u

r = constant.

f = constant

dv = 1dr21r df21dz2 = r dr df dz

dv
z = constantr = constant, f = constant,

 ;dr ar � r df af = ;r dr df az

 ;dz az � dr ar = ;dr dz af

 ;r df af � dz a = ;r df dz ar

dl = dr ar + r df af + dz az

dz az.dr ar, r df af,

dr, df,

Q1r + dr, f + df, z + dz2, P1r, f, z2

Spherical
coordinate
system
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p
f

u

f

df

duu

f

3
 �

p
u

6
�

af

af

au

au

ar

ar

r � 3

A

B

r

x x

y y

z z

r df

dr

dr

P
Q

r du

r

r sin u df

(a) (b)

FIGURE 1.15

Spherical coordinate system. (a) Orthogonal surfaces and unit vectors. (b) Differential
volume formed by incrementing the coordinates.

The origin is given by and Any other point in space is
given by the intersection of three mutually orthogonal surfaces obtained by in-
crementing the coordinates by appropriate amounts. For example, the intersec-
tion of the three surfaces and defines the point

as shown in Fig. 1.15(a). These three orthogonal surfaces define
three curves that are mutually perpendicular. One of these is a straight line and
the other two are circles. We draw unit vectors and tangential to these
curves at point A and directed toward increasing values of r, and respec-
tively. These three unit vectors form a set of mutually orthogonal unit vectors in
terms of which vectors drawn at A can be described. In a similar manner, we can
draw unit vectors at any other point in the spherical coordinate system, as
shown, for example, for point in Fig. 1.15(a). It can now be seen that
these unit vectors at point B are not parallel to the corresponding unit vectors at
point A.Thus, in the spherical coordinate system all three unit vectors and

do not have the same directions everywhere; that is, they are not uniform. Fi-
nally, we note that for the choice of as in Fig. 1.15(a), that is, increasing from
the positive z-axis toward the xy-plane, the coordinate system is right-handed,
that is,

To obtain expressions for the differential lengths, surfaces, and volume in the
spherical coordinate system, we now consider two points and 

where Q is obtained by incrementing infinitesimally eachdr, u + du, f + df2, Q1r +P1r, u, f2
ar � au = af.

u

af
ar, au,

B11, p/2, 02

f,u,
afar, au,

A13, p/6, p/32, f = p/3r = 3, u = p/6,

f = 0.r = 0, u = 0,
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24 Chapter 1 Vectors and Fields

coordinate from its value at P, as shown in Fig. 1.15(b). The three orthogonal sur-
faces intersecting at P and the three orthogonal surfaces intersecting at Q define a
box that can be considered to be rectangular since and are infinitesimal-
ly small.The three differential length elements forming the contiguous sides of this
box are and The differential length vector dl from P to
Q is thus given by

(1.43)

The differential surface vectors defined by pairs of the differential length ele-
ments are

(1.44a)
(1.44b)
(1.44c)

These are associated with the and 
surfaces, respectively. Finally, the differential volume formed by the three
differential lengths is simply the volume of the box, that is,

(1.45)

In the study of electromagnetics, it is useful to be able to convert the coor-
dinates of a point and vectors drawn at a point from one coordinate system to
another, particularly from the cylindrical system to the Cartesian system and
vice versa, and from the spherical system to the Cartesian system and vice versa.
To derive first the relationships for the conversion of the coordinates, let us con-
sider Fig. 1.16(a), which illustrates the geometry pertinent to the coordinates of
a point P in the three different coordinate systems. Thus, from simple geometri-
cal considerations, we have

(1.46a)
(1.46b)

Conversely, we have

(1.47a)

(1.47b)

Relationships (1.46a) and (1.47a) correspond to conversion from cylindrical coor-
dinates to Cartesian coordinates, and vice versa. Relationships (1.46b) and (1.47b)
correspond to conversion from spherical coordinates to Cartesian coordinates,

f = tan-1
 

y

x
u = tan-1

 
4x2 + y2

z
rs = 4x2 + y2 + z2

z = zf = tan-1
 

y

x
rc = 4x2 + y2

z = rs cos uy = rs sin u sin fx = rs sin u cos f
z = zy = rc sin fx = rc cos f

dv = 1dr21r du21r sin u df2 = r2 sin u dr du df

dv
f = constantr = constant, u = constant,

 ;dr ar � r du au = ;r dr du af

 ;r sin u df af � dr ar = ;r sin u dr df au

 ;r du au � r sin u df af = ;r2 sin u du df ar

dl = dr ar + r du au + r sin u df af

r sin u df af.dr ar, r du au,

dfdr, du

Conversions
between
coordinate
systems
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1.3 Cylindrical and Spherical Coordinate Systems 25

u

u

f

f

af

af

au

ay

arc

arc

ars

ax

az

az

O

x

x

y

y

z

z

rc

rs

P

(a)

(b) (c)

FIGURE 1.16

(a) Converting coordinates of a point from one coordinate system to another. (b) and (c)
Expressing unit vectors in cylindrical and spherical coordinate systems, respectively, in
terms of unit vectors in the Cartesian coordinate system.

and vice versa. It should be noted that in computing from y and x, consideration
should be given to the quadrant of the xy-plane in which the projection of the
point P onto the xy-plane lies.

Considering next the conversion of vectors from one coordinate system to
another, we note that to do this, we need to express each of the unit vectors of
the first coordinate system in terms of its components along the unit vectors in
the second coordinate system. From the definition of the dot product of two
vectors, the component of a unit vector along another unit vector, that is, the co-
sine of the angle between the unit vectors, is simply the dot product of the two
unit vectors. Thus, considering the sets of unit vectors in the cylindrical and
Cartesian coordinate systems, we have with the aid of Fig. 1.16(b),

(1.48a)
(1.48b)
(1.48c)

Similarly, for the sets of unit vectors in the spherical and Cartesian coordinate
systems, we obtain, with the aid of Fig. 1.16(b) and (c),

(1.49a)
(1.49b)
(1.49c)

We shall now illustrate the use of these relationships by means of an example.

af # az = 0af # ay = cos faf # ax = -sin f
au # az = -sin uau # ay = cos u sin fau # ax = cos u cos f

ars
# az = cos uars

# ay = sin u sin fars
# ax = sin u cos f

az
# az = 1az

# ay = 0az
# ax = 0

af # az = 0af # ay = cos faf # ax = -sin f
arc

# az = 0arc
# ay = sin farc

# ax = cos f

f
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26 Chapter 1 Vectors and Fields

Example 1.4 Conversion of a vector from Cartesian to spherical
coordinates

Let us consider the vector at the point (3, 4, 5) and convert it to one in
spherical coordinates.

First, from the relationships (1.47b), we obtain the spherical coordinates of the
point (3, 4, 5) to be

Then, noting from the relationships (1.49) that

we obtain at the point under consideration

This result is to be expected since the given vector has components equal to the coordi-
nates of the point at which it is specified. Hence, its magnitude is equal to the distance of
the point from the origin, that is, the spherical coordinate of the point, and its direction
is along the line drawn from the origin to the point, that is, along the unit vector at
that point. In fact, the given vector is a particular case of the position vector

which is the vector drawn from the origin to the point (x, y, z).

K1.3. Cylindrical coordinate system; Orthogonal surfaces; Unit vectors; Differential
lengths, surfaces, and volume; Spherical coordinate system; Orthogonal sur-
faces; Unit vectors; Differential lengths, surfaces, and volume; Conversions be-
tween coordinate systems.

D1.7. Convert into Cartesian coordinates each of the following points: (a) in
cylindrical coordinates; (b) in cylindrical coordinates; (c)

in spherical coordinates; and (d) in spherical coordinates.
Ans. (a) (b) (c) (d) 11, 13, 22.13, 13, -22;1-2, -213, -12;1-13, 1, 32;

118, p/4, p/32p/62
14, 2p/3,14, 4p/3, -12

12, 5p/6, 32

xax + yay + zaz = rs ars,

ars

rs

 = 512ars

 + 510.512ars - 0.512au2
 + 410.412ars + 0.412au + 0.6af2

 3ax + 4ay + 5az = 310.312ars + 0.312au - 0.8af2
 Cax

ay

az

S = C0.312 0.312 -0.8
0.412 0.412 0.6
0.512 -0.512 0

S Cars

au
af

S

 = C sin u cos f cos u cos f -sin f
sin u sin f cos u sin f cos f

cos u -sin u 0
S Cars

au
af

S
 Cax

ay

az

S = C 1ax
# ars2 1ax

# au2 1ax
# af2

1ay
# ars2 1ay

# au2 1ay
# af2

1az
# ars2 1az

# au2 1az
# af2

S Cars

au
af

S
 f = tan-1

 

4
3 = 53.13°

 u = tan-1
 
432 + 42

5
= tan-1 1 = 45°

 rs = 432 + 42 + 52 = 512

3ax + 4ay + 5az
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1.4 Scalar and Vector Fields 27

D1.8. Convert into cylindrical coordinates the following points specified in Cartesian
coordinates: (a) (b) and (c)
Ans. (a) (b) (c)

D1.9. Convert into spherical coordinates the following points specified in Cartesian
coordinates: (a) (b) and (c)
Ans. (a) (b) (c)

1.4 SCALAR AND VECTOR FIELDS

Before we take up the task of studying electromagnetic fields, we must under-
stand what is meant by a field. A field is associated with a region in space, and
we say that a field exists in the region if there is a physical phenomenon associ-
ated with points in that region. For example, in everyday life we are familiar
with the earth’s gravitational field.We do not “see” the field in the same manner
as we see light rays, but we know of its existence in the sense that objects are
acted upon by the gravitational force of Earth. In a broader context, we can talk
of the field of any physical quantity as being a description, mathematical or
graphical, of how the quantity varies from one point to another in the region of
the field and with time. We can talk of scalar or vector fields depending on
whether the quantity of interest is a scalar or a vector. We can talk of static or
time-varying fields depending on whether the quantity of interest is indepen-
dent of time or changing with it.

We shall begin our discussion of fields with some simple examples of scalar
fields. Thus let us consider the case of the conical pyramid shown in Fig. 1.17(a).
A description of the height of the pyramidal surface versus position on its base is
an example of a scalar field involving two variables. Choosing the origin to be the
projection of the vertex of the cone onto the base and setting up an xy-coordi-
nate system to locate points on the base, we obtain the height field as a function
of x and y to be

(1.50)

Although we are able to depict the height variation of points on the conical
surface graphically by using the third coordinate for h, we will have to be con-
tent with the visualization of the height field by a set of constant-height con-
tours on the xy-plane if only two coordinates were available, as in the case of a
two-dimensional space. For the field under consideration, the constant-height
contours are circles in the xy-plane centered at the origin and equally spaced for
equal increments of the height value, as shown in Fig. 1.17(a).

For an example of a scalar field in three dimensions, let us consider a rec-
tangular room and the distance field of points in the room from one corner of
the room, as shown in Fig. 1.17(b). For convenience, we choose this corner to be
the origin O and set up a Cartesian coordinate system with the three contiguous
edges meeting at that point as the coordinate axes. Each point in the room is de-
fined by a set of values for the three coordinates x, y, and z. The distance r from

h1x, y2 = 6 - 24x2 + y2

12, 3p/4, p2.14, p/3, 5p/62;12, p/2, 3p/22;
1-12, 0, -122.1-3, 13, 22;10, -2, 02;

12, 5p/4, 32.12, 5p/3, -12;12, p, 12;
1-12, -12, 32.11, -13, -12;1-2, 0, 12;

Scalar fields
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(a) (b)
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FIGURE 1.17

(a) Conical pyramid lying above the xy-plane and a set of constant-height
contours for the conical surface. (b) Rectangular room and a set of constant-
distance surfaces depicting the distance field of points in the room from one
corner of the room.

the origin to that point is Thus, the distance field of points in
the room from the origin is given by

(1.51)

Since the three coordinates are already used up for defining the points in the
field region, we have to visualize the distance field by means of a set of constant-
distance surfaces. A constant-distance surface is a surface for which points on it
correspond to a particular constant value of r. For the case under consideration,
the constant-distance surfaces are spherical surfaces centered at the origin and
are equally spaced for equal increments in the value of the distance, as shown in
Fig. 1.17(b).

The fields we have discussed thus far are static fields. A simple example of
a time-varying scalar field is provided by the temperature field associated with

r1x, y, z2 = 4x2 + y2 + z2

4x2 + y2 + z2.
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points in a room, especially when it is being heated or cooled. Just as in the case
of the distance field of Fig. 1.17(b), we set up a three-dimensional coordinate
system and to each set of three coordinates corresponding to the location of a
point in the room, we assign a number to represent the temperature T at that
point. Since the temperature at that point, however, varies with time t, this num-
ber is a function of time. Thus, we describe mathematically the time-varying
temperature field in the room by a function T(x, y, z, t). For any given instant of
time, we can visualize a set of constant-temperature or isothermal surfaces cor-
responding to particular values of T as representing the temperature field for
that value of time. For a different instant of time, we will have a different set of
isothermal surfaces for the same values of T. Thus, we can visualize the time-
varying temperature field in the room by a set of isothermal surfaces continu-
ously changing their shapes as though in a motion picture.

The foregoing discussion of scalar fields may now be extended to vector
fields by recalling that a vector quantity has associated with it a direction in
space in addition to magnitude. Hence, to describe a vector field, we attribute to
each point in the field region a vector that represents the magnitude and direc-
tion of the physical quantity under consideration at that point. Since a vector at
a given point can be expressed as the sum of its components along the set of unit
vectors at that point, a mathematical description of the vector field involves
simply the descriptions of the three component scalar fields. Thus, for a vector
field F in the Cartesian coordinate system, we have

(1.52)

Similar expressions in cylindrical and spherical coordinate systems are as follows:

(1.53a)

(1.53b)

We should, however, recall that the unit vectors and in (1.53a) and all
three unit vectors in (1.53b) are themselves nonuniform, but known, functions
of the coordinates.

A vector field is described by a set of direction lines, also known as stream
lines and flux lines. A direction line is a curve constructed such that the field is
tangential to the curve for all points on the curve. To find the equations for the
direction lines for a specified vector field F, we consider the differential length
vector dl tangential to the curve. Then since F and dl are parallel, their compo-
nents must be in the same ratio. Thus, in the Cartesian coordinate system, we
obtain the differential equation

(1.54)
dx

Fx
=

dy

Fy
=

dz

Fz

afar

 F1r, u, f, t2 = Fr1r, u, f, t2ar + Fu1r, u, f, t2au + Ff1r, u, f, t2af
 F1r, f, z, t2 = Fr1r, f, z, t2ar + Ff1r, f, z, t2af + Fz1r, f, z, t2az

F1x, y, z, t2 = Fx1x, y, z, t2ax + Fy1x, y, z, t2ay + Fz1x, y, z, t2az

1.4 Scalar and Vector Fields 29

Vector fields

Finding
equations for
direction lines
of a vector
field
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30 Chapter 1 Vectors and Fields

which upon integration gives the required algebraic equation. Similar expres-
sions in cylindrical and spherical coordinate systems are as follows:

(1.55)

(1.56)

We shall illustrate the concept of direction lines and the use of (1.54)–(1.56) to
obtain the equations for the direction lines by means of an example.

Example 1.5 Linear velocity vector field of points on a rotating disk

Consider a circular disk of radius a rotating with constant angular velocity about an
axis normal to the disk and passing through its center. We wish to describe the linear ve-
locity vector field associated with points on the rotating disk.

We choose the center of the disk to be the origin and set up a two-dimensional co-
ordinate system, as shown in Fig. 1.18(a). Note that we have a choice of the coordinates

v

 
dr

Fr
=

r du
Fu

=
r sin u df

Ff

 
dr

Fr
=

r df
Ff

=
dz

Fz

f

af

O
O

O

x

y
(r, f)r

(a) (b)

(c)

FIGURE 1.18

(a) Rotating disk. (b) Linear velocity vector field associated with points on the
rotating disk. (c) Same as (b) except that the vectors are omitted and the
density of direction lines is used to indicate the magnitude variation.
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1.4 Scalar and Vector Fields 31

(x, y) or the coordinates We know that the magnitude of the linear velocity of a
point on the disk is then equal to the product of the angular velocity and the radial dis-
tance r of the point from the center of the disk.The direction of the linear velocity is tan-
gential to the circle drawn through that point and concentric with the disk. Hence, we
may depict the linear velocity field by drawing at several points on the disk vectors that
are tangential to the circles concentric with the disk and passing through those points,
and whose lengths are proportional to the radii of the circles, as shown in Fig. 1.18(b),
where the points are carefully selected to reveal the circular symmetry of the field with
respect to the center of the disk. We find, however, that this method of representation of
the vector field results in a congested sketch of vectors. Hence, we may simplify the
sketch by omitting the vectors and simply placing arrowheads along the circles, thereby
obtaining a set of direction lines. We note that for the field under consideration, the di-
rection lines are also contours of constant magnitude of the velocity, and hence by in-
creasing the density of the direction lines as r increases, we can indicate the magnitude
variation, as shown in Fig. 1.18(c).

For this simple example, we have been able to obtain the direction lines without
resorting to the use of mathematics. We shall now consider the mathematical determina-
tion of the direction lines and show that the same result is obtained. To do this, we note
that the linear velocity vector field is given by

Then, considering that the geometry associated with the problem is two-dimensional and
using (1.55), we have

or

which represents circles centered at the origin, as in Fig. 1.18(c).
If we wish to obtain the equations for the direction lines using Cartesian coordi-

nates, we first write

Then from (1.54), we have

or

which again represents circles centered at the origin.

 x2 + y2 = constant
 x dx + y dy = 0

dx

-y
=

dy

x

 = v1-yax + xay2
 = vr1-sin f ax + cos f ay2

 v1x, y2 = vr1af # ax2ax + vr1af # ay2ay

 r = constant
 dr = 0

dr

0
=

r df

vr

v1r, f2 = vraf

v

1r, f2.
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32 Chapter 1 Vectors and Fields

K1.4. Field; Static field, Time-varying field; Scalar field; Constant magnitude contours
and surfaces; Vector field; Direction lines.

D1.10. The time-varying temperature field in a certain region of space is given by

where is a constant. Find the shapes of the constant-temperature surfaces for
each of the following values of t: (a) (b) and (c)
Ans. (a) elliptic cylinders; (b) spheres; (c) ellipsoids.

D1.11. For the vector field find the fol-
lowing: (a) the magnitude of F and the unit vector along F at the point (1, 1, 0);
(b) the point at which the magnitude of F is 3 and the direction of F is along the
unit vector and (c) the point at which the magnitude of F is
3 and the direction of F is along the unit vector 
Ans. (a) (b) (1, 1, 1); (c)

D1.12. A vector field is given in cylindrical coordinates by

Express the vector F in Cartesian coordinates at each of the following points spec-
ified in Cartesian coordinates: (a) (1, 0, 0); (b) and (c)
Ans. (a) (b) (c)

1.5 THE ELECTRIC FIELD

Basic to our study of the elements of engineering electromagnetics is an under-
standing of the concepts of the electric and magnetic fields. Hence, we devote
this and the following section to an introduction of these concepts. To introduce
the electric field concept, we note that, from our study of Newton’s law of gravi-
tation in elementary physics, we are familiar with the gravitational force field as-
sociated with material bodies by virtue of their physical property known as mass.
Newton’s experiments showed that the gravitational force of attraction between
two bodies of masses and separated by a distance R that is very large
compared with their sizes, is equal to where G is the universal con-
stant of gravitation. In a similar manner, a force field known as the electric field
is associated with bodies that are charged. A material body may be charged pos-
itively or negatively or may possess no net charge. In the International System of
Units that we use throughout this book, the unit of charge is the coulomb, ab-
breviated C. The charge of an electron is Alternatively, ap-
proximately represent a charge of one negative coulomb.

Experiments conducted by Coulomb showed that the following hold for
two charged bodies that are very small in size compared to their separation so
that they can be considered as point charges:

1. The magnitude of the force is proportional to the product of the magni-
tudes of the charges.

6.24 * 1018 electrons
-1.60219 * 10-19 C.

m1 m2 G/R2,
m2m1

1
81-ax + 13ay2.- 1

2 ay;ax;
11, 13, -42.11, -1, -32;

F =
1

r2 1cos f ar + sin f af2

10.6, 1.8, -0.62.3, 1312ax + 2ay + 2az2;
az.

1
312ax + 2ay + az2;

F = 13x - y2ax + 1x + z2ay + 12y - z2az,

t = 1 s.t = 0.5 s;t = 0;
T0

T1x, y, z, t2 = T05[x11 + sin pt2]2 + [2y11 - cos pt2]2 + 4z26

Coulomb’s
law
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1.5 The Electric Field 33

2. The magnitude of the force is inversely proportional to the square of the
distance between the charges.

3. The magnitude of the force depends on the medium.
4. The direction of the force is along the line joining the charges.
5. Like charges repel; unlike charges attract.

For free space, the constant of proportionality is where is known as
the permittivity of free space, having a value or approximately
equal to (For convenience, we shall use a value of for 
throughout this book.) Thus, if we consider two point charges and 
separated R m in free space, as shown in Fig. 1.19, then the forces and ex-
perienced by and respectively, are given by

(1.57a)

and

(1.57b)

where and are unit vectors along the line joining and as shown
in Fig. 1.19. Equations (1.57a) and (1.57b) represent Coulomb’s law. Since the
units of force are newtons, we note that has the units 

These are commonly known as farads per meter, where a
farad is a per newton-meter.

In the case of the gravitational field of a material body, we define the grav-
itational field intensity as the force per unit mass experienced by a small test
mass placed in that field. In a similar manner, the force per unit charge experi-
enced by a small test charge placed in an electric field is known as the electric
field intensity, denoted by the symbol E. Alternatively, if in a region of space, a
test charge q experiences a force F, then the region is said to be characterized by
an electric field of intensity E given by

(1.58)E =
F
q

1coulomb221newton-meter22. 1coulomb22 pere0

Q2,Q1a12a21

F2 =
Q2 Q1

4pe0 R2 a12

F1 =
Q1 Q2

4pe0 R2 a21

Q2,Q1

F2F1

Q2 CQ1 C
e010-9/36p10-9/36p.

8.854 * 10-12,
e01/4pe0,

Electric field
defined

F1

F2

Q1

Q2

a12

a21

R

FIGURE 1.19

Forces experienced by two point
charges and Q2.Q1
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Electrostatic
separation of
minerals

Cathode ray
tube

1See, for example, A. D. Moore, ed., Electrostatics and Its Applications (New York: John Wiley &
Sons, 1973), Chap. 10.

The unit of electric field intensity is newton per coulomb, or more commonly
volt per meter, where a volt is a newton-meter per coulomb. The test charge
should be so small that it does not alter the electric field in which it is placed.
Ideally, E is defined in the limit that q tends to zero; that is,

(1.59)

Equation (1.59) is the defining equation for the electric field intensity irrespec-
tive of the source of the electric field. Just as one body by virtue of its mass is the
source of a gravitational field acting on other bodies by virtue of their masses, a
charged body is the source of an electric field acting on other charged bodies.
We will, however, learn in Chapter 2 that there exists another source for the
electric field, namely, a time-varying magnetic field.

Equation (1.58) or (1.59) tells us that the force experienced by a charged
particle placed at a point in an external electric field is in the same direction as
that of the electric field if the charge is positive, but opposite to that of the elec-
tric field if the charge is negative, as shown in Fig. 1.20. This phenomenon is the
basis behind electrostatic separation, a process widely used in industry to sepa-
rate minerals.1 An example is illustrated in Fig. 1.21. Phosphate ore composed
of granules of quartz and phosphate rock is dropped through a hopper onto a
vibrating feeder. The friction between the two types of granules resulting from
the vibration causes the quartz particles to be positively charged and the phos-
phate particles to be negatively charged. The oppositely charged particles are
then passed through a chute into the electric field region between two parallel
plates, where they are separated and subsequently collected separately.

There are many other devices based on the electric force on a charged
particle. We shall, however, discuss only one other application, the cathode ray
tube, which is used in oscilloscopes, TV receivers, computer display terminals,
and so on. The schematic of a cathode ray tube is shown in Fig. 1.22. Electrons
are emitted from the heated cathode and are accelerated toward the anode by
an electric field directed from the anode toward the cathode. After passing
through the anode, they enter a region between two orthogonal pairs of parallel
plates, one pair being horizontal and the other vertical. A voltage applied to the

E = lim
q:0

 
F
q

��

qE

�qE

q �q

E

FIGURE 1.20

Forces experienced by positive and negative
charges in an electric field.
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1.5 The Electric Field 35

horizontal set of plates produces an electric field between the plates directed
vertically, thereby deflecting the electrons vertically and imparting to them a ver-
tical component of velocity as they leave the region between the plates. Similar-
ly, a voltage applied to the vertical set of plates deflects the electrons horizontally
sideways and imparts to them a sideways component of velocity as they leave the
region between the plates.Thus, by varying the voltages applied to the two sets of
plates, the electron beam can be made to strike the fluorescent screen and pro-
duce a bright spot at any point on the screen.
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E 
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FIGURE 1.21

Example for illustrating electrostatic separation
of minerals.

Grid

Cathode Anode Deflection
Plates

Electron
Beam
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Fluorescent
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FIGURE 1.22

Schematic diagram of a cathode ray tube.
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Returning now to Coulomb’s law and letting one of the two charges in
Fig. 1.19, say, be a small test charge q, we have

(1.60)

The electric field intensity at the test charge due to the point charge is
then given by

(1.61)

Generalizing this result by making R a variable, that is, by moving the test
charge around in the medium, writing the expression for the force experienced
by it, and dividing the force by the test charge, we obtain the electric field inten-
sity E due to a point charge Q to be

(1.62)

where R is the distance from the point charge to the point at which the field in-
tensity is to be computed and is the unit vector along the line joining the two
points under consideration and directed away from the point charge.The electric
field intensity due to a point charge is thus directed everywhere radially away
from the point charge and its constant-magnitude surfaces are spherical surfaces
centered at the point charge, as shown by the cross-sectional view in Fig. 1.23.

Using (1.62) in conjunction with (1.25) and (1.26), we can obtain the ex-
pression for the electric field intensity at a point P(x, y, z) due to a point charge
Q located at a point Thus, noting that the vector R from to P is
given by and the unit vector is
equal to R/R, we obtain

(1.63)
 =

Q

4pe0
 

1x - x¿2ax + 1y - y¿2ay + 1z - z¿2az

[1x - x¿22 + 1y - y¿22 + 1z - z¿22]3/2

 E =
QR

4pe0 R3

aR[1x - x¿2ax + 1y - y¿2ay + 1z - z¿2az]
P¿P¿1x¿, y¿, z¿2.

aR

E =
Q

4pe0 R2 aR

E2 =
F2

q
=

Q1

4pe0 R2 a12

Q1E2

F2 =
Q1 q

4pe0 R2 a12

Q2,
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R

Q

aR

E

FIGURE 1.23

Direction lines and cross sections of constant-magnitude
surfaces of electric field due to a point charge.

Electric field
due to a point
charge
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1.5 The Electric Field 37

For a numerical example, if P and are (3, 1, 1) and respectively, then

If we now have several point charges as shown in Fig. 1.24, the
force experienced by a test charge situated at a point P is the vector sum of the
forces experienced by the test charge due to the individual charges. It then fol-
lows that the electric field intensity at point P is the superposition of the electric
field intensities due to the individual charges; that is,

(1.64)

We shall illustrate the application of (1.64) by means of an example involving
two point charges.

Example 1.6 Electric field of two point charges

Let us consider two point charges and situated at 
and (1, 0, 0), respectively.We wish to (a) find the electric field intensity at the point (0, 0, 1)
and (b) discuss computer generation of the direction line of E passing through that point.

(a) Using (1.64) and (1.63) in conjunction with the geometry in Fig. 1.25(a), we obtain

(1.65)

Note that the direction of E is given by the unit vector pointing
away from the positive charge The field vectors and and the resultant
field vector E, are shown in Fig. 1.25(a).

E2,E1Q1.
13ax + az2/110

 = 1.118a3ax + az110
b

 =
8pe0

4pe0
 

1ax + az2
23/2 -

4pe0

4pe0
 

1-ax + az2
23/2

 [E]10, 0, 12 = [E1]10, 0, 12 + [E2]10, 0, 12

1-1, 0, 02Q2 = -4pe0 CQ1 = 8pe0 C

E =
Q1

4pe0 R1
2 aR1

+
Q2

4pe0 R2
2 aR2

+ Á +
Qn

4pe0 Rn
2  aRn

Q1, Q2, Á ,

E =
Q

108pe0
 12ax + 2ay + az2

11, -1, 02,P¿

aRn

aR3

aR2

aR1
P

R1

Q1

Q2

Q3

R2

R3

Rn

Qn

FIGURE 1.24

Collection of point charges and unit vectors along
the directions of their electric fields at a point P.
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E1

E2

E

z

x
1 1

1

Q1 � 8pe0 C Q2 � �4pe0 C

0.1

(0, 0, 1)
(0.095, 0, 1.032)

(0.193, 0, 1.052)

3ax � az

10 4.8ax � az

4.9

(a) (b)

FIGURE 1.25

(a) Computation of the resultant electric field due to two point charges. (b) Generation of the direction
line of the electric field of (a).

(b) To discuss the computer generation of the direction line of E, we recall that a di-
rection line is a curve such that at any given point on the curve, the field is tan-
gential to the curve. For the case of the electric field, it is also the path followed by
an infinitesimal test charge when released at a point on the curve. To obtain the
direction line through the point (0, 0, 1), we go by an incremental distance from
(0, 0, 1) along the direction of the electric field vector at that point to reach a new
point, compute the field at the new point, and continue the process. Thus, choos-
ing for the purpose of illustration an incremental distance of 0.1 m and going
along the unit vector from (0, 0, 1), we obtain the new point to be
(0.095, 0, 1.032), as shown in Fig. 1.25(b). The electric field at this point is

(1.66)

Note that the direction of this electric field, which is along the unit vector
is slanted more toward the negative charge than that of the

electric field at the point (0, 0, 1), as shown in Fig. 1.25(b), indicating the swing of
the direction line toward The procedure is continued by going the incremen-
tal distance of 0.1 m from (0.095, 0, 1.032) along the unit vector 
to the new point (0.193, 0, 1.052) and computing the field vector at that point,
and so on, until the direction line is terminated close to the point charge The
same can be done to obtain the portion of the direction line from (0, 0, 1) toward
the point charge by moving opposite to E. Values of the coordinates of the
beginning point (X and Z), the magnitude of the electric field at that point (E),
and the components of the unit vector along the electric field (UX and UZ), per-
tinent to the steps along the direction line computed in this manner, are listed in

Q1,

Q2.

14.8ax + az2/4.9
Q2.

Q214.8ax + az2/4.9,

 = 1.015a4.8ax + az

4.9
b

 [E]10.095, 0, 1.0322 =
8pe0

4pe0
 

11.095ax + 1.032az2
11.0952 + 1.032223/2 -

4pe0

4pe0
 

1-0.905ax + 1.032az2
10.9052 + 1.032223/2

13ax + az2/110
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1.5 The Electric Field 39

Table 1.1, parts (a) and (b), corresponding to the segments of the direction line
from (0, 0, 1) toward and respectively. It can be seen that the test charge
takes 17 steps toward but only 14 steps back toward 

In the simple procedure employed in Example 1.6, there is a (cumulative)
error associated with each step. This error can be reduced by employing a mod-
ified procedure as follows: Instead of moving the test charge by 0.1 m from its
current location, say, point A, to a new location, say, point B, along the direction

Q1.Q2

Q1,Q2

TABLE 1.1 Values of Parameters Pertinent to the Steps in the Computer Generation of
the Direction Line of E in Fig. 1.25 for (a) the Segment from (0, 0, 1) Toward the Charge 
and (b) the Segment from (0, 0, 1) Back Toward the Charge 

(a)

Number of 
(b)

steps = 14
UZ = 0.853UX = 0.522E = 860.610Z = 0.041X = - .975
UZ = 0.849UX = 0.529E = 91.176Z = 0.126X = - .922
UZ = 0.843UX = 0.538E = 32.588Z = 0.210X = - .868
UZ = 0.835UX = 0.551E = 16.616Z = 0.294X = - .813
UZ = 0.823UX = 0.568E = 10.074Z = 0.376X = - .756
UZ = 0.808UX = 0.590E = 6.769Z = 0.457X = - .697
UZ = 0.788UX = 0.616E = 4.871Z = 0.536X = - .636
UZ = 0.762UX = 0.648E = 3.681Z = 0.612X = - .571
UZ = 0.730UX = 0.684E = 2.888Z = 0.685X = - .503
UZ = 0.689UX = 0.724E = 2.333Z = 0.754X = - .430
UZ = 0.640UX = 0.768E = 1.931Z = 0.818X = - .353
UZ = 0.580UX = 0.815E = 1.634Z = 0.876X = - .272
UZ = 0.507UX = 0.862E = 1.411Z = 0.926X = - .186
UZ = 0.420UX = 0.908E = 1.243Z = 0.968X = - .095
UZ = 0.316UX = 0.949E = 1.118Z = 1.000X = 0.000

Number of steps = 17
UZ = -1.000UX = -0.023E = 577.540Z = 0.042X = 1.001
UZ = -1.000UX = 0.010E = 49.846Z = 0.142X = 1.000
UZ = -0.999UX = 0.049E = 17.101Z = 0.241X = 0.995
UZ = -0.995UX = 0.101E = 8.537Z = 0.341X = 0.985
UZ = -0.986UX = 0.167E = 5.100Z = 0.440X = 0.968
UZ = -0.969UX = 0.246E = 3.391Z = 0.536X = 0.944
UZ = -0.942UX = 0.337E = 2.426Z = 0.631X = 0.910
UZ = -0.899UX = 0.439E = 1.837Z = 0.721X = 0.866
UZ = -0.836UX = 0.548E = 1.459Z = 0.804X = 0.811
UZ = -0.751UX = 0.660E = 1.212Z = 0.879X = 0.745
UZ = -0.643UX = 0.766E = 1.051Z = 0.944X = 0.669
UZ = -0.513UX = 0.858E = 0.951Z = 0.995X = 0.583
UZ = -0.368UX = 0.930E = 0.898Z = 1.032X = 0.490
UZ = -0.215UX = 0.977E = 0.882Z = 1.053X = 0.392
UZ = -0.065UX = 0.998E = 0.898Z = 1.060X = 0.292
UZ = 0.076UX = 0.997E = 0.942Z = 1.052X = 0.193
UZ = 0.204UX = 0.979E = 1.015Z = 1.032X = 0.095
UZ = 0.316UX = 0.949E = 1.118Z = 1.000X = 0.000

Q1.
Q2
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40 Chapter 1 Vectors and Fields

of the electric field at point A, it is moved by 0.1 m to a point C along a direction
that bisects the directions of the fields at points A and B. Computer-plotted
field maps in the xz-plane for pairs of point charges and located at

and (1, 0), respectively, by using this modified procedure are shown in
Fig. 1.26. In each map, plotting of a direction line begins at one of the point
charges and terminates when the line reaches to within a distance of 0.1 m from
the second point charge, or if it goes beyond a specified rectangular region. In
this manner, direction lines beginning at points around each point charge and at
30° intervals on a circle of radius 0.1 m are plotted, with the 0° angle corre-
sponding to the 

For Fig. 1.26(a), at and at (1, 0). The rectangu-
lar region is one having corners at (3, 2), and The di-
rection lines beginning at each point charge either end on the second charge or
go out of the boundary of the rectangular region. For Figs. 1.26(b)–(d), region
of map is rectangle having corners at (3, 4), (3, 0), and taking
advantage of the symmetry of the field map about the axis through the charges,

1-3, 02,1-3, 42,

1-3, -22.13, -22,1-3, 22,
Q2 = -Q1-1, 02Q1 = 2Q

+x-direction.

1-1, 02 Q2Q1

(�3,  2) (3,  2)

(�3,  �2)
(a) (b)

(c) (d)

(3,  �2)

(�3,  4) (3,  4)

(�3,  0) Q1

Q1

Q2

Q2

(3,  0)

(�3,  4) (3,  4)

(�3,  0) Q1 Q1Q2

45

40
15

5

10

Q2(3,  0)

(�3,  4) (3,  4)

(�3,  0) (3,  0)

FIGURE 1.26

Computer-generated maps of direction lines of electric field for pairs of point charges and at and
(1, 0), respectively, in the xz-plane. (a) (b) (c) and
(d) Q1 = 81Q, Q2 = Q.

Q1 = 9Q, Q2 = -Q;Q1 = 4Q, Q2 = Q;Q1 = 2Q, Q2 = -Q;
1-1, 02Q2Q1
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1.5 The Electric Field 41

illustrated in Fig. 1.26(a). For Fig. 1.26(b), at and at
(1, 0). A zero-field point exists within the region at between the two
charges. For direction lines passing through this point, the test charge gets
trapped at that point, and the procedure used is to untrap it by displacing it by
0.01 perpendicular to the axis and continue plotting the line until it terminates
at a point on the boundary of the region. For Fig. 1.26(c), at 
and at (1, 0). A zero-field point exists within the region at (2, 0), to
the right of Also, three additional field lines are shown plotted. Two of
these are from at angles of 40° and 45° and the third is from at 10°. For
Fig. 1.26(d), at and at (1, 0). A zero-field point exists
just to the left of between the two charges. The map also includes two addi-
tional field lines originating from at 5° and 15° angles.

The foregoing illustration of the computation of the electric field intensi-
ty due to two point charges can be extended to the computation of the field in-
tensity due to continuous charge distributions. Continuous charge distributions
are of three types: line charges, surface charges, and volume charges, depending
on whether the charge is distributed along a line like chalk powder along a thin
line drawn on the blackboard, on a surface like chalk powder on the erasing
surface of a blackboard eraser, or in a volume like chalk powder in the chalk it-
self. The corresponding charge densities are the line charge density the sur-
face charge density and the volume charge density having the units of
charge per unit length (coulombs per meter), charge per unit area (coulombs
per meter squared), and charge per unit volume (coulombs per meter cubed),
respectively. The technique of finding the electric field intensity due to a given
charge distribution consists of dividing the region of the charge distribution
into a number of differential lengths, surfaces, or volumes, depending on the
type of the distribution, considering the charge in each differential element to
be a point charge, and using superposition. We shall illustrate the procedure by
means of three examples.

Example 1.7 Circular ring charge with uniform density

Charge Q C is distributed with uniform density along a circular ring of radius a lying in
the xy-plane and having its center at the origin, as shown in Fig. 1.27. We wish to find the
electric field intensity at a point on the z-axis.

Let us divide the ring into a large number of segments so that the charge in each
segment can be considered to be a point charge located at the center of the segment. Let
the segments be of equal length and numbered as shown in Fig. 1.27. Then
the electric field intensity at the point (0, 0, z) due to the charge in the jth segment is
given by

where is the charge in the jth segment and and are as shown in the figure. Since
the charge is uniformly distributed, is the same for all j and is equal to the chargeQj

aRj
RjQj

Ej =
Qj

4pe0 Rj
2 aRj

1, 2, 3, Á , 2n,

r,rS,
rL,

Q1

Q2

Q2 = Q1-1, 02Q1 = 81Q
Q2Q1

Q2.
Q2 = -Q

1-1, 02Q1 = 9Q

113, 02,
Q2 = Q1-1, 02Q1 = 4Q

Types of
charge
distributions

Ring charge
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42 Chapter 1 Vectors and Fields

aRj

y

z

x

aj

Rj

a

j

(0, 0, z)

f df
2n – 1

2n 1 2 3 · · ·

FIGURE 1.27

Determination of electric field due to
a circular ring of charge of uniform
density.

density times the length of the segment. Thus,

Furthermore, since the point (0, 0, z) is along the axis of the ring, it is equidistant from all
segments so that is the same for all j. Hence,

Now, from symmetry considerations, we note that for every segment 
there is a corresponding segment diametrically opposite to it in the other half of the ring
such that the electric field intensity due to the two segments together is directed along
the z-axis, as illustrated for segment j in Fig. 1.27. Hence, to find E due to the entire ring
charge, it is sufficient if we consider the z-component of multiply it by 2, and sum
from to Thus, we obtain the required electric field intensity to be

(1.67)

Note that is directed in the above the origin and in the
below the origin as to be expected.1z 6 02,-z-direction

1z 7 02+z-direction[E]10, 0, z2

 =
Qz

4pe01z2 + a223/2 az

 = a
n

j = 1
 

Qz

4pe0 n1z2 + a223/2 az

 = a
n

j = 1
 

Qjz

2pe0 Rj
3 az

 = a
n

j = 1
 

Qj

2pe0 Rj
2  cos aj az

 [E]10, 0, z2 = a
n

j = 1
 

2Qj

4pe0 Rj
2 1aRj

# az2az

j = n.j = 1
Ej,

1, 2, 3, Á , n,

Rj = 4z2 + a2

Rj

Qj = a Q

2pa
b a2pa

2n
b =

Q

2n
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1.5 The Electric Field 43

Alternative to the summation procedure just employed, we can obtain at (0, 0, z)
by setting up an integral expression and evaluating it. Thus, considering a differential
length a of the ring charge at the point as shown in Fig. 1.27, and making use
of symmetry considerations as discussed in connection with the summation procedure, we
obtain

(1.68)

For this example, the two results given by (1.67) and (1.68) are identical. In general, how-
ever, the summation procedure gives an approximate result for any finite value of n, and
the integral gives the exact result, provided it can be evaluated in closed form. The sum-
mation procedure is, however, more illuminating as to the application of superposition
and is convenient for computer solution.

Example 1.8 Electric field of an infinitely long line charge of uniform
density

Let us consider an infinitely long line charge along the z-axis with uniform charge densi-
ty and find the electric field intensity everywhere.

Let us first consider a point on the xy-plane, as shown in Fig. 1.28(a).
Then the solution can be carried out by dividing the line charge into a series of infinitesi-
mal segments, considering each segment to be a point charge, and using superposition.
Two such segments having lengths and equidistant from the origin, located at 
and are shown in the figure. Noting that the electric field contributions due to
these two segments make equal angles with the xy-plane and hence their superposition
has only an r-component, we obtain the field due to the two segments to be

The electric field intensity at P due to the entire line charge is then given by

 =
rL0

2pe0 r
 ar

 =
rL0

2pe0 r 3
 p/2

a= 0 

 cos a da

 = 3
 q

z¿ = 0 

 

rL0r dz¿
2pe0[r

2 + 1z¿22]3/2 ar

 [E]1r, f, 02 = 3
 q

z¿ = 0 

[dE]1r, f, 02

 =
rL0r dz¿

2pe0[r
2 + 1z¿22]3/2 ar

 [dE]1r, f, 02 = 2 

rL0 dz¿
4pe0[r

2 + 1z¿22] cos a ar

a

10, 0, -z¿2,
10, 0, z¿2dz¿

P1r, f, 02
rL0 C/m

 =
Qz

4pe01a2 + z223>2

 =
Qz

4p2e01a2 + z223>2L
p

f= 0
df

 [Ez]10, 0, z2 = L
p
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21Q/2pa2a df
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44 Chapter 1 Vectors and Fields

where we have used the relationship to make a change of the variable of in-
tegration from to 

Finally, since the charge density is uniform and the xy-plane can be chosen to be
passing through any point on the line charge without changing the geometry, this result is
valid for any value of z. Thus, the required electric field intensity is

(1.69)

which has the magnitude and is everywhere radial to the line charge as shown by

the cross-sectional view in Fig. 1.28(b).

Example 1.9 Electric field of an infinite plane sheet of charge of
uniform density

Let us consider an infinite plane sheet of charge in the xy-plane with uniform surface
charge density and find the electric field intensity due to it everywhere.

Let us first consider a point (0, 0, z) on the z-axis, as shown in Fig. 1.29(a).Then the
solution can be carried out by dividing the sheet into a number of infinitesimal surfaces
in Cartesian coordinates and using superposition. An alternate procedure consists of
using the result of Example 1.7 by dividing the sheet into concentric rings centered at the
origin and each having infinitesimal width dr in the radial direction. One such ring hav-
ing the arbitrary radius r and width dr is shown in Fig. 1.29(a). The charge in that ring is

rS0 C/m2

rL0

2pe0 r

E =
rL0

2pe0 r
 ar

a.z¿
z¿ = r tan a

z

y

x

f r

rL0

dz� (0, 0, z�)

(0, 0, �z�)

P

E

rL0

(a) (b)

a

a dE

FIGURE 1.28

(a) Determination of electric field due to an infinitely long line charge of uniform charge
density (b) Electric field due to the infinitely long line charge of (a).rL0 C/m.

Infinite plane
sheet of
charge
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1.5 The Electric Field 45

equal to the product of the uniform surface charge density and the area of
the ring. According to the result obtained in Example 1.7, the electric field intensity
at(0, 0, z) due to this ring charge is given by

The electric field intensity due to the entire sheet of charge is then given by

Finally, since the charge density is uniform and the origin of the coordinate system can be
chosen anywhere on the infinite sheet without changing the geometry, this result is valid
everywhere. Thus, the required electric field intensity is

(1.70)E = ;
rS0

2e0
  az for z � 0

 =
rS0z

2e0 ƒ z ƒ
  az

 =
rS0z

2e0
 c -  

14r2 + z2
d

r = 0

q

az

 = L
q

r = 0
 

rS0rz dr

2e01r2 + z223/2  az

 [E]10, 0, z2 = L
q

r = 0
[dE]10,0,z2

[dE]10, 0, z2 =
1rS02pr dr2z

4pe01r2 + z223/2  az

rS012pr dr2,

(a) (b)

(0, 0, z)

rS0 C/m2
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2e0

rS0

� � � � � � �
z � 0

z � 0, E � az

z

y
r

dr

x
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2e0
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FIGURE 1.29

(a) Determination of electric field due to an infinite plane sheet of uniform surface charge density
(b) Electric field due to the infinite plane sheet of charge of (a).rS0 C/m2.
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46 Chapter 1 Vectors and Fields

which has the magnitude everywhere and directed normally away from the sheet,
as shown by the cross-sectional view in Fig. 1.29(b). Defining to be the unit normal
vector directed away from the sheet, that is,

we have

(1.71)

K1.5. Coulomb’s law; Electric field intensity; E due to a point charge; Computation of
E due to charge distributions; E due to an infinitely long line charge of uniform
density; E due to an infinite plane sheet of charge of uniform density.

D1.13. Point charges, each of value are located at the vertices of an n-sided
regular polygon circumscribed by a circle of radius a. Find the electric force on
each charge for (a) (b) and (c)
Ans. (a) (b) (c) all directed away from
the center of the polygon.

D1.14. In Fig. 1.25, let the point charges be at and 
at (1, 0, 0). Find the following: (a) E at (0, 0, 1); (b) the coordinates of the point
at the end of the second step; and (c) the unit vector along E at the point com-
puted in (b).
Ans. (a) (b) (0.060, 0, 1.191); (c)

D1.15. In Fig. 1.27, let there be a second ring of charge uniformly distributed along
a circle of radius a, having its center at (0, 0, 2a) and lying parallel to the xy-
plane. Find E due to the two rings of charge together at each of the following
points: (a) (0, 0, 0); (b) (0, 0, a); and (c) (0, 0, 3a).
Ans. (a) (b) (c)

D1.16. Infinite plane sheets of charge lie in the and planes with
uniform surface charge densities and respectively. Given that the
resulting electric field intensities at the points (3, 5, 1), and (3, 4, 5)
are 0, and respectively, find the following: (a) (b) (c)
and (d) E at 
Ans. (a) (b) (c) (d)

1.6 THE MAGNETIC FIELD

In the preceding section, we presented an experimental law known as Coulomb’s
law having to do with the electric force associated with two charged bodies, and
we introduced the electric field intensity vector as the force per unit charge ex-
perienced by a test charge placed in the electric field. In this section, we present
another experimental law known as Ampère’s law of force, analogous to
Coulomb’s law, and use it to introduce the magnetic field concept.

-4az V/m.-2e0 C/m2;6e0 C/m2;4e0 C/m2;
1-2, 1, -62.

rS3;rS2;rS1;4az V/m,6az,
11, -2, 32,
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1-0.0206Q/e0 a22az.10.0563Q/e0 a22az;10.0142Q/e0 a22az;
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10.264ax + 0.965az2.10.353ax + 1.061az2;
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1.6 The Magnetic Field 47

Ampère’s law of force is concerned with magnetic forces associated with
two loops of wire carrying currents by virtue of motion of charges in the loops.
Figure 1.30 shows two loops of wire carrying currents and and each of
which is divided into a large number of elements having infinitesimal lengths.
The total force experienced by a loop is the vector sum of forces experienced by
the infinitesimal current elements constituting the loop. The force experienced
by each of these current elements is the vector sum of the forces exerted on it by
the infinitesimal current elements constituting the second loop. If the number of
elements in loop 1 is m and the number of elements in loop 2 is n, then there are

pairs of elements. A pair of magnetic forces is associated with each pair
of these elements, just as a pair of electric forces is associated with a pair of
point charges.Thus, if we consider an element in loop 1 and an element in
loop 2, then the forces and experienced by the elements and re-
spectively, are given by

(1.72a)

(1.72b)

where and are unit vectors along the line joining the two current ele-
ments, R is the distance between them, and k is a constant of proportionality
that depends on the medium. For free space, k is equal to where is
known as the permeability of free space, having a value From
(1.72a) or (1.72b), we note that the units of are newtons per ampere squared.
These are commonly known as henrys per meter, where a henry is a newton-
meter per ampere squared.

m0

4p * 10-7.
m0m0/4p,

a12a21

 dF2 = I2 dl2 � akI1 dl1 � a12

R2 b
 dF1 = I1 dl1 � akI2 dl2 � a21

R2 b

dl2,dl1dF2dF1

dl2dl1

m * n

I2I1

Ampère’s law
of force

a12

a21

d l1

I1

I2

d l2

R

FIGURE 1.30

Two loops of wire carrying currents and I2.I1
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48 Chapter 1 Vectors and Fields

Equations (1.72a) and (1.72b) represent Ampère’s force law as applied to
a pair of current elements. Some of the features evident from these equations
are as follows:

1. The magnitude of the force is proportional to the product of the two cur-
rents and to the product of the lengths of the two current elements.

2. The magnitude of the force is inversely proportional to the square of the
distance between the current elements.

3. To determine the direction of the force acting on the current element 
we first find the cross product and then cross into the result-
ing vector. Similarly, to determine the direction of the force acting on the
current element we first find the cross product and then
cross into the resulting vector. For the general case of arbitrary orien-
tations of and these operations yield and which are not
equal and opposite. To illustrate by means of an example, let us consider

at (1, 0, 0) and at (0, 1, 0). Then

Thus, This is not a violation of Newton’s third law since iso-
lated current elements do not exist without sources and sinks of charges at
their ends. Newton’s third law, however, must and does hold for complete
current loops.

The forms of (1.72a) and (1.72b) suggest that each current element is acted
on by a field which is due to the other current element. By definition, this field is
the magnetic field and is characterized by a quantity known as the magnetic flux
density vector, denoted by the symbol B. Thus, we note from (1.72b) that the
magnetic flux density at the element due to the element is given by

(1.73)

and that this flux density acting on results in a force on it given by

(1.74)dF2 = I2 dl2 � B1

dl2
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1.6 The Magnetic Field 49

Similarly, we note from (1.72a) that the magnetic flux density at the element 
due to the element is given by

(1.75)

and that this flux density acting on results in a force on it given by

(1.76)

From (1.74) and (1.76), we see that the units of B are newtons per ampere-meter,
commonly known as webers per meter squared (or tesla), where a weber is a new-
ton-meter per ampere. The units of webers per unit area give the character of
flux density to the quantity B, unlike the character of field intensity as that of E
for the electric field case.

Generalizing (1.74) and (1.76), we say that an infinitesimal current ele-
ment of length dl and current I placed in a magnetic field of flux density B ex-
periences a force dF given by

(1.77)

as shown in Fig. 1.31. Alternatively, if a current element experiences a force in a
region of space, then the region is said to be characterized by a magnetic field.

There are many devices using the principle of magnetic force on a current-
carrying wire. One such device in everyday life is the loudspeaker. As shown by
the cross-sectional view in Fig. 1.32, the loudspeaker consists of a permanent
magnet between the poles of which is a coil wound around a cylinder attached to
the apex of a movable cone-shaped diaphragm. Current through the coil varies
in accordance with the audio signal from the output stage of the hi-fi amplifier or
radio receiver. A magnetic force is thus exerted on the coil, vibrating it back and
forth in step with the changes in the current. Since the coil assembly is attached
to the cone, the cone also vibrates, thereby producing sound waves in the air.

Returning now to (1.73) and (1.75) and generalizing, we obtain the mag-
netic flux density due to an infinitesimal current element of length dl and carry-
ing current I to be

(1.78)B =
m0

4p
  

I dl � aR

R2

dF = I dl � B

dF1 = I1 dl1 � B2

dl1

B2 =
m0

4p
  

I2 dl2 � a21

R2

dl2

dl1

dF

d l

I

B

B

FIGURE 1.31

Force experienced by a current element
in a magnetic field.

Principle of
loudspeaker

Magnetic
field due to a
current
element
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FIGURE 1.32

Cross-sectional view of a loud-speaker.

where R is the distance from the current element to the point at which the flux
density is to be computed and is the unit vector along the line joining the
current element and the point under consideration and directed away from
the current element, as shown in Fig. 1.33. Equation (1.78) is known as the
Biot–Savart law and is analogous to the expression for the electric field intensi-
ty due to a point charge.The Biot–Savart law tells us that the magnitude of B at
a point P is proportional to the current I, the element length dl, and the sine of
the angle between the current element and the line joining it to the point P,
and is inversely proportional to the square of the distance from the current el-
ement to the point P. Hence, the magnetic flux density is zero at points along
the axis of the current element and increases in magnitude as the point P is
moved away from the axis on a spherical surface centered at the current ele-
ment, becoming a maximum for equal to 90°. This is in contrast to the behav-
ior of the electric field intensity due to a point charge, which remains the same
in magnitude at points on a spherical surface centered at the point charge. The
direction of B at point P is normal to the plane containing the current element
and the line joining the current element to P as given by the cross product op-
eration that is, right circular to the axis of the wire. Thus, the directiondl � aR,

a

a

aR

I d l
a

aR

R
P

B
FIGURE 1.33

Magnetic flux density due to an
infinitesimal current element.
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1.6 The Magnetic Field 51

lines of the magnetic flux density due to a current element are circles centered
at points on the axis of the current element and lying in planes normal to the
axis. This is in contrast to the direction lines of the electric field intensity due to
a point charge, which are radial lines emanating from the point charge.

Example 1.10 Magnetic flux density due to a current element

Let us consider an infinitesimal length of wire located at the point (1, 0, 0) and
carrying current 2 A in the direction of the unit vector We wish to find the magnetic
flux density due to the current element at the point (0, 2, 2).

Noting that the current element is given by

and the vector R from the location (1, 0, 0) of the current element to the point (0, 2, 2) is
given by

and using Biot–Savart law, we obtain

The Biot–Savart law can be used to find the magnetic flux density due to a
current carrying filamentary wire of any length and shape by dividing the wire
into a number of infinitesimal elements and using superposition. We shall illus-
trate the procedure by means of an example.

Example 1.11 Magnetic field of an infinitely long straight wire of
current

Let us consider an infinitely long, straight wire situated along the z-axis and carrying cur-
rent I A in the We wish to find the magnetic flux density everywhere.

Let us consider a point on the xy-plane specified by the cylindrical coordinates
as shown in Fig. 1.34(a). Then the solution for the magnetic flux density at

can be obtained by considering a differential length dz of the wire at the point
(0, 0, z) and using superposition. Applying Biot–Savart law (1.78) to the geometry in
Fig. 1.34(a), we obtain the magnetic flux density at due to the current element1r, f, 02
1r, f, 02
1r, f, 02,

+z-direction.

 =
0.001m0

27p
 1-ay + az2 Wb/m2

 =
m0

4p
  

0.002ax � 1-ax + 2ay + 2az2
27

 =
m0

4p
  
I dl � R

R3

 [B]10, 2, 22 =
m0

4p
  

I dl � aR

R2

R = 10 - 12ax + 12 - 02ay + 12 - 02az = -ax + 2ay + 2az

I dl = 122110-32ax = 0.002ax

ax.
10-3 m

Infinitely
long, straight
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FIGURE 1.34

(a) Determination of magnetic field due to an infinitely long, straight wire of current I A.
(b) Magnetic field due to the wire of (a).

at (0, 0, z) to be

The magnetic flux density due to the entire wire is then given by

Now, since the origin can be chosen to be anywhere on the wire without changing the
geometry, this result is valid everywhere. Thus, the required magnetic flux density is

(1.79)

which has the magnitude and surrounds the wire, as shown by the cross-sectional
view in Fig. 1.34(b).

m0 I>2pr

B =
m0 I

2pr
 af

 =
m0 I

2pr
 af

 =
m0 Ir

4p
 c z

r24z2 + r2
d

z = -q

q

af

 = L
q

z = -q
 

m0 Ir

4p1z2 + r223/2 dz af

 [B]1r, f, 02 = L
q

z = -q
dB

 =
m0 Ir dz

4p1z2 + r223>2 af

 =
m0 I dz

4p
  

r

R3 af

 =
m0 I dz

4p
  
sin a

R2  af

 [dB]1r, f, 02 =
m0

4p
  

I dz az � aR

R2

I dz az
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1.6 The Magnetic Field 53

The magnetic field computation illustrated in Example 1.11 can be extend-
ed to current distributions. Current distributions are of two types: surface cur-
rents and volume currents, depending on whether current flows on a surface like
rain water flowing down a smooth wall or in a volume like rain water flowing
down a gutter downspout. The corresponding current densities are the surface
current density and the volume current density, or simply the current density
J, having the units of current crossing unit length (amperes per meter) and cur-
rent crossing unit area (amperes per meter squared), respectively. Note that
the current densities are vector quantities, since flow is involved. Assuming for
simplicity surface current of uniform density flowing on a plane sheet, as shown
in Fig. 1.35(a), one obtains the current I on the sheet by multiplying the magni-
tude of by the dimension of the sheet normal to the direction of Simi-
larly, for volume current of uniform density flowing in a straight wire, as shown
in Fig. 1.35(b), the current I in the wire is given by the product of the magnitude
of J and the area of cross section A of the wire normal to the direction of J. If the
current density is nonuniform, the current can be obtained by performing an ap-
propriate integration along the width of the sheet or over the cross section of the
wire, depending on the case.We shall illustrate the determination of the magnet-
ic field due to a current distribution by means of an example.

Example 1.12 Magnetic field of an infinite plane sheet of current

Let us consider an infinite plane sheet of current in the xz-plane with uniform surface
current density and find the magnetic flux density everywhere.

Let us first consider a point (0, y, 0) on the positive y-axis, as shown in Fig. 1.36(a).
Then the solution can be carried out by dividing the sheet into a number of thin vertical
strips and using superposition. Two such strips, which are on either side of the z-axis and
equidistant from it, are shown in Fig. 1.36(a). Each strip is an infinitely long filamentary
wire of current Then, applying the result of Example 1.11 to each strip and noting
that the resultant magnetic flux density at (0, y, 0) due to the two strips together has only
an x-component, we obtain

 = -2 

m0 JS0 dx

2p4x2 + y2
  

y4x2 + y2
 ax = -  

m0 JS0y dx

p1x2 + y22  ax

 dB = dB1 + dB2 = -2 dB1 cos a ax

JS0 dx.

JS = JS0 az A/m

JS.wJS

JS

w

JS

J

A

(a) (b)

FIGURE 1.35

Determination of currents due to 
(a) surface current and (b) volume
current distributions of uniform densities.

Types of
current
distributions

Infinite plane
sheet of
current
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(a)
(b)
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FIGURE 1.36

(a) Determination of magnetic field due to an infinite plane sheet of current density (b) Magnetic
field due to the current sheet of (a).

JS0 az A/m.

The magnetic flux density due to the entire sheet is then given by

Since the magnetic field due to each strip is circular to that strip, a similar result applies
for a point on the negative y-axis except for for the field. Thus,

Now, since the origin can be chosen to be anywhere on the sheet without changing
the geometry, the foregoing results are valid everywhere in the respective regions. Thus,
the required magnetic flux density is

(1.80)

which has the magnitude everywhere and is directed in the direction for
as shown in Fig. 1.36(b). Defining to be the unit normal vector directed awayany � 0,

<axm0 JS0>2
B = <  

m0 JS0

2
 ax for y � 0

[B]10, y, 02 =
m0 JS0

2
 ax for y 6 0
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 = -  

m0 JS0

2
 ax for y 7 0
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m0 JS0y

p
 c 1

y
 tan-1

 
x

y
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q
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q
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1.6 The Magnetic Field 55

from the sheet, that is,

and noting that

we can write

(1.81)

Alternative to the derivation in Example 1.12, we can obtain the result
given by (1.81) from analogy between the electric field due to charge distribu-
tions and the magnetic field due to current distributions. To see this, we note,
with reference to Fig. 1.37(a), that E due to a point charge and B due to a cur-
rent element are given by

(1.82a)

We further note, with reference to Fig. 1.37(b), that E due to an infinitely long
line charge of uniform density and B due to an infinitely long line current are
given by

(1.82b)

Then, with reference to Fig. 1.37(c), we can write the analogy between E due to
an infinite plane sheet charge of uniform density and B due to an infinite plane
sheet of uniform current density as follows:

(1.82c)

Thus, the result given by (1.81) could have been written from this analogy, with-
out actually carrying out the solution in Example 1.12.

Returning now to (1.77), we can formulate the magnetic force in terms of
moving charge, since current is due to flow of charges. Thus, if dt is the time
taken by the charge dq contained in the length dl of the current element to flow
with a velocity v across the infinitesimal cross-sectional area of the element,
then and so that

(1.83)dF =
dq

dt
 v dt � B = dq v � B

dl = v dt,I = dq>dt,

E =
rL0

2e0
 an 4 B =

m0

2
 JS � an

 =
m0 I

2pr
 az � ar

 E =
rL0

2pe0 r
 ar 4 B =

m0 I

2pr
 af

E =
Q

4pe0 R2 aR 4 B =
m0 I

4pR2 dl � aR

B =
m0

2
 JS � an

B =
m0

2
 1JS0 az2 � 1;ay2 for y � 0

an = ;ay for y � 0

Magnetic
force in terms
of charge
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FIGURE 1.37

Analogy between electric field due to charge distributions and magnetic field due to current
distributions.

It then follows that the force F experienced by a test charge q moving with a ve-
locity v in a magnetic field of flux density B is given by

(1.84)

We may now obtain a defining equation for B in terms of the moving test
charge.To do this,we note from (1.84) that the magnetic force is directed normally to

F = qv � B
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1.6 The Magnetic Field 57

both v and B, as shown in Fig. 1.38, and that its magnitude is equal to 
where is the angle between v and B.A knowledge of the force F acting on a test
charge moving with an arbitrary velocity v provides only the value of To
find B, we must determine the maximum force that occurs for equal to 90°
by trying out several directions of v, keeping its magnitude constant. Thus, if this
maximum force is and it occurs for a velocity then

(1.85)

As in the case of defining the electric field intensity, we assume that the test
charge does not alter the magnetic field in which it is placed. Ideally, B is de-
fined in the limit that tends to zero; that is,

(1.86)

Equation (1.86) is the defining equation for the magnetic flux density irrespec-
tive of the source of the magnetic field. We have learned in this section that an
electric current or a charge in motion is a source of the magnetic field. We will
learn in Chapter 2 that there exists another source for the magnetic field,
namely, a time-varying electric field.

There are many devices based on the magnetic force on a moving charge. Of
particular interest is the motion of a charged particle in a uniform magnetic field,
as shown in Fig. 1.39. In this figure, a particle of mass m and charge q entering the

B = lim
qv:0

 

Fm � am

qv

qv

B =
Fm � am

qv

vam,Fm

dqvB
B sin d.

d

qvB sin d,

F
B

B

q d

v
FIGURE 1.38

Force experienced by a test charge
q moving with a velocity v in a
magnetic field B.

Charged
particle
motion in
uniform
magnetic field

B

q

R

v

FIGURE 1.39

Circular motion of a charged particle
entering a uniform magnetic field region.
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58 Chapter 1 Vectors and Fields

magnetic field region with velocity v perpendicular to B experiences a force 
perpendicular to v. Hence, the particle describes a circular path of radius R, equal
to , obtained by equating the centripetal force to the magnetic force

. The fact that the radius is equal to is used in several different appli-
cations. In the mass spectrograph, the mass-to-charge ratio of the particles is ob-
tained by measuring the radius of the circular orbit for known values of and B.
For ions of the same charge but of different masses, the radii of the circular paths
are directly proportional to their masses and to their velocities. This forms the
basis for electromagnetic separation of isotopes, two or more forms of a chemical
element having the same chemical properties and the same atomic number but
different atomic weights. In the cyclotron, a particle accelerator, the particle un-
dergoes a series of semicircular orbits of successively increasing velocities and
hence radii before it exits the field region with high energy.

K1.6. Ampère’s law of force; Magnetic flux density; Biot-Savart law; Computation of
B due to current distributions; B due to an infinitely long straight wire; B due to
an infinite plane sheet of current of uniform density; Analogies between E due
to charge distributions and B due to current distributions.

D1.17. For located at (1, 0, 0) and located at (0, 1, 0),
find: (a) and (b)
Ans. (a) (b)

D1.18. A current I flows in a wire along the curve and in the direction
of increasing z. If the wire is situated in a magnetic field 

find the magnetic force acting on an infinitesimal length of the wire
having the projection dz on the z-axis at each of the following points: (a) (2, 1, 0);
(b) (3, 1.5, 1); and (c) (6, 3, 2).
Ans. (a) (b) (c)

D1.19. Given find the magnitude of the magnetic force
acting on a test charge q moving with velocity at the point for each
of the following paths of the test charge: (a) (b)
and (c)
Ans. (a) 0; (b) (c)

D1.20. Infinite plane sheets of current lie in the and planes with
uniform surface current densities and respectively.
Find the resulting magnetic flux densities at the following points: (a) (1, 2, 2);
(b) ; and (c)
Ans. (a) (b) (c)

1.7 LORENTZ FORCE EQUATION

In Section 1.5, we learned that a test charge q placed in an electric field of in-
tensity E experiences a force

(1.87)FE = qE

m0 JS01-ay + az2.-m0 JS0 az;m0 JS01ay + az2;
1-2, 1, -22.12, -2, -12

-JS0 ax A/m,JS0 az, 2JS0 ax,
z = 0x = 0, y = 0,

0.1641qv0 B0.qv0 B0;
x = y = 2z2.

4x = 4y = z + 9;x = y = -2z;
12, 2, -12v0

B = 1B0/3212ax + 2ay - az2,
10az2/15.

I dz 12ax + ay -I dz 12ax + ay - 5az2/7.5;I dz 12ax + ay2/5;

1x2 + y22,
B = 1yax - xay2/

x = 2y = z2 + 2

-1m0 I1 I2/812p2 dx dy ay.-1m0 I1 I2>812p2 dx dy ax;
dF2.dF1

I2 dl2 = I2 dx ax,I1 dl1 = I1 dy ay

v

mv/qBqvB
mv2>Rmv/qB

qvB
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1.7 Lorentz Force Equation 59

and in Section 1.6, we learned that a test charge q moving with a velocity v in a
magnetic field of flux density B experiences a force

(1.88)

Combining (1.87) and (1.88), we can write the expression for the total force act-
ing on a test charge q moving with velocity v in a region characterized by elec-
tric field of intensity E and magnetic field of flux density B to be

(1.89)

Equation (1.89) is known as the Lorentz force equation.
We observe from (1.89) that the electric and magnetic fields at a point can

be determined from a knowledge of the forces experienced by a test charge at
that point for several different velocities. For a given B, E can be found from the
force for one velocity, since acts in the direction of E. For a given E, B can be
found from two forces for two noncollinear velocities, since acts perpendic-
ular to both v and B.Thus, to find both E and B, the knowledge of a minimum of
three forces is necessary. We shall illustrate the determination of E and B from
three forces by means of an example.

Example 1.13 Finding the electric and magnetic fields from forces on a
test charge

The forces experienced by a test charge q for three different velocities at a point in a re-
gion of electric and magnetic fields are given by

where and are constants. We wish to find E and B at that point.
From the Lorentz force equation, we have

(1.90a)

(1.90b)

(1.90c)

Eliminating E by subtracting (1.90a) from (1.90b) and (1.90c) from (1.90b), we obtain

(1.91a)

(1.91b)

Since the cross product of two vectors is perpendicular to the two vectors, it follows from
(1.91a) that is perpendicular to B and from (1.91b) that is perpendicular to
B. Thus, B is perpendicular to both and But the cross product of 
and is perpendicular to both of them. Therefore, B must be directed parallel to

Thus, we can write

(1.92)B = C1ax + ay2 � ax = -Caz

1ax + ay2 � ax.
ax

1ax + ay2ax.1ax + ay2
ax1ax + ay2

 v01ay - az2 � B = E0 ax

 v01ay - ax2 � B = E01ax + ay2

 qE + qv0 az � B = q1E0 ax + E0 ay2
 qE + qv0 ay � B = q12E0 ax + E0 ay2
 qE + qv0 ax � B = qE0 ax

E0v0

for v3 = v0 az F3 = qE01ax + ay2
for v2 = v0 ay F2 = qE012ax + ay2
for v1 = v0 ax F1 = qE0 ax

FM

FE

F = FE + FM = q1E + v � B2

FM = qv � B

Determination
of electric and
magnetic
fields from
forces on a test
charge
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60 Chapter 1 Vectors and Fields

where C is a proportionality constant to be determined. To do this, we substitute (1.92)
into (1.91b) to obtain

or Thus, we get

Alternatively, we can obtain this result by assuming 
substituting in (1.91a) and (1.91b), equating the like components, and solving the result-
ing algebraic equations. Thus, substituting in (1.91a), we have

or

Substituting in (1.91b), we have

or

Thus, we obtain and, hence,

Finally, we can find E by substituting the result obtained for B in any one of the
three equations (1.90a)–(1.90c). Thus, substituting in (1.90c), we obtain

The Lorentz force equation is a fundamental equation in electromagnet-
ics. Together with the pertinent laws of mechanics, it constitutes the starting
point for the study of charged particle motion in electric and/or magnetic fields.
Devices based on charged particle motion in fields are abundant in practice.

E = E01ax + ay2
B = 1E0>v02az

B =
E0

v0
 az

Bz = E0>v0, Bx = 0, By = 0,

Bz + By =
E0

v0
 and Bx = 0

v0[1Bz + By2ax - Bx ay - Bx az] = E0 ax

v0 3 ax ay az

0 1  -1
Bx By Bz

3 = E0 ax

Bz =
E0

v0
 and 1By + Bx2 = 0

v0[Bz ax + Bz ay - 1By + Bx2az] = E0 ax + E0 ay

v0 3 ax ay az

-1 1 0
Bx By Bz

3 = E01ax + ay2

B = Bx ax + By ay + Bz az,

B =
E0

v0
 az

C = -E0>v0.

 - v0 Cax = E0 ax

 v01ay - az2 � 1-Caz2 = E0 ax

Lorentz force
applications
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1.7 Lorentz Force Equation 61

Examples, some of which we discussed in Sections 1.5 and 1.6, are cathode ray
tubes, ink-jet printers, electron microscopes, mass spectrographs, particle accel-
erators, and microwave tubes such as klystrons, magnetrons, and traveling wave
tubes. Interaction between charged particles and fields is the basis for the study
of the electromagnetic properties of materials and for the study of radio-wave
propagation in gaseous media such as Earth’s ionosphere, in which the con-
stituent gasses are partially ionized by the solar radiation.

Tracing the path of a charged particle in a region of electric and magnetic
fields involves setting the mechanical force, as given by the product of the mass
of the test charge and its acceleration, equal to the electromagnetic force, as
given by the Lorentz force equation, and solving the resulting differential equa-
tion(s) subject to initial condition(s). For simplicity, we shall consider a two-
dimensional situation in which the motion is confined to the xy-plane in a region
of uniform, crossed electric and magnetic fields, and as
shown in Fig. 1.40, where and are constants. We shall assume that a test
charge q having mass m starts at at the point with initial veloci-
ty 

From the Lorentz force equation (1.89), the force exerted by the crossed
electric and magnetic fields on the test charge is given by

(1.93)

The equations of motion of the test charge can then be written as

(1.94a)

(1.94b)

(1.94c)

Equation (1.94c), together with the initial conditions and at 
simply tells us that the path of the test charge is confined to the plane.z = 0

t = 0,z = 0vz = 0

 
dvz

dt
= 0

 
dvy

dt
=

qE0

m
-

qB0

m
 vx

 
dvx
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=

qB0

m
 vy

 = qB0 vy ax + 1qE0 - qB0 vx2ay

 = qE0 ay + q1vx ax + vy ay + vz az2 � B0 az
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1x0, y0, 02t = 0
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FIGURE 1.40

Test charge q in a region of crossed
electric and magnetic fields.
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Eliminating from (1.94a) and (1.94b), we obtain

(1.95)

the solution for which is

(1.96a)

where and are constants to be determined from the initial conditions and
From (1.94a), the solution for is then given by

(1.96b)

Using initial conditions and at to evaluate and in
(1.96a) and (1.96b), we obtain

(1.97a)

(1.97b)

Integrating (1.97a) and (1.97b) with respect to t and using initial conditions 
and at to evaluate the constants of integration, we then obtain

(1.98a)

(1.98b)

Equations (1.98a) and (1.98b) give the position of the test charge versus
time, whereas (1.97a) and (1.97b) give the corresponding velocity components.
For and the solutions reduce to

(1.99a)

(1.99b)

(1.99c)

(1.99d)

These can also be obtained directly from (1.94a) and (1.94b) with set equal
to zero.

The path of a test charge in the crossed electric and magnetic fields may
now be traced by using (1.98a) and (1.98b) for not equal to zero, and (1.99a)B0

B0

 vy = vy0 +
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b  sin vct +

vy0
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 11 - cos vct2
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and (1.99b) for equal to zero. For example, the path of an electron 
for 

and is shown in Fig. 1.41, in which the spacing
between the dots corresponds to a time interval of 

K1.7. Lorentz force equation; Determination of E and B from forces on a test charge;
Charged-particle motion in electric and magnetic fields.

D1.21. A magnetic field exists at a point. For each of
the following velocities of a test charge q, find the electric field E at that
point for which the acceleration experienced by the test charge is zero: (a)

(b) and (c) along the line

Ans. (a) (b) (c) 0.
D1.22. In a region of uniform electric and magnetic fields and re-

spectively, a test charge q of mass m moves in the manner

where Find the forces acting on the test charge for the following
values of t: (a) (b) and (c)
Ans. (a) (b) (c)

SUMMARY

We first learned in this chapter several rules of vector algebra that are necessary
for our study of the elements of engineering electromagnetics by considering
vectors expressed in terms of their components along three mutually orthogo-
nal directions. To carry out the manipulations involving vectors at different

-qE0 ay.qE0 ax;qE0 ay;
t = p>vc.t = p>2vc;t = 0;

vc = qB0>m.

 z = 0

 y =
E0

vcB0
 11 - cos vct2

 x =
E0

vcB0
 1vct - sin vct2

B = B0 az,E = E0 ay

v0 B012ax - 2ay - az2;-v0 B01ay + az2;
y = -z = 2x.

v0v012ax + ay + 2az2;v01ax - ay + az2;

B = 1B0>321ax + 2ay - 2az2

5 : 10-9 s.
vy0 = 3 * 107 m/svx0 = 107 m/s,

B0 = 10-4 Wb/m2,E0 = -103 V/m,y0 = 0,x0 = 0,-1.7578 : 1011 C/kg2
1q>m =B0

y

x 4 8 12
0

–4

4

FIGURE 1.41

An example of tracing the path of an
electron in crossed electric and magnetic
fields.
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64 Chapter 1 Vectors and Fields

points in space in a systematic manner, we then introduced the Cartesian coor-
dinate system and discussed the application of the vector algebraic rules to vec-
tors in the Cartesian coordinate system. To summarize these rules, we consider
three vectors

in a right-handed Cartesian coordinate system, that is, with We
then have

Other useful expressions are

We then discussed the cylindrical and spherical coordinate systems, and
conversions between these coordinate systems and the Cartesian coordinate sys-
tem. Relationships for carrying out the coordinate conversions are as follows:

CYLINDRICAL TO CARTESIAN, AND VICE VERSA

x = r cos f y = r sin f z = z

r = 4x2 + y2 f = tan-1
 

y

x
z = z

 dv = dx dy dz

 dS = ;dy dz ax, ;dz dx ay, ;dx dy az

 dl = dx ax + dy ay + dz az

 A #  B � C = 3Ax Ay Az

Bx By Bz

Cx Cy Cz

3
 A � B = 3 ax ay az

Ax Ay Az

Bx By Bz

3
 A #  B = AxBx + AyBy + AzBz

aA =
Ax4A2

x + A2
y + A2

z

 ax +
Ay4A2

x + A2
y + A2

z

 ay +
Az4A2

x + A2
y + A2

z

 az

 ƒ A ƒ = 4A2
x + A2

y + A2
z

 
B
n

=
Bx

n
 ax +

By

n
 ay +

Bz

n
 az

 mA = mAx ax + mAy ay + mAz az

 B - C = 1Bx - Cx2ax + 1By - Cy2ay + 1Bz - Cz2az

 A + B = 1Ax + Bx2ax + 1Ay + By2ay + 1Az + Bz2az

ax � ay = az.

 C = Cx ax + Cy ay + Cz az

 B = Bx ax + By ay + Bz az

 A = Ax ax + Ay ay + Az az
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SPHERICAL TO CARTESIAN, AND VICE VERSA

Other useful expressions are as follows:

CYLINDRICAL

SPHERICAL

Next we discussed the concepts of scalar and vector fields, static and time-
varying, by means of some simple examples such as the height of points on a
conical surface above its base, the temperature field of points in a room, and the
velocity vector field associated with points on a disk rotating about its center.
We learned about the visualization of fields by means of constant-magnitude
contours or surfaces, and in addition, by means of direction lines in the case of
vector fields. We also discussed the mathematical technique of obtaining the
equations for the direction lines of a vector field.

Having obtained the necessary background vector algebraic tools and
physical concepts, we then introduced the electric field concept from considera-
tion of an experimental law known as Coulomb’s law, having to do with the
electric forces between two charges. We learned that electric force acts on
charges merely by virtue of the property of charge. The electric force acting on
a test charge q at a point in the field region is given by

where E is the electric field intensity at that point. The electric field intensity
due to a point charge Q in free space is given by

where is the permittivity of free space, R is the distance from the point charge to
the point at which the field intensity is to be computed, and is the unit vector
along the line joining the two points and directed away from the point charge.

aR

e0

E =
Q

4pe0 R2 aR

F = qE

 dv = r2 sin u dr du df

 dS = ;r2 sin u du df ar, ;r sin u dr df au, ;r dr du af

 dl = dr ar + r du au + r sin u df af

 dv = r dr df dz

 dS = ;r df dz ar, ;dr dz af, ;r dr df az

 dl = dr ar + r df af + dz az

x = r sin u cos f y = r sin u sin f z = r cos u

r = 4x2 + y2 + z2 u = tan-1
 
2x2 + y2

z
f = tan-1

 

y

x
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66 Chapter 1 Vectors and Fields

Using superposition in conjunction with the electric field due to a point charge, we
discussed the computation of the electric field due to two point charges and the
computer generation of the direction lines of the electric field. We then extended
the determination of electric field intensity to continuous charge distributions.

Next we introduced the magnetic field concept from considerations of
Ampère’s law of force, having to do with the magnetic forces between two cur-
rent loops. We learned that the magnetic field exerts force only on moving
charges.The magnetic force acting on a test charge q moving with a velocity v at
a point in the field region is given by

where B is the magnetic flux density at that point. In terms of current flowing in
a wire, the magnetic force acting on a current element of length dl and current I
at a point in the field region is given by

The magnetic flux density due to a current element I dl in free space is given by
the Biot-Savart law

where is the permeability of free space, and R and have the same mean-
ings as in the expression for E due to a point charge. Using superposition in con-
junction with the Biot-Savart law, we discussed the computation of the magnetic
field due to current distributions.

Combining the electric and magnetic field concepts, we then introduced
the Lorentz force equation

which gives the force acting on a test charge q moving with velocity v at a point
in a region characterized by electric field of intensity E and magnetic field of
flux density B. We used the Lorentz force equation to discuss (1) the determi-
nation of E and B at a point from a knowledge of forces acting on a test charge
at that point for three different velocities and (2) the tracing of charged particle
motion in a region of crossed electric and magnetic fields.

REVIEW QUESTIONS

Q1.1. Give some examples of scalars.
Q1.2. Give some examples of vectors.
Q1.3. Is it necessary for the reference vectors and to be an orthogonal set?
Q1.4. State whether and directed westward, northward, and downward, re-

spectively, is a right-handed or a left-handed set.
a3a1, a2,

a3a1, a2,

F = q1E + v � B2

aRm0

B =
m0

4p
  

I dl � aR

R2

F = I dl � B

F = qv � B
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Q1.5. State all conditions for which 
Q1.6. State all conditions for which 
Q1.7. What is the significance of 
Q1.8. What is the significance of 
Q1.9. What is the particular advantageous characteristic associated with the unit vec-

tors in the Cartesian coordinate system?
Q1.10. What is the position vector?
Q1.11. What is the total distance around the circumference of a circle of radius 1 m?

What is the total vector distance around the circle?
Q1.12. Discuss the application of differential length vectors to find a unit vector nor-

mal to a surface at a point on the surface.
Q1.13. Discuss the concept of a differential surface vector.
Q1.14. What is the total surface area of a cube of sides 1 m? Assuming the normals to

the surfaces to be directed outward of the cubical volume, what is the total vec-
tor surface area of the cube?

Q1.15. Describe the three orthogonal surfaces that define the cylindrical coordinates of
a point.

Q1.16. Which of the unit vectors in the cylindrical coordinate system are not uniform?
Explain.

Q1.17. Discuss the conversion from the cylindrical coordinates of a point to its Carte-
sian coordinates, and vice versa.

Q1.18. Describe the three orthogonal surfaces that define the spherical coordinates of
a point.

Q1.19. Discuss the nonuniformity of the unit vectors in the spherical coordinate
system.

Q1.20. Discuss the conversion from the spherical coordinates of a point to its Cartesian
coordinates, and vice versa.

Q1.21. Describe briefly your concept of a scalar field and illustrate with an example.
Q1.22. Describe briefly your concept of a vector field and illustrate with an example.
Q1.23. How do you depict pictorially the gravitational field of Earth?
Q1.24. Discuss the procedure for obtaining the equations for the direction lines of a

vector field.
Q1.25. State Coulomb’s law. To what law in mechanics is Coulomb’s law analogous?
Q1.26. What is the value of the permittivity of free space? What are its units?
Q1.27. What is the definition of electric field intensity? What are its units?
Q1.28. Discuss two applications based on the electric force on a charged particle.
Q1.29. Describe the electric field due to a point charge.
Q1.30. Discuss the computer generation of the direction lines of the electric field due

to two point charges.
Q1.31. Discuss the different types of charge distributions. How do you determine the

electric field intensity due to a charge distribution?
Q1.32. Describe the electric field due to an infinitely long line charge of uniform

charge density.
Q1.33. Describe the electric field due to an infinite plane sheet of uniform surface

charge density.

A � 1B � C2 = 0?
A #  B � C = 0?

A � B = 0.
A #  B = 0.
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68 Chapter 1 Vectors and Fields

Q1.34. State Ampère’s force law as applied to current elements.Why is it not necessary
for Newton’s third law to hold for current elements?

Q1.35. What are the units of magnetic flux density? How is magnetic flux density de-
fined in terms of force on a current element?

Q1.36. What is the value of the permeability of free space? What are its units?
Q1.37. Describe the magnetic field due to a current element.
Q1.38. Discuss the different types of current distributions. How do you determine the

magnetic flux density due to a current distribution?
Q1.39. Describe the magnetic field due to an infinite plane sheet of uniform surface

current density.
Q1.40. Discuss the analogies between the electric field due to charge distributions and

the magnetic field due to current distributions.
Q1.41. How is magnetic flux density defined in terms of force on a moving charge?
Q1.42. Discuss two applications based on the magnetic force on a current-carrying wire

or on a moving charge.
Q1.43. State the Lorentz force equation.
Q1.44. Discuss the determination of E and B at a point from the knowledge of forces

experienced by a test charge at that point for several velocities.What is the min-
imum required number of forces?

Q1.45. Give some examples of devices based on charged particle motion in electric and
magnetic fields.

Q1.46. Discuss the tracing of the path of a charged particle in a region of crossed elec-
tric and magnetic fields.

PROBLEMS

Section 1.1

P1.1. Geometrical computations involving conversion from rectangular to polar coor-
dinates. A bug starts at a point and travels 1 m northward, s m eastward,
southward, westward, and so on, where making a 90°-turn to the
right and traveling in the new direction s times the distance traveled in the pre-
vious direction. Find the value of s for each of the following cases: (a) the total
distance traveled by the bug is 1.5 m; (b) the straight-line distance from the ini-
tial position to the final position of the bug is 0.8 m; and (c) the final position of
the bug relative to its initial position is 30° east of north.

P1.2. Solution of simultaneous vector algebraic equations. Three vectors A, B, and C
satisfy the equations

By writing a matrix equation for the matrix

and solving it, obtain the vectors A, B, and C.

CA1 A2 A3

B1 B2 B3

C1 C2 C3

S
3 * 3

 2A - B + C = a1 + 5a2

 A + 2B + 3C = -2a1 + 5a2 + 5a3

 A + B - C = 2a1 + a2

s 6 1,s3 m
s2 m
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P1.3. Law of cosines from dot product. Two vectors A and B originate from a com-
mon point. (a) If comprises the third side of the triangle, obtain
using the law of cosines relating C to A, B, and the
angle between A and B. (b) Find the expression for the distance from the
common point to the side C, in terms of A and B only.

P1.4. Using vector algebraic operations. Four vectors drawn from a common point
are given as follows:

Find the value(s) of m for each of the following cases: (a) A is perpendicular to
B; (b) B is parallel to C; (c) A, B, and C lie in the same plane; and (d) D is per-
pendicular to both A and B.

P1.5. Straight line connecting the tips of three vectors originating from a point. Show
that the tips of three vectors A, B, and C originating from a common point lie
along a straight line if Provide a geometric
interpretation for this result.

P1.6. Plane containing the tips of four vectors originating from a point. Show that
the tips of four vectors A, B, C, and D originating from a common point lie in a
plane if Then determine if the tips of

and lie in a plane.
P1.7. Some vector identities.

(a) Show that

(b) Using the result of part (a), show the following:

(i)

(ii)

Section 1.2

P1.8. Geometrical computations in Cartesian coordinates. Three points are given by
A(12, 0, 0), B(0, 15, 0), and Find the following: (a) the distance
from B to C; (b) the component of the vector from A to C along the vector from
B to C; and (c) the perpendicular distance from A to the line through B and C.

P1.9. Sphere passing through four specified points in Cartesian coordinates. Consid-
er four points and Show that the
center point of the sphere passing through these points is given by
the solution of the equation

Then find the center point of the sphere and its radius if the four points are (1,
1, 4), (3, 3, 2), (2, 3, 3), and (3, 2, 3).

2Cx2 - x1 y2 - y1 z2 - z1

x3 - x1 y3 - y1 z3 - z1

x4 - x1 y4 - y1 z4 - z1

S Cx0

y0

z0

S = C x2
2 + y2

2 + z2
22 - 1x1

2 + y1
2 + z1

22
1x3

2 + y3
2 + z3

22 - 1x1
2 + y1

2 + z1
22

1x4
2 + y4

2 + z4
22 - 1x1

2 + y1
2 + z1

22
S

1x0, y0, z02
1x4, y4, z42.1x1, y1, z12, 1x2, y2, z22, 1x3, y3, z32,

C10, 0, -202.

1A � B2 # 1B � C2 � 1C � A2 = 1A � B # C22
A � 1B � C2 + B � 1C � A2 + C � 1A � B2 = 0

A � 1B � C2 = 1A # C2B - 1A # B2C

D = a1 + 2a2 - 2a3A = a1, B = 2a2, C = 2a3,
1A - B2 # 1A - C2 � 1A - D2 = 0.

A � B + B � C + C � A = 0.

 D = m2a1 + ma2 + a3

 C = a1 + ma2 + 2a3

 B = ma1 + a2 - 2a3

 A = 2a1 - ma2 - a3

a

C # C = 1B - A2 # 1B - A2
C = B - A
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70 Chapter 1 Vectors and Fields

P1.10. Plane containing two vectors originating from a common point.
(a) Two vectors A and B originate from a common point Show

that the equation for the plane in which the two vectors lie is given by

where is the position vector and 
is the vector from the origin to the point P.

(b) Using the result of part (a), find the equation for the plane containing the
points (1, 1, 2), (2, 2, 0), and (3, 0, 1).

P1.11. Finding differential length vector tangential to a curve. Find the expression for
the differential length vector tangential to the curve at an ar-
bitrary point on the curve and having the projection dz on the z-axis. Then ob-
tain the differential length vectors tangential to the curve at the points (a) (2, 0,
0), (b) (1, 1, 1), and (c)

P1.12. Finding unit vector normal to a curve and a line at the point of intersection.
Find the expression for the unit vector normal to the curve at the
point (1, 1, 1) and having no components along the line 

P1.13. Finding unit vector normal to a surface. By considering two differential length
vectors tangential to the surface at the point (1, 1, 1), find the
unit vector normal to the surface.

P1.14. Finding differential surface vector associated with a plane. Consider the differ-
ential surface lying on the plane and having as its projection on the
xz-plane the rectangular differential surface of sides dx and dz in the x- and z-
directions, respectively. Obtain the expression for the vector dS associated with
that surface.

Section 1.3

P1.15. Vector algebraic operations with points in cylindrical coordinates. Three points
are given in cylindrical coordinates by and

(a) Find the volume of the parallelepiped having the lines from
the origin to the three points as one set of its contiguous edges. (b) Determine if
the point in cylindrical coordinates lies in the plane containing
A, B, and C.

P1.16. Vector algebraic operations with points in spherical coordinates. Four points
are given in spherical coordinates by C(1, 0, 0),
and Show that these four points are situated at the corners
of a parallelogram and find the area of the parallelogram.

P1.17. Vector algebraic operations for vectors specified in cylindrical coordinates.
Three unit vectors are given in cylindrical coordinates as follows: at

at and at Find: (a) (b)
and (c)

P1.18. Vector algebraic operations for vectors specified in spherical coordinates.
Three unit vectors are given in spherical coordinates as follows: at

at and at Find:
(a) (b) (c) and (d)

P1.19. Conversion of vector in Cartesian coordinates to one in spherical coordinates.
Convert the vector at the point to one in spherical
coordinates.

11, 1, 122ax + ay - 12 az

A � B # C.B # C;A # C;A # B;
13, p>4, 3p>22.C = af11, p>3, 02,12, p>6, p>22, B = au

A = ar

B � C.B # C;
A # B;13, 5p>6, 12.C = af11, p>3, 22,12, p>6, 02, B = af

A = ar

D1112, p>6, p>22.
p>4, p>32,A11, p>2, 02, B118,

D113, p>2, 2.52
C12, 5p>6, 02.

p>6, -22,B1213,A12, p>3, 12,

2x + y = 2

x2 + y2 + 2z2 = 4

x = y = z.
x = y2 = z3

1-2, 4, 22.

x + y = 2, y = z2

z1 az

r1 = x1 ax + y1 ay +r = xax + yay + zaz

A � B # 1r - r12 = 0

P1x1, y1, z12.
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P1.20. Equality of two vectors in different coordinates. Determine if the vector 
at the point in cylindrical coordinates is equal to the

vector at the point in spherical coordinates.
P1.21. Finding unit vector tangential to a curve in cylindrical coordinates. Find the ex-

pression for the unit vector tangential to the curve given in cylindrical coordi-
nates by Then obtain the unit vectors tangential to the
curve at the points: (a) and (b)

P1.22. Finding unit vector tangential to a curve in spherical coordinates. Find the ex-
pression for the unit vector tangential to the curve given in spherical coordi-
nates by Then obtain the unit vectors tangential to
the curve at the points: (a) and (b)

Section 1.4

P1.23. Scalar field of height of a hemispherical trough in a hemispherical dome. An
otherwise hemispherical dome of radius 2 m has a symmetrically situated hemi-
spherical trough of radius 1 m, as shown by the cross-sectional view in Fig. 1.42.
Assuming the origin to be at the center of the base of the dome, obtain the ex-
pression for the two-dimensional scalar field describing the height h of the
dome in each of the two coordinate systems: (a) rectangular (x, y) and (b) polar
1r, f2.

11, p>2, p2.11, p>4, p>22
r = 1, f = 2u, 0 … u … p.

112, p>12, 02.11, p>4, 02
r2 sin 2f = 1, z = 0.

11, p>3, p>6213ars - 13 au - af2
13, p>3, 5213 af + 3az2

1arc -

h

1 m

2 m FIGURE 1.42

For Problem P1.23.

P1.24. Force field experienced by a mass in the Earth’s gravitational field. Assuming
the origin to be at the center of Earth and the z-axis to be passing through the
poles, write vector functions for the force experienced by a mass m in the
gravitational field of Earth (mass M) in each of the three coordinate systems:
(a) Cartesian, (b) cylindrical, and (c) spherical. Describe the constant-magnitude
surfaces and the direction lines.

P1.25. Field of the linear velocity of points inside the Earth. Assuming the origin to be
at the center of Earth and the z-axis to be passing through the poles, write vec-
tor functions for the linear velocity of points inside Earth due to its spin mo-
tion in each of the three coordinate systems: (a) Cartesian; (b) cylindrical; and
(c) spherical. Describe the constant-magnitude surfaces and the direction lines.

P1.26. Finding equations for the direction lines of vector fields in Cartesian coordi-
nates. Obtain the equations for the direction lines for the following vector fields
and passing through the point (1, 2, 3): (a) and (b)

P1.27. Finding equation for the direction line of a vector field in cylindrical coordinates.
Obtain the equation for the direction line for the vector field given in cylindrical
coordinates by and passing through the point 

P1.28. Finding equation for the direction line of a vector field in spherical coordinates.
Obtain the equation for the direction line for the vector field given in spherical co-
ordinates by and passing through the point 12, p>4, p>62.12 cos u ar - sin u au2

12, p>3, 12.1sin f ar + cos f af2

xax + yay + zaz.2yax - xay
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72 Chapter 1 Vectors and Fields

Section 1.5

P1.29. Electric forces on point charges. Point charges, each of value Q, are situated at
the corners of a regular tetrahedron of edge length L. Find the electric force on
each point charge.

P1.30. Electric force on a test charge in the field of six point charges. Six point
charges, each of value Q, are situated at (d, 0, 0), (0, d, 0),
(0, 0, d), and A test charge q located at the origin is displaced by a
distance along the positive x-axis. Find an approximate expression for
the electric force acting on the charge.

P1.31. Finding the point charge for specified electric field intensities. For each of the fol-
lowing pairs of electric field intensities, find, if possible, the location and the value
of a point charge that produces both fields: (a) at
(2, 2, 3) and at and (b)

at (1, 1, 1) and at (1, 2, 0).
P1.32. Electric field intensity due to an electric dipole. Two equal and opposite point

charges Q and are located at (0, 0, d/2) and respectively. Such an
arrangement is known as the electric dipole. Show that the electric field intensity
due to the electric dipole at very large distances from the origin compared to the
spacing d is given approximately by 

P1.33. Motion of a point charge along the axis of a circular ring charge. A point charge
q of mass m is in static equilibrium at the origin, in the presence of a circular ring
charge Q in the xy-plane and two point charges, each of value Q, on the z-axis.The
ring charge is uniformly distributed, with radius a and center at the origin.The two
point charges are located at and (0, 0, a). All charges are of the same
sign.The point charge q is constrained to move along the z-axis. It is given a slight
displacement and released at Obtain the approximate differential
equation for the motion of the charge and find the frequency of oscillation.

P1.34. Finding a circular ring charge that produces specified electric field intensities.
Design an arrangement of a circular ring charge of uniform density and total
charge Q equal to that produces electric field intensities of V/m at
the two points (0, 0, 1) and (0, 0, 2). If Q is not equal to determine, if any,
the restriction on its value for a solution to exist.

P1.35. Electric field of a circular ring charge with nonuniform density. Assuming that
the circular ring of Example 1.7 is coated with charge such that the charge den-
sity is given by find the electric field intensity at a point on
the z-axis by setting up the integral expression and evaluating it.

P1.36. Electric field of a circular disc of charge with nonuniform density. Consider a
circular disc of radius a lying in the xy-plane with its center at the origin and car-
rying charge of density Obtain the expression for the electric field
intensity at the point (0, 0, z) by setting up the integral and evaluating it.

P1.37. Electric field of a line charge with nonuniform density. Consider the charge dis-
tributed with density along the line between and (0, 0, a).
Obtain the expression for the electric field intensity at in cylindrical co-
ordinates, by considering a differential length element along the line charge, set-
ting up the field as an integral and evaluating it.

P1.38. Electric field of a slab of volume charge distributed between two planes. Con-
sider the volume charge distributed uniformly with density between the
planes and Using superposition in conjunction with the result ofz = a.z = -a

r0 C/m3

1r, f, 02
10, 0, -a24pe0 ƒ z ƒ  C/m

4pe0>r C/m2.

rL = rL0 cos f C/m,

1 mC,
103 az1 mC

t = 0.z0 V a

10, 0, -a2

1Qd>4pe0 r3212 cos u ar + sin u au2.

10, 0, -d>22,-Q

E2 = 12ax + ay + 2az2 V/maz2 V/m
E1 = 12ax + 2ay +1-1, 0, 32;E2 = 1ax + 2ay + 2az2 V/m

E1 = 12ax + 2ay + az2 V/m

¢ 	 d
10, 0, -d2.

10, -d, 02,1-d, 0, 02,
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Example 1.9, show that the electric field intensity due to the slab of charge is
given by

Section 1.6

P1.39. Magnetic forces on current elements. Three identical current elements 
A-m are located at equally spaced points on a circle of radius 1 m centered at
the origin and lying on the xy-plane. The first point is (1, 0, 0). Find the magnet-
ic force on each current element.

P1.40. Magnetic flux density due to a current element. For the current element
A situated at the point find the magnetic flux densi-

ties at three points: (a) (b) and (c) (3, 0, 2).

P1.41. Finding infinitely long wire for specified magnetic flux densities. For each of
the following pairs of magnetic flux densities, find, if possible, the orientation
of an infinitely long filamentary wire and the current in it required to produce
both fields: (a) at (3, 0, 0) and at (0,
4, 0); and (b) at and 
at 

P1.42. Attraction between two long, horizontal filamentary wires. Two long identical
rigid filamentary wires, each of length l and weight w, are suspended horizontally
from the ceiling by long weightless threads, each of length L. The wires are
arranged to be parallel and separated by a distance d, small compared to l and L.
A current I is passed through both wires via flexible connections so as to cause
the wires to be attracted to each other. (a) Should the currents be in the same
sense or in opposite senses for attraction to occur? (b) If the current is gradually
increased from zero, the wires will gradually approach each other. A condition
may be reached when any further increase of current will cause the wires to swing
and touch each other. Determine the critical value of I at which this happens.

P1.43. Magnetic field due to a circular loop of wire. A circular loop of wire of radius a
is situated in the xy-plane with its center at the origin. It carries a current I in the
clockwise sense as seen along the positive z-axis, that is, in the sense of increas-
ing values of Obtain the expression for B due to the current loop at a point
on the z-axis.

P1.44. Magnetic field due to a finitely long straight wire of current. A straight wire
along the z-axis carries current I in the positive z-direction. Consider the por-
tion of the wire between and where Show that the
magnetic flux density at an arbitrary point due to this portion of the
wire is given by

where and are the angles subtended by the lines from P to and
respectively, with the z-axis. Verify your result in the limit 

and 
P1.45. Magnetic flux density due a square loop of wire. A square loop of wire lies in

the xy-plane with its corners at (1, 1, 0), and A11, -1, 02.1-1, -1, 02,1-1, 1, 02,
a2 : q .

a1 : - q10, 0, a22,
10, 0, a12a2a1

B =
m0 I

4pr
 1cos a1 - cos a22af

P1r, f, z2
a2 7 a1.10, 0, a22,10, 0, a12

f.

10, 12, 02.
B2 = -10-7 ax Wb/m2112, 0, 02B1 = 10-71ay - az2 Wb/m2

B2 = -10-7 ax Wb/m2B1 = 10-7 ay Wb/m2

12, -3, 42,12, -1, 32,
11, -2, 22,I dx 1ax + ay2

I dz az

E = c -1r0 a/e02az for z 6 -a

1r0 z/e02az for -a 6 z 6 a

1r0 a/e02az for z 7 a
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74 Chapter 1 Vectors and Fields

current of 1 A flows in the loop in the sense defined by connecting the specified
points in succession. Applying the result of Problem P1.44 to each side of the
loop, find the magnetic flux densities at two points: (a) (0, 0, 0) and (b) (2, 0, 0).

P1.46. Finding a pair of infinitely long parallel wires for specified magnetic flux densities.
Design an arrangement of a pair of infinitely long, straight, filamentary wires par-
allel to the z-direction and in a plane parallel to the xz-plane, each carrying cur-
rent I equal to 1 A but in opposite directions, which produce magnetic flux
densities of and at the points (0, 1, 0) and (0,
2, 0), respectively. If I is not equal to 1 A, determine, if any, the restriction on its
value for a solution to exist.

P1.47. Magnetic flux density due to three plane current sheets. Three infinite plane
current sheets, each of a uniform current density, exist in the coordinate planes
of a Cartesian coordinate system. The magnetic flux densities due to these cur-
rent sheets are given at three points as follows: at (1, 2, 3), at

at Find the mag-
netic flux densities at the following points: (a) (b)
and (c)

P1.48. Magnetic field for a current distribution between two planes. Consider current
distribution with uniform density in the volume between the planes

and and with uniform density in the volume be-
tween the planes and Using superposition in conjunction with the
result of Example 1.12, show that the magnetic flux density due to the current
distribution is given by

P1.49. Ratio of the radii of orbits of two charged particles in a uniform magnetic field.
Show that the ratio of the radii of orbits of two charged particles of the same
charge, but with different masses, entering a region of uniform magnetic field
perpendicular to the field and with equal kinetic energies is equal to the ratio of
the square roots of their masses.

Section 1.7

P1.50. Movement of a test charge in a region of crossed electric and magnetic fields.
Show that in a region of uniform, crossed electric and magnetic fields E and B, re-
spectively, a test charge released at a point in the field region with initial velocity

moves with constant velocity equal to the initial value. Compute
v for E and B equal to and respectively.

P1.51. Finding magnetic field from forces experienced by a test charge. Let and 
be the forces experienced by a test charge q at a point in a region of electric and
magnetic fields E and B, respectively, for velocities and respectively, of the
charge. If and are such that 
that is, their tips do not lie on a straight line when drawn from a common point,
show that

P1.52. Finding electric and magnetic fields from forces experienced by a test charge.
The forces experienced by a test charge q at a point in a region of electric and
magnetic fields E and B, respectively, are given as follows for three different

B =
1
q

 c F2 - F1

1v2 - v12 � A
d  A

A = F1 � F2 + F2 � F3 + F3 � F1 Z 0,F3F1, F2,
v3,v1, v2,

F3F1, F2,
B01ax - 2ay + 2az2,E012ax + 2ay + az2

v = 1E � B2>B2

B = em0 J01 ƒ y ƒ - a2ax for ƒ y ƒ … a

0 otherwise

y = a.y = 0
-J0 az A/m2y = 0,y = -a

J0 az A/m2

16, -3, -52.
1-4, -5, 72;1-6, -2, -32;

18, 9, -42, B = B01ax + 2ay2.17, -5, 62, B = B01-ax + 2az2;
B = 3B0 ax;

0.5 : 10-7 ay Wb/m210-7 ay Wb/m2
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velocities of the test charge, where and are constants.

Find E and B at that point.
P1.53. Forces experienced by a test charge in a region of electric and magnetic fields.

Three forces and experienced by a test charge q at a point in a region
of electric and magnetic fields for three different velocities of the test charge are
given as follows:

Find the forces and experienced by the test charge at that point for three
other velocities: (a) (b) and (c)

P1.54. Movement of a test charge in a region of uniform electric and magnetic fields.
Uniform electric and magnetic fields exist in a region of space. A test charge q
released with an initial velocity or moves with constant velocity equal to
the initial value. Show that the test charge moves with constant velocity equal to
the initial value when released with an initial velocity for
any nonzero 

REVIEW PROBLEMS

R1.1. Using vector algebraic operations and equalities. Using the equality

show that if and then

Find F if and 

R1.2. Shortest distance from a point to a plane. The tips of three vectors A, B,
and C originating from a common point determine a plane. (a) Show that
the shortest distance from the common point to the plane is 

(b) Compute its value for 
in cylindrical coordinates, and in

spherical coordinates, at the point in Cartesian coordinates.
R1.3. Sphere inscribed in an equilateral tetrahedron inscribed in a sphere. Find the

edge length of the largest equilateral tetrahedron that can be fit inside a sphere
of radius unity. Then find the radius of the largest sphere that can be fit inside
that tetrahedron.

R1.4. Equation for a curve traversed on a sphere. Consider an observer always mov-
ing in the southeast direction on the surface of a spherical Earth of radius a,
starting at the Greenwich meridian on the equator. (a) Find the equation for the
curve traversed by the observer, using a spherical coordinate system with the

113, 3, 22
13 au + 2af2C = 1

413ars +1
21arc - 13 af2

A = 2az, B =ƒ A � B + B � C + C � A ƒ .
ƒ A # B � C ƒ >

16ax - 5ay - 2az2.
D =A = 1ax + ay2, B = 1ax + 2ay - 2az2, C = 1ax - ay2,

F =
C � D
A # D

= -  
C � D

B # C

B � F = D,A � F = C

A � 1B � C2 = 1A # C2B - 1A # B2C

1m + n2.
1mv1 + nv22>1m + n2

v2v1

v6 = 1v0>4213ax + ay2.v5 = v01ax + ay2,v4 = 0,
F6F4, F5,

 F3 = qE0 az for v3 = v01ax + 2ay2
 F2 = 0  for v2 = v0 ay

 F1 = 0  for v1 = v0 ax

F3F1, F2,

 F3 = 0      for v3 = v0 az

 F2 = qE01ax - ay - az2 for v2 = v0 ay

 F1 = qE01ax - ay + az2 for v1 = v0 ax

E0v0
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76 Chapter 1 Vectors and Fields

origin at the center of Earth, the North Pole at and corresponding
to the Greenwich meridian. (b) Find the first two values of the south latitude
when the observer is again on the Greenwich meridian. (c) Does the observer
ever reach the South Pole?

R1.5. Three point charges on a semicircle. Consider the arrangement of three point
charges and as shown in Fig. 1.43, where and are fixed
and is constrained to move on the semicircle. (a) Find the value of in terms of
k for which is in equilibrium. (b) Find the numerical value of for k = 8.aQ2

aQ2

kQ1Q1Q2,Q1, kQ11k 7 02,

f = 0,u = 0,

FIGURE 1.43

For Problem R1.5.
Q1

Q2

kQ1a a

a

a

R1.6. Finitely long line charge distribution of nonuniform density. Consider a line
charge distribution along the z-axis between and (a) Show that,
if the charge density is an even function the electric field intensity at a
point has only an r-component, and set up the integral expression for it.
(b) Show that, if the charge density is an odd function the electric field in-
tensity at has only a z-component, and set up the integral expression
for it. (c) Given that the charge density is

express f(z) as the sum of even and odd functions and and evaluate
the electric field components.

R1.7. Magnetic flux density due to a wire of current with straight and curved seg-
ments. Current I flows along a wire which is straight from to a on the x-axis,
circular from (a, 0, 0) to (0, a, 0) and lying on the xy-plane in the sense of in-
creasing and then from a to on the y-axis. Find B at (0, 0, a).

R1.8. Magnetic field due to a nonuniform current distribution between two planes.
Current is distributed with density in the volume between the
planes and Show that the magnetic flux density due to the cur-
rent distribution is given by

R1.9. Movement of a test charge in a region of uniform electric and magnetic fields.
Consider a test charge moving with constant velocity 
in a region of a uniform electric field of intensity and
a uniform magnetic field of flux density Is this in-
formation sufficient to find uniquely and If not, given that v is per-
pendicular to B, find and in terms of and v0.E0Bz0Bx0, By0,

Bz0?Bx0, By0,
B = Bx0 ax + By0 ay + Bz0 az.

E = E012ax + ay - 2az2
v = v012ax - 2ay + az2

B = c
m0 J0

2a
 1a2 - y22ax for -a 6 y 6 a

0 otherwise

y = a.y = -a
J01y/a2az A/m2

qf,

q

f21z2,f11z2
f1z2 = e4pe01a + 2z2 for -a … z … 0

4pe0 a for 0 … z … a

1r, f, 02
f21z2,

1r, f, 02
f11z2,

z = a.z = -a
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C H A P T E R  2

Maxwell’s Equations 
in Integral Form

In Chapter 1, we learned the simple rules of vector algebra and familiarized
ourselves with the basic concepts of fields in general, and then introduced elec-
tric and magnetic fields in terms of forces on charged particles.We now have the
necessary background to introduce the additional tools required for the under-
standing of the various quantities associated with Maxwell’s equations and then
discuss Maxwell’s equations. In particular, our goal in this chapter is to learn
Maxwell’s equations in integral form as a prerequisite to the derivation of their
differential forms in the next chapter. Maxwell’s equations in integral form gov-
ern the interdependence of certain field and source quantities associated with
regions in space, that is, contours, surfaces, and volumes. The differential forms
of Maxwell’s equations, however, relate the characteristics of the field vectors at
a given point to one another and to the source densities at that point.

Maxwell’s equations in integral form are a set of four laws resulting from
several experimental findings and a purely mathematical contribution.We shall,
however, consider them as postulates and learn to understand their physical sig-
nificance as well as their mathematical formulation. The source quantities in-
volved in their formulation are charges and currents. The field quantities have
to do with the line and surface integrals of the electric and magnetic field vec-
tors. We shall therefore first introduce line and surface integrals and then con-
sider successively the four Maxwell’s equations in integral form.

2.1 THE LINE INTEGRAL

To introduce the line integral, let us consider in a region of electric field E the
movement of a test charge q from the point A to the point B along the path C as
shown in Fig. 2.1(a). At each and every point along the path the electric field
exerts a force on the test charge and, hence, does a certain amount of work in

77

Line integral
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78 Chapter 2 Maxwell’s Equations in Integral Form

E

(a)

(b)

E1

� l1
� l2

� l3

� lj

�ln

a1
a2
a3

aj

an

E2
E3

Ej

En

B

A

B

A

C

FIGURE 2.1

For evaluating the total amount of work done in moving a test charge along a path C from
point A to point B in a region of electric field.

moving the charge to another point an infinitesimal distance away.To find the total
amount of work done from A to B, we divide the path into a number of infinitesi-
mal segments as shown in Fig. 2.1(b), find the infinitesimal
amount of work done for each segment, and then add up the contributions from all
the segments. Since the segments are infinitesimal in length, we can consider each
of them to be straight and the electric field at all points within a segment to be the
same and equal to its value at the start of the segment.

If we now consider one segment, say, the jth segment, and take the compo-
nent of the electric field for that segment along the length of that segment, we ob-
tain the result where is the angle between the direction of the electric
field vector at the start of that segment and the direction of that segment. Since
the electric field intensity has the meaning of force per unit charge, the electric
force along the direction of the jth segment is then equal to To obtain
the work done in carrying the test charge along the length of the jth segment, we
then multiply this electric force component by the length of that segment.
Thus, for the jth segment, we obtain the result for the work done by the electric
field as

(2.1)

If we do this for all the infinitesimal segments and add up all the contributions,
we get the total work done by the electric field in moving the test charge from A
to B along the path C to be

(2.2)

 = qa
n

j = 1
1Ej21¢lj2 cos aj

 = qa
n

j = 1
Ej cos aj ¢lj

 + qEn cos an ¢ln

 = qE1 cos a1 ¢l1 + qE2 cos a2 ¢l2 + qE3 cos a3 ¢l3 + Á
 WAB = ¢W1 + ¢W2 + ¢W3 + Á + ¢Wn

¢Wj = qEj cos aj ¢lj

¢lj

qEj cos aj.

Ej

ajEj cos aj,

¢l1, ¢l2, ¢l3, Á ¢ln,
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Using the dot product operation between two vectors, we obtain

(2.3)

For a numerical example, let us consider the electric field given by

and determine the work done by the field in the movement of of charge
from the point A(0, 0, 0) to the point B(1, 1, 0) along the parabolic path

shown in Fig. 2.2(a).
For convenience, we shall divide the path into 10 segments having equal

projections along the x-axis, as shown in Fig. 2.2(a). We shall number the seg-
ments 1, 2, 3, 10.The coordinates of the starting and ending points of the jth
segment are as shown in Fig. 2.2(b). The electric field at the start of the jth seg-
ment is given by

The length vector corresponding to the jth segment, approximated as a straight
line connecting its starting and ending points, is

The required work is then given by

 = 3 * 10-6
 a

10

j = 1
[1j - 1220.01ay] # [0.1ax + 12j - 120.01ay]

 WAB = 3 * 10-6
 a

10

j = 1
Ej

# ¢lj

 ¢lj = 0.1ax + [j2 - 1j - 122]0.01ay = 0.1ax + 12j - 120.01ay

Ej = 1j - 1220.01ay

Á ,

y = x2, z = 0

3 mC

E = yay

WAB = qa
n

j = 1
Ej

# ¢lj

�lj

(b)(a)

j20.01

10
(1, 1, 0)

1

1

0

j

A

(j �1)20.01

(j �1)0.1 j0.1
xx

y

y

y � x2

y � x2

2 3

B

FIGURE 2.2

(a) Division of the path from A(0, 0, 0) to B(1, 1, 0) into 10 segments. (b) Length
vector corresponding to the jth segment of part (a) approximated as a straight line.

y = x2

2.1 The Line Integral 79
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80 Chapter 2 Maxwell’s Equations in Integral Form

The result that we have just obtained for is approximate, since we di-
vided the path from A to B into a finite number of segments. By dividing it into
larger and larger numbers of segments, we can obtain more and more accurate
results. In the limit that the result converges to the exact value. The
summation in (2.3) then becomes an integral, which represents exactly the work
done by the field and is given by

(2.4)

The integral on the right side of (2.4) is known as the line integral of E from A to
B, along the specified path.

We shall illustrate the evaluation of the line integral by computing the
exact value of the work done by the electric field in the movement of the 
charge for the path in Fig. 2.2(a). To do this, we note that at any arbitrary point
on the curve 

so that the differential length vector tangential to the curve is given by

The value of at the point is

Thus, the required work is given by

 = 3 * 10-6
 c2x4

4
d

0

1

= 1.5 mJ

 WAB = qL
11,1,02

10,0,02
E # dl = 3 * 10-6

L
1

0
2x3 dx

 = 2x3 dx

 = x2ay
# 1dx ax + 2x dx ay2

 E # dl = yay
# 1dx ax + 2x dx ay2

E # dl

 = dx ax + 2x dx ay

 dl = dx ax + dy ay + dz az

dy = 2x dx dz = 0

y = x2, z = 0,

3 mC

WAB = qL
B

A
E # dl

n : q ,

WAB

 = 3 * 10-10 * 4335 J = 1.3005 mJ

 + 1088 + 1539]

 = 3 * 10-10[0 + 3 + 20 + 63 + 144 + 275 + 468 + 735

 = 3 * 10-10
 a

10

j = 1
1j - 12212j - 12

Evaluation of
line integral
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2.1 The Line Integral 81

Note that we have evaluated the line integral by using x as the variable of inte-
gration. Alternatively, using y as the variable of integration, we obtain

Thus, the integration can be performed with respect to x or y (or z in the three-
dimensional case).What is important, however, is that the integrand must be ex-
pressed as a function of the variable of integration and the limits appropriate to
that variable must be employed.

Returning now to (2.4) and dividing both sides by q, we note that the line
integral of E from A to B has the physical meaning of work per unit charge
done by the field in moving the test charge from A to B. This quantity is known
as the voltage between A and B along the specified path and is denoted by the
symbol having the units of volts. Thus,

(2.5)

When the path under consideration is a closed path, that is, one that has no
beginning or ending, such as a rubber band, as shown in Fig. 2.3, the line integral
is written with a circle associated with the integral sign in the manner 
The line integral of a vector around a closed path is known as the circulation of
that vector. In particular, the line integral of E around a closed path is the work
per unit charge done by the field in moving a test charge around the closed path.
It is the voltage around the closed path and is also known as the electromotive
force.We shall now consider an example of evaluating the line integral of a vector
around a closed path.

AC E # dl.

VAB = L
B

A
E # dl

VAB,

 = 3 * 10-6
 cy2

2
d

0

1

= 1.5 mJ

 WAB = qL
11,1,02

10,0,02
E # dl = 3 * 10-6

L
1

0
y dy

 = y dy

 E # dl = yay
# 1dx ax + dy ay2

Voltage
defined

E

C

FIGURE 2.3

Closed path C in a region of electric field.
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82 Chapter 2 Maxwell’s Equations in Integral Form

(1, 3)

x

y

D

C

BA

(3, 5)

(3, 1)(1, 1)

FIGURE 2.4

For evaluating the line integral of a vector
field around a closed path.

Example 2.1 Evaluation of line integral around a closed path

Let us consider the force field

and evaluate where C is the closed path ABCDA shown in Fig. 2.4.
Noting that

we simply evaluate each of the line integrals on the right side and add them up to obtain
the required quantity.

First, we observe that since the entire closed path lies in the plane,
and for all four straight lines. Then for the side AB,

For the side BC,

For the side CD,

L
D

C
F # dl = L

1

3
x dx = -4

F # dl = 1xay2 # 1dx ax + dx ay2 = x dx

y = 2 + x, dy = dx, dl = dx ax + dx ay

L
C

B
F # dl = L

5

1
3 dy = 12

F # dl = 13ay2 # 1dy ay2 = 3 dy

x = 3, dx = 0, dl = 102ax + dy ay = dy ay

L
B

A
F # dl = 0

F # dl = 1xay2 # 1dx ax2 = 0

y = 1, dy = 0, dl = dx ax + 102ay = dx ax

dl = dx ax + dy ay

dz = 0z = 0

CABCDA
F # dl = L

B

A
F # dl + L

C

B
F # dl + L

D

C
F # dl + L

A

D
F # dl

AC F # dl,

F = xay
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2.1 The Line Integral 83

For the side DA,

Finally,

In this example, we found that the line integral of F around the closed
path C is nonzero. The field is then said to be a nonconservative field. For a non-
conservative field, the line integral between two points, say, A and B, is depen-
dent on the path followed from A to B. To show this, let us consider the two
paths ACB and ADB, as shown in Fig. 2.5. Then we can write

(2.6)

It can be easily seen that if is not equal to zero, then is
not equal to The two integrals are equal only if is equal
to zero, which is the case for conservative fields. Examples of conservative fields
are Earth’s gravitational field and the static electric field. An example of non-
conservative fields is the time-varying electric field.Thus, in a time-varying elec-
tric field, the voltage between two points A and B is dependent on the path
followed to evaluate the line integral of E from A to B, whereas in a static elec-
tric field, the voltage, more commonly known as the potential difference, be-
tween two points A and B is uniquely defined because the line integral of E
from A to B is independent of the path followed from A to B.

AACBDAF # dl1ADBF # dl.
1ACB F # dlA ACBDAF # dl

 = LACB
F # dl - LADB

F # dl

 CACBDA
 F # dl = LACB

F # dl + LBDA
F # dl

CABCDA
F # dl = 0 + 12 - 4 - 2 = 6

x = 1,  dx = 0,  dl = 102ax + dy ay

F # dl = 1ay2 # 1dy ay2 = dy

L
A

D
F # dl = L

1

3
dy = -2

Conservative
vs. noncon-
servative
fields

D C

B

A

FIGURE 2.5

Two different paths from point A to point B.
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84 Chapter 2 Maxwell’s Equations in Integral Form

K2.1. Line integral; Line integral of E; Voltage; Line integral around a closed path;
Circulation; Line integral of E around a closed path; Electromotive force; Con-
servative vs. nonconservative fields.

D2.1. For each of the curves (a) (b) and (c)
in a region of electric field find the approxi-

mate value of the work done by the field in carrying a charge of from the
point (1, 1, 0) to the neighboring point on the curve, whose x coordinate is 1.1,
by evaluating along a straight line path.
Ans. (a) (b) (c)

D2.2. For find for the straight-line paths between the follow-
ing pairs of points from the first point to the second point: (a) (0, 0, 0) to (2, 0, 0);
(b) (0, 2, 0) to (2, 2, 0); and (c) (2, 0, 0) to (2, 2, 0).
Ans. (a) 0; (b) 4; (c) 2.

2.2 THE SURFACE INTEGRAL

To introduce the surface integral, let us consider a region of magnetic field and
an infinitesimal surface at a point in that region. Since the surface is infinitesi-
mal, we can assume the magnetic flux density to be uniform on the surface, al-
though it may be nonuniform over a wider region. If the surface is oriented
normal to the magnetic field lines, as shown in Fig. 2.6(a), then the magnetic
flux (webers) crossing the surface is simply given by the product of the surface
area (meters squared) and the magnetic flux density on the surface,
that is, If, however, the surface is oriented parallel to the magnetic field
lines, as shown in Fig. 2.6(b), there is no magnetic flux crossing the surface. If
the surface is oriented in such a manner that the normal to the surface makes
an angle with the magnetic field lines as shown in Fig. 2.6(c), then the amount
of magnetic flux crossing the surface can be determined by considering that the

a

B ¢S.
1Wb/m22

1F # dlF = y1ax + ay2,
0.0877 mJ.-0.0112 mJ;0.31 mJ;

E # ¢l

1 mC
E = yax + xay,sin 0.5px, z = 0

y =x2 + y2 = 2, z = 0,y = x2, z = 0,

B B BNormal

Normal

Normal

�S
�S

�S

(b) (c)(a)

a

FIGURE 2.6

Infinitesimal surface in a magnetic field B oriented (a) normal to the field. (b) parallel to
the field, and (c) with its normal making an angle a to the field.

¢S

Surface
integral
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2.2 The Surface Integral 85

component of B normal to the surface is and the component tangential
to the surface is The component of B normal to the surface results in a
flux of crossing the surface, whereas the component tangential to
the surface does not contribute at all to the flux crossing the surface. Thus, the
magnetic flux crossing the surface in this case is We can obtain
this result alternatively by noting that the projection of the surface onto the
plane normal to the magnetic field lines is Hence, the magnetic flux
crossing the surface is the same as that crossing normal to the area 
that is, or 

To aid further in the understanding of this concept, imagine raindrops
falling vertically downward uniformly. If you hold a rectangular loop horizon-
tally, the number of drops falling through the loop is simply equal to the area of
the loop multipled by the density (number of drops per unit area) of the drops.
If the loop is held vertically, no rain falls through the loop. If the loop is held at
some angle to the horizontal, the number of drops falling through the loop is the
same as that which would fall through another (smaller) loop, which is the pro-
jection of the slanted loop on to the horizontal plane.

Let us now consider a large surface S in the magnetic field region, as
shown in Fig. 2.7. The magnetic flux crossing this surface can be found by divid-
ing the surface into a number of infinitesimal surfaces 
applying the result just obtained for each infinitesimal surface, and adding up
the contributions from all the surfaces. To obtain the contribution from the jth
surface, we draw the normal vector to that surface and find the angle between
the normal vector and the magnetic flux density vector associated with that
surface. Since the surface is infinitesimal, we can assume to be the value of B
at the centroid of the surface, and we can also erect the normal vector at that
point. The contribution to the total magnetic flux from the jth infinitesimal sur-
face is then given by

(2.7)¢cj = Bj cos aj ¢Sj

Bj

Bj

aj

¢S1, ¢S2, ¢S3, Á , ¢Sn,

1B cos a2 ¢S.B1¢S cos a2 ¢S cos a,¢S
¢S cos a.

1B cos a2 ¢S.

1B cos a2 ¢S
B sin a.

B cos a

Bj

aj

anj

Normal

�Sj

S FIGURE 2.7

Division of a large surface S in a
magnetic field region into a number of
infinitesimal surfaces.
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86 Chapter 2 Maxwell’s Equations in Integral Form

where the symbol represents magnetic flux. The total magnetic flux crossing
the surface S is then given by

(2.8)

Using the dot product operation between two vectors, we obtain

(2.9)

where is the unit vector normal to the surface Furthermore, by using the
concept of an infinitesimal surface vector as one having magnitude equal to the
area of the surface and direction normal to the surface, that is,

(2.10)

we can write (2.9) as

(2.11)

For a numerical example, let us consider the magnetic field given by

and determine the magnetic flux crossing the portion of the xy-plane lying be-
tween and For convenience, we shall divide the sur-
face into 25 equal areas, as shown in Fig. 2.8 (a). We shall designate the squares
as where the first digit represents the number of
the square in the x-direction and the second digit represents the number of the
square in the y-direction. The x- and y-coordinates of the midpoint of the ijth
square are and respectively, as shown in Fig. 2.8(b).The
magnetic field at the center of the ijth square is then given by

Since we have divided the surface into equal areas and since all areas are in the
xy-plane,

¢Sij = 0.04 az for all i and j

Bij = 312i - 1212j - 1220.001az

12j - 120.1,12i - 120.1

11, 12, Á , 15, 21, 22, Á , 55,

y = 1.x = 0, x = 1, y = 0,

B = 3xy2az Wb/m2

[c]S = a
n

j = 1
Bj

# ¢Sj

¢Sj = ¢Sj anj

¢Sj.anj

[c]S = a
n

j = 1
Bj

# ¢Sj anj

 = a
n

j = 1
Bj1¢Sj2 cos aj

 = a
n

j = 1
Bj cos aj ¢Sj

 + Bn cos an ¢Sn

 = B1 cos a1 ¢S1 + B2 cos a2 ¢S2 + B3 cos a3 ¢S3 + Á
 [c]S = ¢c1 + ¢c2 + ¢c3 + Á + ¢cn

c
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(2j�1)0.1

11 12
21

1 55
(1, 1, 0)

ij

i

j

FIGURE 2.8

(a) Division of the portion of the xy-plane lying between 
and into 25 squares. (b) Area corresponding to the ijth square.y = 1

x = 0, x = 1, y = 0,

The required magnetic flux is then given by

The result that we have just obtained for is approximate since we
have divided the surface S into a finite number of areas. By dividing it into larg-
er and larger numbers of squares, we can obtain more and more accurate re-
sults. In the limit that the result converges to the exact value. The
summation in (2.11) then becomes an integral that represents exactly the mag-
netic flux crossing the surface and is given by

(2.12)

where the symbol S associated with the integral sign denotes that the integration
is performed over the surface S. The integral on the right side of (2.12) is known
as the surface integral of B over S. The surface integral is a double integral since
dS is equal to the product of two differential lengths.

We shall illustrate the evaluation of the surface integral by computing
the exact value of the magnetic flux crossing the surface in Fig. 2.8(a). To do
this, we note that at any arbitrary point on the surface, the differential surface

[c]S = LS
B # dS

n : q ,

[c]S

 = 0.495 Wb

 = 0.0001211 + 3 + 5 + 7 + 9211 + 9 + 25 + 49 + 812
 = 0.00012a

5

i = 1
a

5

j = 1
12i - 1212j - 122

 = a
5

i = 1
a

5

j = 1
312i - 1212j - 1220.001az

# 0.04az

 [c]S = a
5

i = 1
a

5

j = 1
Bij

# ¢Sij

Evaluation of
surface
integral
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88 Chapter 2 Maxwell’s Equations in Integral Form

vector is given by

The value of at the point is

Thus, the required magnetic flux is given by

When the surface under consideration is a closed surface, the surface integral
is written with a circle associated with the integral sign in the manner A
closed surface is one that encloses a volume. Hence, if you are anywhere in that
volume, you can get out of it only by making a hole in the surface, and vice versa.A
simple example is the surface of a balloon inflated and tied up at the mouth. The
surface integral of B over the closed surface S is simply the magnetic flux
emanating from the volume bounded by the surface.Thus, whenever a closed sur-
face integral is evaluated, the unit vectors normal to the differential surfaces are
chosen to be pointing out of the volume, so as to give the outward flux of the
vector field, unless specified otherwise.We shall now consider an example of eval-
uating 

Example 2.2 Evaluation of a closed surface integral

Let us consider the magnetic field

and evaluate where S is the surface of the cubical box bounded by the planes

as shown in Fig. 2.9.
Noting that

 + Laefb
B # dS + Ldhgc

B # dS

 CS
B # dS = Labcd

B # dS + Lefgh
B # dS + Ladhe

B # dS + Lbcgf
B # dS

x = 0 x = 1
y = 0 y = 1
z = 0 z = 1

AS B # dS ,

B = 1x + 22ax + 11 - 3y2ay + 2zaz

AS B # dS.

AS B # dS.

 = L
1

x = 0L
1

y = 0
 3xy2 dx dy = 0.5 Wb

 [c]S = LS
B # dS

 = 3xy2 dx dy

 B # dS = 3xy2 az
# dx dy az

B # dS

dS = dx dy az
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FIGURE 2.9

For evaluating the surface integral of a vector field
over a closed surface.

we simply evaluate each of the surface integrals on the right side and add them up to ob-
tain the required quantity. In doing so, we recognize that since the quantity we want is
the magnetic flux out of the box, we should direct the unit normal vectors toward the
outside of the box. Thus, for the surface abcd,

For the surface efgh,

For the surface adhe,

For the surface bcgf,

Lbfgc
B # dS = L

1

x = 0L
1

z = 0
1-22 dz dx = -2

B # dS = -2 dz dx

y = 1, B = 1x + 22ax - 2ay + 2zaz, dS = dz dx ay

Laehd
B # dS = L

1

x = 0L
1

z = 0
1-12 dz dx = -1

B # dS = -dz dx

y = 0, B = 1x + 22ax + 1ay + 2zaz, dS = -dz dx ay

Lefgh
B # dS = L

1

z = 0L
1

y = 0
3 dy dz = 3

B # dS = 3 dy dz

x = 1, B = 3ax + 11 - 3y2ay + 2zaz, dS = dy dz ax

Labcd
B # dS = L

1

z = 0L
1

y = 0
1-22 dy dz = -2

B # dS = -2 dy dz

x = 0, B = 2ax + 11 - 3y2ay + 2zaz, dS = -dy dz ax
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90 Chapter 2 Maxwell’s Equations in Integral Form

For the surface aefb,

For the surface dhgc,

Finally,

K2.2. Surface integral; Surface integral of B; Magnetic flux; Surface integral over a
closed surface.

D2.3. Given find by evaluating the approximate
absolute value of the magnetic flux crossing from one side to the other side of an in-
finitesimal surface of area at the point (1, 2, 1) for each of the following
orientations of the surface: (a) in the plane; (b) on the surface 
and (c) normal to the unit vector 
Ans. (a) (b) (c)

D2.4. For the vector field find the absolute value of over the
following plane surfaces: (a) square having the vertices at (0, 0, 0), (0, 2, 0), (0, 2,
2), and (0, 0, 2); (b) square having the vertices at (2, 0, 0), (2, 2, 0), (2, 2, 2), and (2,
0, 2); (c) square having the vertices at (0, 0, 0), (2, 0, 0), (2, 0, 2), and (0, 0, 2); and
(d) triangle having the vertices at (0, 0, 0), (2, 0, 0), and (0, 0, 2).
Ans. (a) 0; (b) 8; (c) 4; (d)

2.3 FARADAY’S LAW

In the preceding two sections, we introduced the line and surface integrals. We
are now ready to consider Maxwell’s equations in integral form. The first equa-
tion, which we shall discuss in this section, is a consequence of an experimental
finding by Michael Faraday in 1831 that time-varying magnetic fields give rise to
electric fields and, hence, it is known as Faraday’s law. Faraday discovered that
when the magnetic flux enclosed by a loop of wire changes with time, a current
is produced in the loop, indicating that a voltage or an electromotive force, ab-
breviated as emf, is induced around the loop. The variation of the magnetic flux
can result from the time variation of the magnetic flux enclosed by a fixed loop

4
3.

1A # dSA = x1ax + ay2,
10-3 Wb.11/122 * 10-3 Wb;2 * 10-3 Wb;

1
312ax + ay + 2az2.

2x2 + y2 = 6;x = 1
0.001 m2

B # ¢SB = 1yax - xay2 Wb/m2,

CS
 B # dS = -2 + 3 - 1 - 2 + 0 + 2 = 0

Ldhgc
B # dS = L

1

y = 0L
1

x = 0
2 dx dy = 2

B # dS = 2 dx dy

z = 1, B = 1x + 22ax + 11 - 3y2ay + 2az, dS = dx dy az

Laefb
B # dS = 0

B # dS = 0
z = 0, B = 1x + 22ax + 11 - 3y2ay + 0az, dS = -dx dy az
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2.3 Faraday’s Law 91

Statement of
Faraday’s law

B

S

C

dS

FIGURE 2.10

For illustrating Faraday’s law.

or from a moving loop in a static magnetic field or from a combination of the
two, that is, a moving loop in a time-varying magnetic field.

In mathematical form, Faraday’s law is given by

(2.13)

where S is a surface bounded by the closed path C, as shown in Fig. 2.10. In
words, Faraday’s law states that the electromotive force around a closed path is
equal to the negative of the time rate of change of the magnetic flux enclosed by
that path. There are certain procedures and observations of interest pertinent to
the application of (2.13). We shall discuss these next.

1. The magnetic flux on the right side is to be evaluated in accordance with
the right-hand screw rule (R.H.S. rule), a convention that is applied consistently
for all electromagnetic field laws involving integration over surfaces bounded by
closed paths. The right-hand screw rule consists of imagining a right-hand screw
being turned around the closed path, as illustrated in Fig. 2.11 for two opposing
senses of paths, and using the resulting direction of advance of the screw to
evaluate the surface integral. The application of this rule to the geometry of

CC
E # dl = -  

d

dtLS
B # dS

Right-hand
screw rule

(a) (b)

C

C

FIGURE 2.11

Right-hand screw rule convention employed in the formulation of
electomagnetic field laws.
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(a)

y

z

x

P

O

R

C

Q

(b)

y

z

x

P

O

R

C

Q

FIGURE 2.12

(a) A plane surface and (b) a combination of three plane surfaces, bounded by the closed
path C.

Fig. 2.10 means that in evaluating the surface integral of B over S, the normal
vector to the differential surface dS should be directed as shown in that figure.

2. In evaluating the surface integral of B, any surface S bounded by C
can be employed. For example, if the loop C is a planar loop, it is not necessary
to consider the plane surface having the loop as its perimeter. One can consid-
er a curved surface bounded by C or any combination of plane (or plane and
curved) surfaces which together are bounded by C, and which is sometimes a
more desirable choice. To illustrate this point, consider the planar loop PQRP
in Fig. 2.12 (a). The most obvious surface bounded by this loop is the plane
surface PQR inclined to the coordinate planes. Now imagine this plane sur-
face to be an elastic sheet glued to the perimeter and pushed in toward the
origin so as to conform to the coordinate planes. Then we obtain the combina-
tion of the plane surfaces OPQ, OQR, and ORP, as shown in Fig. 2.12(b),
which together constitute a surface also bounded by the loop. To evaluate the
surface integral of B for the surface in Fig. 2.12(a), we need to make use of the
dS vector on that slant surface. On the other hand, for the geometry in Fig.
2.12(b), we can use the (simpler) dS vectors associated with the coordinate
planes. The fact that any surface S bounded by a closed path C can be em-
ployed to evaluate the magnetic flux enclosed by C implies that the magnetic
flux through all such surfaces is the same in order for the emf around C to be
unique. As we shall learn in Section 2.4, it is a fundamental property of the
magnetic field that the magnetic flux is the same through all surfaces bounded
by a given closed path.

3. The closed path C on the left side need not represent a loop of wire,
but can be an imaginary contour. It means that the time-varying magnetic flux
induces an electric field in the region and this results in an emf around the
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Lenz’s law

Faraday’s law
for N-turn
coil

(a) (b) (c)
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A
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FIGURE 2.13

For illustrating the surface bounded by a loop containing two turns.

closed path. If a wire is placed in the position occupied by the closed path, the
emf will produce a current in the loop simply because the charges in the wire
are constrained to move along the wire.

4. The minus sign on the right side together with the right-hand screw
rule ensures that Lenz’s law is always satisfied. Lenz’s law states that the sense
of the induced emf is such that any current it produces tends to oppose the
change in the magnetic flux producing it. It is important to note that the in-
duced emf acts to oppose the change in the flux and not the flux itself. To clari-
fy this, let us consider that the flux is into the paper and increasing with time.
Then the induced emf acts to produce flux out of the paper. On the other hand,
if the same flux is decreasing with time, then the induced emf acts to produce
flux into the paper.

5. If the loop C contains more than one turn, such as in an N-turn coil,
then the surface S bounded by the periphery of the loop takes the shape of a
spiral ramp, as shown in Fig. 2.13 (a) for N equal to 2.This surface can be visual-
ized by taking two paper plates, cutting each of them along a radius, as shown in
Figs. 2.13(b) and (c), and joining the edge BO of the plate in (c) to the edge 
of the plate in (b). For a tightly wound coil, this is equivalent to the situation in
which N separate, identical, single-turn loops are stacked so that the emf in-
duced in the N-turn coil is N times that induced in one turn. Thus, for an N-turn
coil,

(2.14)

where is the magnetic flux computed as though the coil is a one-turn coil.

We shall now consider two examples to illustrate the determination of in-
duced emf using Faraday’s law, the first involving a stationary loop in a time-
varying magnetic field and the second involving a moving conductor in a static
magnetic field.

c

emf = -N 

dc

dt

A¿O
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x

z
y x � 0

z �0 z = b

x � a
B0 cos vt ay

dS

C

S

FIGURE 2.14

Rectangular loop in the xz-plane situated in a
time-varying magnetic field.

Example 2.3 Induced emf around a rectangular loop in a time-varying
magnetic field

A time-varying magnetic field is given by

where is a constant. It is desired to find the induced emf around the rectangular loop C
in the xz-plane bounded by the lines and as shown in Fig. 2.14.

Choosing in accordance with the right-hand screw rule and using
the plane surface S bounded by the loop, we obtain the magnetic flux enclosed by the
loop to be

Note that since the magnetic flux density is uniform and normal to the plane of the loop, this
result could have been obtained by simply multiplying the area ab of the loop by the compo-
nent of the flux density vector. The induced emf around the loop is then given by

The time variations of the magnetic flux enclosed by the loop and the induced
emf around the loop are shown in Fig. 2.15. It can be seen that when the magnetic flux
enclosed by the loop into the paper is decreasing with time, the induced emf is positive,
thereby producing a clockwise current if the loop were a wire. This polarity of the cur-
rent gives rise to a magnetic field directed into the paper inside the loop and, hence, acts
to oppose the decrease of the magnetic flux enclosed by the loop. When the magnetic
flux enclosed by the loop into the paper is increasing with time, the induced emf is neg-
ative, thereby producing a counterclockwise current around the loop. This polarity of
the current gives rise to a magnetic field directed out of the paper inside the loop and
hence acts to oppose the increase of the magnetic flux enclosed by the loop. These ob-
servations are consistent with Lenz’s law.

 = -  
d

dt
 [abB0 cos vt] = abB0v sin vt

 CC
E # dl = -  

d

dtLS
B # dS

B0 cos vt

 = B0 cos vtL
b

z = 0L
a

x = 0
dx dz = abB0 cos vt

 c = LS
B # dS = L

b

z = 0L
a

x = 0
B0 cos vt ay

# dx dz ay

dS = dx dz ay

z = b,x = 0, x = a, z = 0,
B0

B = B0 cos vt ay

Stationary
loop in a
time-varying
magnetic field
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Moving
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a static
magnetic field
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emf

FIGURE 2.15

Time variations of magnetic flux 
enclosed by the loop of Fig. 2.14 and the
resulting induced emf around the loop.

c

Example 2.4 Induced emf around an expanding loop in a uniform static
magnetic field

A rectangular loop of wire with three sides fixed and the fourth side movable is situated
in a plane perpendicular to a uniform magnetic field as illustrated in Fig. 2.16.
The movable side consists of a conducting bar moving with a velocity in the y-direction.
It is desired to find the emf induced around the closed path C of the loop.

Letting the position of the movable side at any time t be considering
in accordance with the right-hand screw rule, and using the plane surface

S bounded by the loop, we obtain the magnetic flux enclosed by the loop to be

Note that this result could also have been obtained as the product of the area of the loop
and the flux density because of the uniformity of the flux density withinB0,l1y0 + v0 t2

 = B0 l1y0 + v0 t2
 = L

l

x = 0L
y0 + v0 t

y = 0
B0 dx dy

 LS
B # dS = LS

B0az
# dx dy az

dS = dx dy az

y0 + v0 t,

v0

B = B0az,

xl

z
y

C

S dS v0ay

B

FIGURE 2.16

Rectangular loop of wire with a movable side
situated in a uniform magnetic field.
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96 Chapter 2 Maxwell’s Equations in Integral Form

the area of the loop and its perpendicularity to the plane of the loop. The emf induced
around C is given by

Note that if the bar is moving to the right, the induced emf is negative and produces a
current in the sense opposite to that of C. This polarity of the current is such that it gives
rise to a magnetic field directed out of the paper inside the loop. The flux of this magnet-
ic field is in opposition to the flux of the original magnetic field and hence tends to
oppose the increase in the magnetic flux enclosed by the loop. On the other hand, if the
bar is moving to the left, is negative, the induced emf is positive, and produces current
in the same sense as that of C. This polarity of current is such that it gives rise to a mag-
netic field directed into the paper inside the loop.The flux of this magnetic field is in aug-
mentation to the flux of the original magnetic field and hence tends to oppose the
decrease in the magnetic flux enclosed by the loop. These observations are once again
consistent with Lenz’s law.

It is also of interest to note that the induced emf can also be interpreted as being
due to the electric field induced in the moving bar by virtue of its motion perpendicular
to the magnetic field. Thus, a charge Q in the bar experiences a force or

To an observer moving with the bar, this force appears as an
electric force due to an electric field Viewed from inside the loop, this
electric field is in the counterclockwise sense. Hence, the induced emf, which is the line
integral of E along the bar, is given by

in the counterclockwise sense (i.e., opposite to C), consistent with the result deduced
from Faraday’s law. This concept of induced emf is known as the motional emf concept,
which is employed widely in the study of electromechanics.

In the two examples we just discussed, we have implicitly illustrated the
principles behind two of the practical applications of Faraday’s law. These are
pertinent to the reception of radio and TV signals using a loop antenna and
electromechanical energy conversion.

That the arrangement considered in Example 2.3 illustrates the principle
of a loop antenna can be seen by noting that if the loop C were in the xy-plane
or in the yz-plane, no emf would be induced in it since the magnetic flux densi-
ty is then parallel to the plane of the loop and no flux is enclosed by the loop.
In fact, for any arbitrary orientation of the loop, only that component of B nor-
mal to the plane of the loop contributes to the magnetic flux enclosed by the
loop and, hence, to the emf induced in the loop.Thus, for a given magnetic field,
the voltage induced in the loop varies as the orientation of the loop is changed,
with the maximum occurring when the loop is in the plane perpendicular to the

L
l

x = 0
v0 B0 ax

# dx ax = L
l

x = 0
v0 B0 dx = v0 B0 l

F>Q = v0 B0ax.
Qv0 ay � B0 az = Qv0 B0ax.

F = Qv � B

v0

 = -B0 lv0

 = -  
d

dt
 [B0 l1y0 + v0 t2]

 CC
E # dl = -  

d

dtLS
B # dS

Principle of
loop antenna
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Locating a
radio
transmitter

Electro-
mechanical
energy
conversion

magnetic field. Pocket AM radios generally contain a type of loop antenna con-
sisting of many turns of wire wound around a bar of magnetic material, and TV
receivers generally employ a single-turn circular loop for UHF channels.
Thus, for maximum signals to be received, the AM radios and the TV loop
antennas need to be oriented appropriately. Another point of interest evi-
dent from Example 2.3 is that the induced emf is proportional to the radian
frequency of the source of the magnetic field. Hence, for the same voltage to
be induced for a given amplitude of the magnetic flux density, the area of
the loop times the number of turns is inversely proportional to the frequency.

What is undesirable for one purpose can sometimes be used to advantage
for another purpose. The fact that no voltage is induced in the loop antenna
when the magnetic field is parallel to the plane of the loop is useful for locating
the transmitter of a radio wave. Since the magnetic field of an incoming radio
wave is perpendicular to its direction of propagation, no voltage is induced in
the loop when its axis is along the direction of the transmitter. For a transmitter
on Earth’s surface, it is then sufficient to use two spaced vertical loop antennas
and find their orientations for which no signals are received. By then producing
backward along the axes of the two loop antennas, as shown by the top view in
Fig. 2.17, the location of the transmitter can be determined.

That the arrangement considered in Example 2.4 is a simple example of
an electromechanical energy converter can be seen by recognizing that in view
of the current flow in the moving bar, the bar is acted on by a magnetic force.
Since for positive the current flows in the loop in the sense opposite to that
of C and hence in the positive x-direction in the moving bar, and since the mag-
netic field is in the z-direction, the magnetic force is exerted in the or

Thus, to keep the bar moving, an external force must be exerted
in the thereby requiring mechanical work to be done by an ex-
ternal agent. It is this mechanical work that is converted into electrical energy in
the loop.

What we have just discussed is the principle of generation of electric power
by linear motion of a conductor in a magnetic field. Practical electric generators
are of the rotating type. The principle of a rotating generator can be illustrated
by considering a rectangular loop of wire situated symmetrically about the z-axis
and rotating with angular velocity around the z-axis in a constant magnetic
field as shown in Fig. 2.18(a). Then noting from the view in Fig.
2.18(b) that the magnetic flux enclosed by the loop at any arbitrary value of
time is the same as that enclosed by its projection onto the yz-plane at that time,
we obtain where A is the area of the loop and the situationc = B0 A cos vt,

c

B =  B0ax,
v

+ay-direction,
-ay-direction.

ax � az

v0,

B0

v,

Principle of
rotating
generator

Loop 1

Loop 2

Transmitter

FIGURE 2.17

Top view of an arrangement consisting
of two loop antennas for locating a
transmitter of radio waves.
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(a) (b)

z

z

y

y

x

x

B�B0ax

B

v

FIGURE 2.18

For illustrating the principle of a rotating generator.

Magnetic
levitation

shown in Fig. 2.18(a) is assumed for The emf induced in the loop is
or Thus, the rotating loop in the constant magnetic field

produces an alternating voltage. The same result can be achieved by a stationary
loop in a rotating magnetic field. In fact, in most generators, a stationary mem-
ber, or stator, carries the coils in which the voltage is induced, and a rotating
member, or rotor, provides the magnetic field. As in the case of the arrangement
of Example 2.4, a certain amount of mechanical work must be done to keep the
loop rotating. It is this mechanical work, which is supplied by the prime mover
(such as a turbine in the case of a hydroelectric generator or the engine of an au-
tomobile in the case of its alternator) turning the rotor, that is converted into
electrical energy.

There are numerous other applications of Faraday’s law, but we shall dis-
cuss only one more before we conclude this section. This is the phenomenon of
magnetic levitation, a basis for rapid transit systems employing trains that hover
over their guideways and do not touch the rail, among other applications. Mag-
netic levitation arises from a combination of Faraday’s law and Ampère’s force
law. It can be explained and demonstrated through a series of simple experi-
ments, culminating in a current-carrying coil lifting up above a metallic plate, as
described in the following:

1. Consider a pair of coils (30 to 50 turns of No. 26 wire of about 4-in. di-
ameter) attached to nails on a piece of wood, as shown in Fig. 2.19. Set to zero
the output of a variable power supply obtained by connecting a variac to the
110-V ac mains. Connect one output terminal (A) of the variac to the begin-
nings ( and ) of both coils and the second output terminal (B) to the ends
( and ) of both coils so that currents flow in the two coils in the same sense.
Apply some voltage to the coils by turning up the variac and note the attraction
between the coils. Repeat the experiment by connecting A to and and B
to and so that currents in the two coils flow in opposite senses, and note
repulsion this time. What we have just described is Ampère’s force law at work.
If the currents flow in the same sense, the magnetic force is one of attraction,

D1,C2

D2C1

D2D1

C2C1

vB0 A sin vt.-dc/dt,
t = 0.
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2.3 Faraday’s Law 99

1See L. Pearce Williams,“André-Marie Ampère,” Scientific American, January 1989, pp. 90–97, for an
interesting account of Ampère’s experiments involving helical and spiral coils.

Variac

110 V

Coil No. 2

Coil No. 1

C1

A

B

C2 D2
D1

Fuse

AC

FIGURE 2.19

Experimental setup for demonstration of Ampère’s force law, Faraday’s law, and the principle
of magnetic levitation.

and if the currents flow in opposite senses, it is one of repulsion, as shown in
Figs. 2.20(a) and (b), respectively, for straight wires, for the sake of simplicity.1

2. Connect coil No. 2 to the variac and coil No. 1 to an oscilloscope to ob-
serve the induced voltage in coil No. 1, thereby demonstrating Faraday’s law.
Note the change in the induced voltage as the variac voltage is changed. Note
also the change in the induced voltage by keeping the variac voltage constant
and moving coil No. 1 away from coil No. 2 and/or turning it about the vertical.

3. Connect coil No. 2 to the variac and leave coil No. 1 open-circuited. Ob-
serve that no action takes place as the variac voltage is applied to coil No. 2.This
is because although a voltage is induced in coil No. 1, no current flows in it.

I I

B BF

(a) (b)

F

I

BF

I

B F
FIGURE 2.20

For explaining (a) force of attraction for
currents flowing in the same sense and 
(b) force of repulsion for currents flowing
in opposite senses.
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100 Chapter 2 Maxwell’s Equations in Integral Form

Now short circuit coil No. 1 and repeat the experiment to note repulsion. This
is due to the induced voltage in coil No. 1 causing a current flow in it in the
sense opposite to that in coil No. 2, and, hence, is a result of the combination of
Faraday’s law and Ampère’s force law. That the force is one of repulsion can be
deduced by writing circuit equations and showing that the current in the short-
circuited coil does indeed flow in the sense opposite to that in the excited coil.
However, it can be explained with the aid of physical reasoning as follows.
When both coils are excited in the same sense in part (1) of the demonstration,
the magnetic flux linking each coil is the sum of two fluxes in the same sense,
due to the two currents. When the two coils are excited in opposite senses, the
magnetic flux linking each coil is the algebraic sum of two fluxes in opposing
senses, due to the two currents. Therefore, for the same source voltage and for
the same pair of coils, the currents that flow in the coils in the second case have
to be greater than those in the first case, for the induced voltage in each coil to
equal the applied voltage. Thus, the force of repulsion in the second case is
greater than the force of attraction in the first case. Consider now the case of
one of the coils excited by source voltage, say, and the other short-circuited.
Then the situation can be thought of as the first coil excited by and in
series, and the second coil excited by and in series, thereby result-
ing in a force of attraction and a force of repulsion. Since the force of repulsion
is greater than the force of attraction, the net force, according to superposition,
is one of repulsion.

4. Now to demonstrate actual levitation, place a smaller coil (about 30
turns of No. 28 wire of about 2-in. diameter) on a heavy aluminum plate

as shown in Fig. 2.21. Applying only the minimum neces-
sary voltage and turning the variac only momentarily to avoid overheating, pass
current through the coil from the variac to see the coil levitate. This levitation is
due to the repulsive action between the current in the coil and the induced cur-
rents in the metallic plate. Since the plate is heavy and cannot move, the alter-
native is for the coil to lift up.

K2.3. Faraday’s law; Right-hand screw rule; Lenz’s law; Faraday’s law for N-turn coil;
Motional emf concept; Principle of loop antenna; Electromechanical energy
conversion; Rotating generator; Magnetic levitation.

D2.5. Given find the induced emf around each
of the following closed paths: (a) the rectangular path from (0, 0, 0) to (0, 1, 0) to
(0, 1, 1) to (0, 0, 1) to (0, 0, 0); (b) the triangular path from (1, 0, 0) to (0, 1, 0) to

B = B01sin vt ax - cos vt ay2 Wb/m2,

15 in. * 5 in. * 1
2 in.2,

-Vg>2Vg>2
Vg>2Vg>2

Vg,

To 110 V AC
Through
Variac

Aluminum
Plate

Coil

FIGURE 2.21

Setup for demonstrating magnetic
levitation.
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2.4 Ampère’s Circuital Law 101

(0, 0, 1) to (1, 0, 0); and (c) the rectangular path from (0, 0, 0) to (1, 1, 0) to (1, 1, 1)
to (0, 0, 1) to (0, 0, 0).

Ans. (a) (b)

(c)

D2.6. A square loop lies in the xy-plane forming the closed path C connecting the
points (0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), and (0, 0, 0), in that order. A magnetic
field B exists in the region. From considerations of Lenz’s law, determine
whether the induced emf around the closed path C at is positive, negative,
or zero for each of the following magnetic fields, where is a positive constant:
(a) (b) and (c)
Ans. (a) negative; (b) positive; (c) zero.

D2.7. For find the induced emf around the following closed
paths: (a) the closed path comprising the straight lines successively connecting
the points (0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 0.001), and (0, 0, 0); (b) the
closed path comprising the straight lines successively connecting the points
(0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 0.001), (1, 0, 0.001), (1, 1, 0.001), (0, 1,
0.001), (0, 0, 0.002), and (0, 0, 0) with a slight kink in the straight line at the point
(0, 0, 0.001) to avoid touching the point; and (c) the closed path comprising the
helical path from to and
the straight-line path from to with slight kinks to
avoid touching the helical path.
Ans. (a) (b) (c)

2.4 AMPÈRE’S CIRCUITAL LAW

In the preceding section, we introduced Faraday’s law, one of Maxwell’s equa-
tions, in integral form. In this section, we introduce another of Maxwell’s
equations in integral form. This equation, known as Ampère’s circuital law, is a
combination of an experimental finding of Oersted that electric currents gen-
erate magnetic fields and a mathematical contribution of Maxwell that time-
varying electric fields give rise to magnetic fields. It is this contribution of
Maxwell that led to the prediction of electromagnetic wave propagation even
before the phenomenon was discovered experimentally. In mathematical
form, Ampère’s circuital law is analogous to Faraday’s law and is given by

(2.15)

where S is a surface bounded by C.

The quantity on the left side of (2.15) is the line integral of the

vector field around the closed path C. We learned in Section 2.1 that the
quantity has the physical meaning of work per unit charge associatedAC E # dl

B/m0

CC
 
B
m0

# dl

CC
 
B
m0

# dl = [Ic]S +
d

dtLS
e0E # dS

5vB0 sin vt V.2vB0 sin vt V;vB0 sin vt V;

11>1p, 0, 0211>1p, 0, 0.012
11>1p, 0, 0.01211>1p, 0, 02r = 1>1p, f = 1000pz

B = B0 cos vt az Wb/m2,

B = B0 e-t2
az.B = B0 cos 12pt + 60°2 az;B = B0 taz;

B0

t = 0

-12 vB0 cos1vt + p>42 V.

-  

vB012
 cos1vt - p>42 V;-vB0 cos vt V;
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102 Chapter 2 Maxwell’s Equations in Integral Form

with the movement of a test charge around the closed path C. The quantity 

does not have a similar physical meaning. This is because magnetic

force on a moving charge is directed perpendicular to the direction of motion of
the charge, as well as to the direction of the magnetic field, and hence does not
do work in the movement of the charge. The vector is known as the “mag-
netic field intensity vector” and is denoted by the symbol H. By recalling from
(1.78) that B has the units of [(permeability)(current)(length)] per 
we note that the quantity H has the units of current per unit distance or amp/m.

This gives the units of current or amp to In analogy with the name

“electromotive force” for the quantity is known as the “mag-

netomotive force,” abbreviated as mmf.
The quantity on the right side of (2.15) is the current due to flow of

free charges crossing the surface S. It can be a convection current such as due to
motion of a charged cloud in space, or a conduction current due to motion of
charges in a conductor. Although can be filamentary current, surface cur-
rent, or volume current, or a combination of these, it is formulated in terms of
the volume current density vector, J, in the manner

(2.16)

Just as the surface integral of the magnetic flux density vector B over
a surface S gives the magnetic flux (Wb) crossing that surface, the surface inte-
gral of J over a surface S gives the current (A) crossing that surface.

The quantity on the right side of (2.15) is the flux of the vector
field crossing the surface S. The vector is known as the “displacement
vector” or the “displacement flux density vector” and is denoted by the sym-
bol D. By recalling from (1.62) that E has the units of (charge) per [(permit-
tivity) ], we note that the quantity D has the units of charge per unit
area or Hence the quantity that is, the displacement flux,

has the units of charge, and the quantity has the units of (charge)

or current and is known as the “displacement current.” Physically, it is not a cur-
rent in the sense that it does not represent the flow of charges, but mathemati-
cally it is equivalent to a current crossing the surface S.

Replacing and in (2.15) by H and D, respectively, and using
(2.16), we rewrite Ampère’s circuital law as

(2.17)

In words, (2.17) states that the magnetomotive force around a closed path C is
equal to the algebraic sum of the current due to flow of charges and the displace-
ment current bounded by C. The situation is illustrated in Fig. 2.22.

CC
H # dl = LS

J # dS +
d

dtLS
D # dS

e0EB>m0

d

dt

d

dtLS
e0E # dS

1S e0E # dS,C>m2.
1distance22

e0Ee0E
1S e0E # dS

1A/m22
1Wb/m22

[Ic]S = LS
J # dS

[Ic]S

[Ic]S

AC  H # dlAC 
E # dl,

AC H # dl.

[1distance22],
B>m0

CC
 
B
m0

# dl

Statement of
Ampère’s
circuital law
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2.4 Ampère’s Circuital Law 103

J, D

S

C
dS

FIGURE 2.22

For illustrating Ampère’s
circuital law.

As in the case of Faraday’s law, there are certain procedures and observa-
tions pertinent to the application of (2.17). These are as follows.

1. The surface integrals on the right side of (2.17) are to be evaluated in accor-
dance with the R.H.S. rule, which means that for the geometry of Fig. 2.22,
the normal vector to the differential surface dS should be directed as shown
in the figure.

2. In evaluating the surface integrals, any surface S bounded by C can be em-
ployed. However, the same surface must be employed for the two surface
integrals. It is not correct to consider two different surfaces to evaluate the
two surface integrals, although both surfaces may be bounded by C.

Observation 2 implies that for the mmf around C to be unique, the sum of
the two currents (current due to flow of charges and displacement current)
through all possible surfaces bounded by C is the same. Let us now consider two
surfaces and bounded by the closed paths and respectively, as shown
in Fig. 2.23, where and are traversed in opposite senses and touch each
other so that and together form a closed surface. The situation may be
imagined by considering the closed surface to be that of a potato and and 
to be two rubber bands around the potato.

Applying Ampère’s circuital law to and and noting that is chosen
in accordance with the R.H.S. rule, we have

(2.18a)CC1
 
H # dl = LS1

J # dS1 +
d

dtLS1

D # dS1

dS1S1C1

C2C1

S2S1

C2C1

C2,C1S2S1

C1 C2

S1 S2

dS2dS1

FIGURE 2.23

Two closed paths and touching each
other and bounding the surfaces and 
respectively, which together form a closed
surface.

S2,S1

C2C1
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104 Chapter 2 Maxwell’s Equations in Integral Form

Similarly, applying Ampère’s circuital law to and and noting again that 
is chosen in accordance with the R.H.S. rule, we have

(2.18b)

Now adding (2.18a) and (2.18b), we obtain

(2.19)

where the left side results from the fact that and are actually the same
path but traversed in opposite senses, so that the two line integrals are the neg-
atives of each other.

Since the closed surface can be of any size and shape, we can gen-
eralize (2.19) to write

or

(2.20)

Thus, the displacement current emanating from a closed surface is equal to the
current due to charges flowing into the volume bounded by that closed surface.

An important example of the property given by (2.20) at work is in a ca-
pacitor circuit, as shown in Fig. 2.24. In this circuit, the time-varying voltage
source sets up a time-varying electric field between the plates of the capacitor

d

dtCS
 D # dS = -CS

 J # dS

CS
 J # dS +

d

dtCS
 D # dS = 0

S1 + S2

C2C1

0 = CS1 + S2

 J # dS +
d

dtCS1 + S2

 D # dS

CC2

 H # dl = LS1

J # dS2 +
d

dtLS2

D # dS2

dS2S2C2

Capacitor
circuit

Capacitor
Plates

S

� �

D

V(t)

I(t) I(t)

FIGURE 2.24

Capacitor circuit for illustrating that the
displacement current from one plate to the other is
equal to the wire current.
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2.4 Ampère’s Circuital Law 105

and directed from one plate to the other. Therefore, one can talk about dis-
placement current crossing a surface between the plates.According to (2.20) ap-
plied to a closed surface S enclosing one of the plates, as shown in the figure,

(2.21)

where I(t) is the current (due to flow of charges in the wire) drawn from the
voltage source. Neglecting fringing effects and assuming that the electric field is
normal to the plates and uniform, we have, from (2.21),

(2.22)

where A is the area of each plate. Thus, where the wire current ends on one of
the plates, the displacement current takes over and completes the circuit to the
second plate.

Let us now return to Ampère’s circuital law (2.17) and examine it together
with Faraday’s law (2.13). To do this, we repeat the two laws

(2.23)

(2.24)

and observe that time-varying electric and magnetic fields are interdependent,
since according to Faraday’s law (2.23), a time-varying magnetic field produces
an electric field, whereas according to Ampère’s circuital law (2.24), a time-
varying electric field gives rise to a magnetic field. In addition, Ampère’s cir-
cuital law tells us that an electric current generates a magnetic field. These
properties from the basis for the phenomena of radiation and propagation of
electromagnetic waves. To provide a simplified, qualitative explanation of radi-
ation from an antenna, we begin with a piece of wire carrying a time-varying
current, I(t), as shown in Fig. 2.25. Then, the time-varying current generates a
time-varying magnetic field H(t), which surrounds the wire. Time-varying elec-
tric and magnetic fields, E(t) and H(t), are then produced in succession, as
shown by two views in Fig. 2.25, thereby giving rise to electromagnetic waves.
Thus, just as water waves are produced when a rock is thrown in a pool of water,
electromagnetic waves are radiated when a piece of wire in space is excited by a
time-varying current.

K2.4. Ampère’s circuital law; Magnetic field intensity; Magnetomotive force; Dis-
placement flux density; Displacement current; Capacitor circuit; Radiation from
an antenna.

 CC
H # dl = LS

J # dS +
d

dtLS
D # dS

 CC
E # dl = -  

d

dtLS
B # dS

d

dtCS
D # dS =

d

dt
 1DA2 = I1t2

d

dtCS
D # dS = I1t2

Radiation
from antenna
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I(t)

E

E

H

H

FIGURE 2.25

Two views of a simplified depiction of
electromagnetic wave radiation from a
piece of wire carrying a time-varying
current.

D2.8. For in free space, find the displacement current crossing an area
of in the xy-plane from the to the for each of the follow-
ing values of t: (a) (b) and (c)
Ans. (a) (b) 0; (c)

D2.9. Three point charges and situated at the corners of an equi-
lateral triangle of sides 1 m are connected to each other by wires along the
sides of the triangle. Currents of I A and 3I A flow from to and to 
respectively.The displacement current emanating from a spherical surface of ra-
dius 0.1 m and centered at is A. Find the following: (a) the current flow-
ing from to (b) the displacement current emanating from the spherical
surface of radius 0.1 m and centered at and (c) the displacement current em-
anating from the spherical surface of radius 0.1 m and centered at 
Ans. (a) 3I A; (b) (c) 6I A.

2.5 GAUSS’ LAWS

In the previous two sections, we learned two of the four Maxwell’s equations.
These two equations have to do with the line integrals of the electric and mag-
netic fields around closed paths. The remaining two Maxwell’s equations are
pertinent to the surface integrals of the electric and magnetic fields over closed
surfaces. These are known as Gauss’ laws.

-4I A;
Q3.

Q1;
Q3;Q2

-2IQ2

Q3,Q1Q2Q1

Q31t2Q11t2, Q21t2,
-0.1e-1e0 E0 A.0.1 e0 E0 A;

t = 1 s.t = 1>12 s;t = 0;
+z-side-z-side0.1 m2

E = E0 te-t2
az
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2.5 Gauss’ Laws 107

Gauss’ law
for the
electric field

Evaluation of
volume
integral

Gauss’ law for the electric field states that the displacement flux emanating
from a closed surface S is equal to the charge contained within the volume V
bounded by that surface. This statement, although familiarly known as Gauss’
law, has its origin in experiments conducted by Faraday. In mathematical form,
it is given by

(2.25)

The quantity is the charge contained within the volume V bounded by S.
Although can be a point charge, surface charge, or volume charge, or a
combination of these, it is formulated as the volume integral of the volume
charge density that is, in the manner

(2.26)

The volume integral is a triple integral since dv is the product of three dif-
ferential lengths. For an illustration of the evaluation of a volume integral, let us
consider

and the cubical volume V bounded by the planes 
and Then the charge Q contained within the cubical volume is

given by

 = 3
2 

  
C

 = cx2

2
+ x d

x = 0

1

 = L
1

x = 0
1x + 12 dx

 = L
1

x = 0
cxy +

y2

2
+

y

2
d

y = 0

1

 dx

 = L
1

x = 0L
1

y = 0
ax + y +

1
2
b  dx dy

 = L
1

x = 0L
1

y = 0
cxz + yz +

z2

2
d

z = 0

1

 dx dy

 Q = LV
 r dv = L

1

x = 0L
1

y = 0L
1

z = 0
1x + y + z2 dx dy dz

z = 1.z = 0,
x = 0, x = 1, y = 0, y = 1,

r = 1x + y + z2 C/m3

[Q]V = LV
  r dv

r,

[Q]V

[Q]V

CS
D # dS = [Q]V
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D

S
dS

r

V

FIGURE 2.26

For illustrating Gauss’ law
for the electric field.

We may now write Gauss’ law for the electric field (2.25) in the manner

(2.27)

where we recall that

and it is understood that although formulated in terms of the volume
charge density represents the algebraic sum of all free charges contained
within V. The situation is illustrated in Fig. 2.26.

Gauss’ law for the magnetic field is analogous to Gauss’ law for the elec-
tric field and is given by

(2.28)

In words, (2.28) states that the magnetic flux emanating from a closed surface is
equal to zero. In physical terms, (2.28) signifies that magnetic charges do not exist
and magnetic flux lines are closed. Whatever magnetic flux enters (or leaves) a
certain part of a closed surface must leave (or enter) through the remainder of
the closed surface, as illustrated in Fig. 2.27.

This property of the magnetic field is sometimes useful in the computation
of magnetic flux crossing a given surface (which is not closed). For example, to
find the magnetic flux crossing the slanted plane surface in Fig. 2.28, it is not
necessary to evaluate formally the surface integral of B over that surface. Since
the slant surface and the three surfaces and in the coordinate planes
together form a closed surface, the required flux is the same as the net flux
crossing the surfaces and In fact, the net flux crossing the surfaces

and is the same as that crossing any nonplanar surface having the same
periphery as that of Thus, as already pointed out in Section 2.3, it is a funda-
mental property of the magnetic field that the magnetic flux is the same through

S1.
S4S2, S3,

S4.S2, S3,

S4S2, S3,S1

S1

CS
B # dS = 0

r,
1Vr dv,

D = e0E

CS
D # dS = LV

 r dv

Gauss’ law
for the
magnetic field
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B

S

dS

FIGURE 2.27

For illustrating Gauss’ law for the
magnetic field.

y

z

x

S2

S4

S3

S1

FIGURE 2.28

Slanted plane surface and surface 
and in the coordinate planes.S4

S2, S3,S1

all surfaces bounded by a closed path, and hence any surface S bounded by
closed path C can be used in Faraday’s law.

In view of the foregoing discussion, it can be seen that Gauss’ law for the
magnetic field is not independent of Faraday’s law. To show this mathematical-
ly, we consider the geometry shown in Fig. 2.23 and apply Faraday’s law to the
two closed paths to write

Adding the two equations, we obtain

or

(2.29)CS1 + S2

B # dS = constant with time

0 = -  
d

dtCS1 + S2

B # dS

 CC2

  E # dl = -  
d

dtLS2

B # dS2

 CC1

E # dl = -  
d

dtLS1

B # dS1
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110 Chapter 2 Maxwell’s Equations in Integral Form

Since there is no experimental evidence that the right side of (2.29) is nonzero,
it follows that

where we have replaced by S.

K2.5. Volume integral; Gauss’ law for the electric field; Gauss’ law for the magnetic
field.

D2.10. Several types of charge are located, in Cartesian coordinates, as follows: a point
charge of at a line charge of uniform density along the
straight line from to (3, 3, 3), and a surface charge of uniform den-
sity on that part of the plane between and Find
the displacement flux emanating from each of the following closed surfaces:
(a) surface of the cubical box bounded by the planes and

(b) surface of the cylindrical box of radius 2 m, having the z-axis as its
axis and lying between and and (c) surface of the octahedron hav-
ing its vertices at (3, 0, 0), (0, 0, 3), and 
Ans. (a) (b) (c)

D2.11. Magnetic fluxes of absolute values and cross three surfaces and
respectively, constituting a closed surface S. If find the

smallest of and for each of the following cases: (a) and are in
arithmetic progression; (b) and are in arithmetic progression;
and (c) and are in arithmetic progression.

Ans. (a) (b) (c)

2.6 THE LAW OF CONSERVATION OF CHARGE

Just as Gauss’s law for magnetic field is not independent of Faraday’s law,
Gauss’ law for the electric field is not independent of Ampère’s circuital law in
view of the law of conservation of charge. The law of conservation of charge
states that the net current due to flow of charges emanating from a closed surface
S is equal to the time rate of decrease of the charge within the volume V bounded
by S. It is given in mathematical form by

(2.30)

As illustrated in Fig. 2.29, this law follows from the property that electric charge
is conserved. If the charge in a given volume is decreasing with time at a certain
rate, there must be a net outflow of the charge at the same rate. Since current is
defined to be the rate of flow of charge, (2.30) then follows. As in the case of
(2.17), it is understood that in (2.30), although formulated in terms of J,
represents the algebraic sum of all currents due to flow of charges crossing S.

ASJ # dS

CS
  J # dS = -  

d

dtLV
 r dv

1
3 + 15

 c0.
1

2 + 212
 c0;

1
6

 c0;

ln c3ln c1, ln c2,
1>c31>c1, 1>c2,

c3c1, c2,c3c1, c2,
c1 + c2 + c3 = c0,S3,

S1, S2,c3c1, c2,

-3.0718 mC.1.3631 mC;3.3923 mC;
10, 0, -32.1-3, 0, 02, 10, 3, 02, 10, -3, 02,

z = 2;z = -2
z = ;2;

x = ;2, y = ;2,

z = 1.z = -1x = 0-1 mC/m2
1-1, -1, -12

2 mC/m11, 1, -1.52,1 mC

S1 + S2

CS
B # dS = 0

Law of
Conservation
of Charge
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2.6 The Law of Conservation of Charge 111

J

SV
dS

r(t)

FIGURE 2.29

For illustrating the law of
conservation of charge.

Comparing (2.20) and (2.30), we obtain

(2.31)

Since there is no experimental evidence that the right side of (2.31) is nonzero,
it follows that

Thus, since (2.20) follows from Ampère’s circuital law, Gauss’ law for the elec-
tric field follows from Ampère’s circuital law with the aid of the law of conser-
vation of charge.

We shall now illustrate the combined application of Gauss’ law for the
electric field, the law of conservation of charge, and Ampère’s circuital law by
means of an example.

Example 2.5 Combined application of several of Maxwell’s equations
in integral form

Let us consider current I A flowing from a point charge Q(t) at the origin to infinity
along a semi-infinitely long straight wire occupying the positive z-axis, and find 
where C is a circular path of radius a lying in the xy-plane and centered at the point
charge, as shown in Fig. 2.30.

Considering the hemispherical surface S bounded by C, and above the xy-plane, as
shown in Fig. 2.30, and applying Ampère’s circuital law, we obtain

(2.32)CC
H # dl = I +

d

dtLS
D # dS

AC H # dl,

CS
D # dS = LV

 r dv

d

dtCS
D # dS =

d

dtLV
 r dv

d

dt
 aCS

D # dS - LV
 r dvb = 0

CS
 D # dS - LV

 r dv = constant with time
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112 Chapter 2 Maxwell’s Equations in Integral Form

From Gauss’ law for the electric field, the displacement flux emanating from a spherical
surface centered at the point charge is equal to Q. In view of the spherical symmetry of
the electric field about the point charge, half of the flux goes through the hemispherical
surface. Thus,

(2.33)

From the law of conservation of charge applied to a spherical surface centered at the
point charge,

(2.34)

Substituting (2.33) into (2.32) and then using (2.34), we obtain

It should be noted that the same result holds for any contour C lying in any plane pass-
ing through the origin and surrounding the point charge Q(t) and the wire in the right-
hand sense as seen looking along the positive z-axis.

K2.6. Law of conservation of charge.
D2.12. Three point charges and are situated at the vertices of a tri-

angle and are connected by means of wires carrying currents. A current I A
Q31t2Q11t2, Q21t2,

 =
I

2

 = I +
1
2

 1-I2
 = I +

1
2

 

dQ

dt

 CC
H # dl = I +

d

dt
 aQ

2
b

I = -  

dQ

dt

LS
D # dS =

Q

2

y

S

z

x

Q(t)

a

C

I

FIGURE 2.30

Semi-infinitely long wire of current I, with a point
charge Q(t) at the origin.
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2.7 Application to Static Fields 113

flows from to and 3I A flows from to The charge is increasing
with time at the rate of 5I C/s. Find the following: (a) (b) and (c)
the current flowing from to 
Ans. (a) (b) (c) 2I A.

2.7 APPLICATION TO STATIC FIELDS

Collecting together Faraday’s law (2.13), Ampere’s circuital law (2.17), Gauss’
law for the electric field (2.27), and Gauss’ law for the magnetic field (2.28), we
have the four Maxwell’s equations in integral form given by

(2.35a)

(2.35b)

(2.35c)

(2.35d)

whereas the law of conservation of charge is given by

(2.36)

For static fields, that is, for Maxwell’s equations in integral form
become

(2.37a)

(2.37b)

(2.37c)

(2.37d)

whereas the law of conservation of charge becomes

(2.38)CS
 J # dS = 0

 CS
 B # dS = 0

 CS
 D # dS = LV

 r dv

 CC
 H # dl = LS

 J # dS

 CC
 E # dl = 0

d>dt = 0,

CS
 J # dS = -  

d

dtLV
 r dv

 CS
B # dS = 0

 CS
D # dS = LV

 r dv

 CC
H # dl = LS

J # dS +
d

dtLS
D # dS

 CC
E # dl = -  

d

dtLS
B # dS

-2I C>s;-3I C>s;
Q3.Q1

dQ2>dt;dQ1>dt;
Q3Q3.Q2Q2Q1

Maxwell’s
equations in
integral form
for static
fields
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114 Chapter 2 Maxwell’s Equations in Integral Form

I

C

I

C

From � To �

(a)

(b)

FIGURE 2.31

For illustrating that the current enclosed by a closed
path C is uniquely given in (a) but not in (b).

It can be immediately seen from (2.37a)–(2.37d) that the interdependence
between the electric and magnetic fields no longer exists. Equation (2.37a) tells
us simply that the static electric field is a conservative field. Similarly, (2.37d)
tells us that the magnetic flux is the same through all surfaces bounded by a
closed path. On the other hand, (2.37c) and (2.37b) enable us to find the static
electric and magnetic fields for certain time-invariant charge and current distri-
butions, respectively. These distributions must be such that the resulting electric
and magnetic fields possess symmetry to be able to replace the integrals on the
left sides of (2.37c) and (2.37b) by algebraic expressions involving the compo-
nents of electric and magnetic fields, respectively.

In addition, in the case of (2.37b), the current on the right side must be
uniquely given for a given closed path C, which property is ensured by (2.38).
An example in which this current is uniquely given is that of the infinitely long
wire in Fig. 2.31(a). This is because the current crossing all possible surfaces
bounded by the closed path C is equal to I since the wire, being infinitely long,
pierces through all such surfaces.This can also be seen in a different manner by
imagining the closed path to be a rigid loop and visualizing that the loop can-
not be moved to one side of the wire without cutting the wire. On the other
hand, if the wire is finitely long, as shown in Fig. 2.31(b), it can be seen that for
some surfaces bounded by C, the wire pierces through the surface, whereas for
some other surfaces, it does not. Alternatively, a rigid loop occupying the
closed path can be moved to one side of the wire without cutting the wire.Thus,
for this case, there is no unique value of the wire current enclosed by C and
hence (2.37b) cannot be used to determine H. The problem here is that (2.38)
is not satisfied, since for current to flow in the finitely long wire, there must be
time-varying charges at the two ends, thereby giving rise to time-varying elec-
tric field. Hence, a displacement current exists in addition to the wire current
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l

r

f

y

z

x

r df dz ar

Line
Charge

FIGURE 2.32

For the determination of electric field due to an
infinitely long line charge of uniform density
rL0 C/m.

D due to a
line charge

such that the algebraic sum of the two currents crossing all surfaces bounded
by C is the same and requires the use of (2.17).

We shall now illustrate the application of (2.37c) and (2.37b) by means of
some examples.

Example 2.6 Electric field due to an infinitely long line charge using
Gauss’ law

Let us consider charge distributed uniformly with density along the z-axis and
find the electric field due to the infinitely long line charge using (2.37c).

Let us consider the closed surface S of a cylinder of radius r, with the line charge as
its axis and extending from to as shown in Fig. 2.32.Then according to (2.37c),

(2.39)

Although this result is valid for any closed surface enclosing the portion of the line
charge from to we have chosen the particular surface in Fig. 2.32 to be able
to reduce the surface integral of D in (2.37c), and hence in (2.39), to an algebraic quanti-
ty. To do this, we note the following:

(a) In view of the uniform charge density, the entire line charge can be thought of as
the superposition of pairs of equal point charges located at equal distances above
and below any given point on the z-axis. Hence the field due to the entire line
charge has only a radial component independent of and z.

(b) In view of (a), the contribution to the closed surface integral from the top and bot-
tom surfaces of the cylindrical box is zero.

Thus, we have

D = Dr1r2ar

f

z = l,z = 0

CS
 D # dS = rL0  l

z = l,z = 0

rL0 C/m
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x

z

u

r � a

r 	a

a

FIGURE 2.33

For the determination of electric field due
to a spherical charge of uniform density
r0 C/m3.

and

(2.40)

Comparing (2.39) and (2.40), we obtain

(2.41)

The field varies inversely with the radial distance away from the line charge.

Example 2.7 Electric field due to a spherical volume charge using
Gauss’ law

Let us consider charge distributed uniformly with density in the spherical region
as shown by the cross-sectional view in Fig. 2.33, and find the electric field due to

the spherical charge by using (2.37c).
As in Example 2.6, we shall once again choose a surface S that enables the re-

placement of the surface integral in (2.37c) by an algebraic quantity. To do this, we note
from considerations of symmetry, and of the spherical charge as a superposition of point
charges, that D possesses only an r-component dependent on r only. Thus,

D = Dr1r2ar

r … a,
r0 C/m3

D =
rL0

2pr
 ar

 Dr1r2 =
rL0

2pr

 2prlDr1r2 = rL0  l

 = 2prlDr1r2
 CS

D # dS = L
2p

f= 0L
l

z = 0
Dr1r2ar

# r df dz ar

D due to a
spherical
volume
charge
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0 a 2a 3a
r

Dr

1
3
r0a

1
12
r0a FIGURE 2.34

Variation of with r for the
spherical charge of Fig. 2.33.

Dr

Choosing, then, a spherical surface of radius r centered at the origin, we obtain

(2.42)

Noting that the charge exists only for and with uniform density, we obtain the
charge enclosed by the spherical surface to be

(2.43)

Substituting (2.42) and (2.43) into (2.37c), we get

(2.44)

The variation of with r is shown plotted in Fig. 2.34.

Example 2.8 Magnetic field due to cylindrical wire of current using
Ampere’s circuital law

Let us consider current flowing with uniform density in an infinitely long
solid cylindrical wire of radius a with its axis along the z-axis, as shown by the cross-
sectional view in Fig. 2.35. We wish to find the magnetic field everywhere using (2.37b).

J = J0 az A/m2

Dr

D = d r0 r

3
 ar for r … a

r0 a3

3r2  ar for r Ú a

 Dr1r2 = d r0 r

3
for r … a

r0 a3

3r2 for r Ú a

 4pr2Dr1r2 = e 4
3pr3r0 for r … a
4
3pa3r0 for r Ú a

LV
 r dv = e 4

3pr3r0 for r … a
4
3pa3r0 for r Ú a

r 6 a,

 = 4pr2Dr1r2
 CS

D # dS = L
p

u= 0L
2p

f= 0
Dr1r2ar

# r2 sin u du df ar

H due to a
cylindrical
wire of current
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118 Chapter 2 Maxwell’s Equations in Integral Form

The current distribution can be thought of as the superposition of infinitely long
filamentary wires parallel to the z-axis. Then in view of the symmetry about the z-axis
and from the nature of the magnetic field due to an infinitely long wire given by (1.79),
we can say that the required H has only a component dependent on r only. Thus,

Choosing, then, a circular closed path C of radius r lying in the xy-plane and centered at
the origin, we obtain

(2.45)

Considering the plane surface bounded by C, and noting that the current exists only for
we obtain the current enclosed by the closed path to be

(2.46)

Substituting (2.45) and (2.46) into (2.37b), we get

 Hf = d J0 r

2
for r … a

J0 a2

2r
for r Ú a

 2prHf = e J0pr2 for r … a

J0pa2 for r Ú a

 =  e J0pr2 for r … a

J0pa2 for r Ú a

 LS
J # dS = d L

r

r = 0L
2p

f= 0
J0 az

# r dr df az for r … a

L
a

r = 0L
2p

f= 0
J0 az

# r dr df az for r Ú a

r 6 a,

 = 2prHf1r2
 CC

H # dl = L
2p

f= 0
 Hf1r2af # r df af

H = Hf1r2af
f

x

y

f

r �a

r 	a

a

C

C

FIGURE 2.35

For the determination of magnetic field due
to an infinitely long solid cylindrical wire of
uniform current density J0 az A/m2.
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0 a 2a 3a
r

Hf

1
2 J0a

1
4

J0a FIGURE 2.36

Variation of with r for the
cylindrical wire of current of
Fig. 2.35.

Hf

(2.47)

The variation of with r is shown plotted in Fig. 2.36.

K2.7. Maxwell’s equations in integral form for static fields; Uniqueness of current en-
closed by a closed path; D due to symmetrical charge distributions; H due to
symmetrical current distributions.

D2.13. Charge is distributed with uniform density inside a regular solid of edges
a. Find the displacement flux emanating from one side of the solid for each of the
following shapes of the solid: (a) tetrahedron; (b) cube; and (c) octahedron.
Ans. (a) (b) (c)

D2.14. The cross section of an infinitely long solid wire having the z-axis as its axis is a
regular polygon of sides a. Current flows in the wire with uniform density

Find the line integral of H along one side of the polygon and tra-
versed in the sense of increasing for each of the following shapes of the poly-
gon: (a) equilateral triangle; (b) square; and (c) octagon.
Ans. (a) (b) (c)

SUMMARY

We first learned in this chapter how to evaluate line and surface integrals of vec-
tor quantities, and then we introduced Maxwell’s equations in integral form.
These equations, which form the basis of electromagnetic field theory, are given
as follows in words and in mathematical form:

Faraday’s law. The electromotive force around a closed path C is equal to the
negative of the time rate of change of the magnetic flux enclosed by that path;
that is,

(2.48)CC
E # dl = -  

d

dtLS
B # dS

0.6036a2J0 A.0.25a2J0 A;0.1443a2J0 A;

f

J0az A/m2.

0.0589r0 a3 C.0.1667r0 a3 C;0.0295r0 a3 C;

r0 C>m3

Hf

H = d J0 r

2
 af for r … a

J0 a2

2r
 af for r Ú a
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120 Chapter 2 Maxwell’s Equations in Integral Form

Ampère’s circuital law. The magnetomotive force around a closed path C is
equal to the sum of the current enclosed by that path due to the actual flow of
charges and the displacement current due to the time rate of change of the dis-
placement flux enclosed by that path; that is,

(2.49)

Gauss’ law for the electric field. The displacement flux emanating from a closed
surface S is equal to the charge enclosed by that surface; that is,

(2.50)

Gauss’ law for the magnetic field. The magnetic flux emanating from a closed
surface S is equal to zero; that is,

(2.51)

An auxiliary equation, the law of conservation of charge, is given by

(2.52)

In words, (2.52) states that the current due to flow of charges emanating from a
closed surface is equal to the time rate of decrease of the charge enclosed by
that surface.

In using (2.48)–(2.52), we recall that

(2.53)

(2.54)

In evaluating the right sides of (2.48) and (2.49), the normal vectors to the sur-
faces must be chosen such that they are directed in the right-hand sense, that is,
toward the side of advance of a right-hand screw as it is turned around C. In
(2.50), (2.51), and (2.52), it is understood that the surface integrals are evaluated
so as to find the flux outward from the volume bounded by the surface. We also
learned that (2.51) is not independent of (2.48) and that (2.50) follows from
(2.49) with the aid of (2.52).

Finally, we discussed several applications of Maxwell’s equations, includ-
ing the computation of static electric and magnetic fields due to symmetrical
charge and current distributions, respectively.

 H =
B
m0

 D = e 0E

CS
 J # dS = -  

d

dtL  

V  
r dv 

CS
 B # dS = 0

CS
D # dS = LV

 r dv

CC
H # dl = LS

J # dS +
d

dtLS
D # dS
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REVIEW QUESTIONS

Q2.1. How do you find the work done in moving a test charge by an infinitesimal dis-
tance in an electric field? What is the amount of work involved in moving the
test charge normal to the electric field?

Q2.2. What is the physical interpretation of the line integral of E between two points
A and B?

Q2.3. How do you find the approximate value of the line integral of a vector field
along a given path? How do you find the exact value of the line integral?

Q2.4. Discuss conservative versus nonconservative fields, giving examples.
Q2.5. How do you find the magnetic flux crossing an infinitesimal surface?
Q2.6. What is the magnetic flux crossing an infinitesimal surface oriented parallel to

the magnetic flux density vector? For what orientation of the infinitesimal sur-
face relative to the magnetic flux density vector is the magnetic flux crossing the
surface a maximum?

Q2.7. How do you find the approximate value of the surface integral of a vector field
over a given surface? How do you find the exact value of the surface integral?

Q2.8. Provide physical interpretations for the closed surface integrals of any two vec-
tors of your choice.

Q2.9. State Faraday’s law.
Q2.10. What are the different ways in which an emf is induced around a loop?
Q2.11. Discuss the right-hand screw rule convention associated with the application of

Faraday’s law.
Q2.12. To find the induced emf around a planar loop, is it necessary to consider the

magnetic flux crossing the plane surface bounded by the loop? Explain.
Q2.13. What is Lenz’s law?
Q2.14. Discuss briefly the motional emf concept.
Q2.15. How would you orient a loop antenna to obtain maximum signal from an inci-

dent electromagnetic wave that has its magnetic field directed along the
north–south line?

Q2.16. State three applications of Faraday’s law.
Q2.17. State Ampère’s circuital law.
Q2.18. What is displacement current? Compare and contrast displacement current

with current due to flow of charges.
Q2.19. Is it meaningful to consider two different surfaces bounded by a closed path to

compute the two different currents on the right side of Ampère’s circuital law to
find around the closed path?

Q2.20. Discuss the relationship between the displacement current emanating from a
closed surface and the current due to flow of charges emanating from the same
closed surface.

Q2.21. Give an example involving displacement current.
Q2.22. Discuss briefly the principle of radiation from a wire carrying a time-varying

current.
Q2.23. State Gauss’ law for the electric field.
Q2.24. How do you evaluate a volume integral?
Q2.25. State Gauss’ law for the magnetic field.

AH # dl
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122 Chapter 2 Maxwell’s Equations in Integral Form

Q2.26. What is the physical interpretation of Gauss’ law for the magnetic field?

Q2.27. Discuss the dependence of Gauss’ law for the magnetic field on Faraday’s law.

Q2.28. State the law of conservation of charge.

Q2.29. How is Gauss’ law for the electric field dependent on Ampère’s circuital law?

Q2.30. Summarize Maxwell’s equations in integral form for time-varying fields.

Q2.31. Summarize Maxwell’s equations in integral form for static fields.

Q2.32. Are static electric and magnetic fields interdependent? Explain.

Q2.33. Discuss briefly the application of Gauss’ law for the electric field to determine
the electric field due to charge distributions.

Q2.34. When can you say that the current in a wire enclosed by a closed path is unique-
ly defined? Give two examples.

Q2.35. Give an example in which the current in a wire enclosed by a closed path is not
uniquely defined. Is it correct to apply Ampère’s circuital law for the static case
in such a situation? Explain.

Q2.36. Discuss briefly the application of Ampère’s circuital law to determine the mag-
netic field due to current distributions.

PROBLEMS

Section 2.1

P2.1. Evaluation of line integral in Cartesian coordinates. For the vector field 
find for each of the following paths from (0, 0, 0)

to (1, 1, 1): (a) and (b)

P2.2. Evaluation of line integral around a closed path in Cartesian coordinates. Given
find where C is the closed path compris-

ing the straight lines from (0, 0, 0) to (1, 1, 1), from (1, 1, 1) to (1, 1, 0), and
from (1, 1, 0) to (0, 0, 0).

P2.3. Evaluation of line integral in Cartesian coordinates. For the vector field 
find in each of the following ways: (a) along

the straight-line path between the two points; (b) along the curved path
between the two points; and (c) without choosing any partic-

ular path. Is the vector field conservative or nonconservative? Explain.

P2.4. Evaluation of line integral around closed path in cylindrical coordinates. Given
in cylindrical coordinates, find where C

is the closed path comprising the straight line from (0, 0, 0) to (1, 0, 0), the circu-
lar arc from (1, 0, 0) to through the straight line from

to and the straight line from to (0, 0, 0).

P2.5. Evaluation of line integral in spherical coordinates. Given 
in spherical coordinates, find for each of the fol-

lowing paths: (a) straight-line path from (0, 0, 0) to (2, 0, 0); (b) circular arc from
to through and (c) circular arc from
to through 12, p>6, p>42.12, p>6, p>2212, p>6, 02

12, p>4, p>42;12, p>2, p>4212, 0, p>42
1A # dlsin u au2 + r sin u af

A = e-r1cos u ar +
11, p>2, 1211, p>2, 12,11, p>2, 02

11, p>4, 02,11, p>2, 02
AC A # dl,A = 2r sin f ar + r2af + zaz

x = z = sin 1y>42
111, 2p, 12
10, 0, 02 F # dlcos y ax - x sin y ay,

F =

AC F # dl,F = xyax + yzay + zxaz,

x = y = z3.x = y = z
111, 1, 12
10, 0, 02 F # dlyax - zay + xaz,

F =
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Section 2.2

P2.6. Evaluation of a closed surface integral in Cartesian coordinates. Given 
evaluate where S is the surface of the cubi-

cal box bounded by the planes and 
P2.7. Evaluation of a closed surface integral in Cartesian coordinates. Given 

evaluate where S is the surface of the
rectangular box bounded by the planes and

P2.8. Evaluation of a closed surface integral in cylindrical coordinates. Given 
in cylindrical coordinates, evaluate where S is

the surface of the box bounded by the plane surfaces 
and the cylindrical surface 

P2.9. Evaluation of a closed surface integral in spherical coordinates. Given 
in spherical coordinates, find where S is the surface

of that part of the spherical volume of radius unity and lying in the first octant.

Section 2.3

P2.10. Induced emf around a closed path in a time-varying magnetic field. Find the in-
duced emf around the rectangular closed path C connecting the points (0, 0, 0),
(a, 0, 0), (a, b, 0), (0, b, 0), and (0, 0, 0), in that order, for each of the following
magnetic fields:

(a)

(b)

P2.11. Induced emf around a moving loop in a static magnetic field. A magnetic field is
given in the xz-plane by where is a constant. A rigid
rectangular loop is situated in the xz-plane and with its corners at the points

and If the loop is moving in
that plane with a velocity where is a constant, find by using Fara-
day’s law the induced emf around the loop in the sense defined by connecting the
above points in succession. Discuss your result by using the motional emf concept.

P2.12. Induced emf around a closed path in a time-varying magnetic field. A magnet-
ic field is given in the xz-plane by Consider a
rigid square loop situated in the xz-plane with its vertices at (x, 0, 1), (x, 0, 2),

and (a) Find the expression for the emf induced
around the loop in the sense defined by connecting the above points in succes-
sion. (b) What would be the induced emf if the loop is moving with the velocity

instead of being stationary?
P2.13. Induced emf around a swinging loop in a static magnetic field. A rigid rectan-

gular loop of metallic wire is hung by pivoting one side along the x-axis, as
shown in Fig. 2.37. The loop is free to swing about the pivoted side without fric-
tion under the influence of gravity and in the presence of a uniform magnetic
field If the loop is given a slight angular displacement and re-
leased, show that the emf induced around the closed path C of the loop is ap-
proximately equal to where is the angular velocity of swing of the loopvB0 abv,

B = B0az Wb/m2.

v = v0ax m/s

1x + 1, 0, 12.1x + 1, 0, 22,
B = B0 cos p1x - v0 t2 ay Wb/m2.

v0v = v0ax m/s,
1x0 + a, z02.1x0, z02, 1x0, z0 + b2, 1x0 + a, z0 + b2,

B0B = 1B0>x2ay Wb/m2,

B = B0 sin 
px

a
 cos vt az

B =
B0 a2

1x + a22 e-taz

AS A # dS,r2ar + r sin u au
A =

r = 2, 0 6 f 6 p>2.z = 0, z = 1,
f = 0, f = p>2,

AS A # dS,r cos f ar - r sin f af
A =

z = 3.
z = 0,x = 0, x = 1, y = 0, y = 2,

AS A # dS,1x2y + 22ax + 3ay - 2xyzaz,
A =

z = 1.x = 0, x = 1, y = 0, y = 1, z = 0,
AS A # dS,x2yzax + y2zxay + z2xyaz,

A =
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124 Chapter 2 Maxwell’s Equations in Integral Form

z
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L

x

v
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a

g

FIGURE 2.38

For Problem P2.14.

toward the vertical. Does the loop swing faster or slower than in the absence of
the magnetic field? Explain.

P2.14. A conducting bar rolling down inclined rails in a uniform static magnetic field.
A rigid conducting bar of length L, mass M, and electrical resistance R rolls
without friction down two parallel conducting rails that are inclined at an angle

with the horizontal, as shown in Fig. 2.38. The rails are of negligible resistance
and are joined at the bottom by another conductor, also of negligible resistance,
so that the total resistance of the loop formed by the rolling bar and the three
other sides is R. The entire arrangement is situated in a region of uniform static
magnetic field directed vertically downward. Assume the bar
to be rolling down with uniform velocity v parallel to the rails under the influ-
ence of Earth’s gravity (acting in the positive z-direction) and the magnetic
force due to the current in the loop produced by the induced emf. Show that v is
equal to tan sec a.a1MgR>B0

2L22

B = B0az Wb/m2,

a

P2.15. Induced emf around a revolving loop in a static magnetic field. A rigid rectan-
gular loop of base b and height h situated normal to the xy-plane and with its
sides pivoted to the z-axis revolves about the z-axis with angular velocity

in the sense of increasing as shown in Fig. 2.39. Find the induced emf
around the closed path C of the loop for each of the following magnetic fields:
(a) and (b) Assume the loop to
be in the xz-plane at t = 0.

B = B01yax - xay2 Wb/m2.B = B0ay Wb/m2

f,v rad/s

y

x
b

z

C
a g

a

v

FIGURE 2.37

For Problem P2.13.
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f

v

C

b FIGURE 2.39

For Problem P2.15.

P2.16. Induced emf around a loop in a time-varying magnetic field for several cases.
A rigid rectangular loop of area A is situated in the xz-plane and symmetri-
cally about the z-axis, as shown in Fig. 2.40, in a region of magnetic field

Find the induced emf around the closed
path C of the loop for each of the following cases: (a) the loop is stationary;
(b) the loop revolves around the z-axis in the sense of increasing with uni-
form angular velocity of and (c) the loop revolves around the z-axis in
the sense of decreasing with uniform angular velocity of For parts
(b) and (c), assume that the loop is in the xz-plane at t = 0.

v rad/s.f

v rad/s;
f

B = B01sin vt ax + cos vt ay2 Wb/m2.

y

x

z

C

A

f

FIGURE 2.40

For Problem P2.16.

Section 2.4

P2.17. Application of Ampere’s circuital law in integral form. Given that 
and for find

the current due to flow of charges enclosed by the rectangular closed path from
(0, 0, 1) to (0, 1, 1) to to to (0, 0, 1).

P2.18. Application of Ampere’s circuital law in integral form. A current density due to
flow of charges is given by Find the displace-
ment current emanating from each of the following closed surfaces: (a) the sur-
face of the cubical box bounded by the planes and 
and (b) the surface of the cylindrical box bounded by the surfaces 
and 

P2.19. Finding rms value of current drawn from voltage source connected to a capaci-
tor. A voltage source connected to a parallel-plate capacitor by means of wires
sets up a uniform electric field of be-
tween the plates of the capacitor and normal to the plates. Assume that no field

E = 180 sin 2p * 106t sin 4p * 106t V/m

z = 2.
r = 1, z = 0,

z = ;2,x = ;2, y = ;2,

z2az2 A/m2.J = -1xax + yay +

10, 0, -1210, 1, -12
z 
 0,D = 2m0e0 H01t < 2m0e0 z22ax;H01t < 2m0e0 z22ay

H =
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126 Chapter 2 Maxwell’s Equations in Integral Form

exists outside the region between the plates. If the area of each plate is 
and the medium between the plates is free space, find the root-mean-square
value of the current drawn from the voltage source.

P2.20. Finding rms value of current drawn from voltage source connected to a capaci-
tor. Assume that the time variation of the electric field in Problem P3.19 is as
shown in Fig. 2.41. Find and plot versus time the current drawn from the voltage
source. What is the root-mean-square value of the current?

0.1 m2

180

–3 –2 –1 0 1 2 3 4 5 6

E, V/m

t, �s
FIGURE 2.41

For Problem P2.20.

Section 2.5

P2.21. Finding displacement flux emanating from a surface enclosing charge. For each
of the following charge distributions, find the displacement flux emanating from the
surface enclosing the charge: (a) for the cubi-
cal box bounded by and and (b)
for and 

P2.22. Finding displacement flux emanating from a surface enclosing charge. For each
of the following charge distributions, find the displacement flux emanating from
the surface enclosing the charge: (a) for in
cylindrical coordinates; and (b) for 
in spherical coordinates.

P2.23. Application of Gauss’ law for the magnetic field in integral form. Using the
property that find the absolute value of the magnetic flux crossing
that portion of the surface bounded by and 
for 

Section 2.6

P2.24. Application of the law of conservation of charge. Given 
find the time rate of decrease of the charge contained within each of

the following volumes: (a) volume bounded by the planes 
and (b) volume bounded by the cylinders and 

and the planes and and (c) volume bounded by the spherical sur-
faces and and the conical surface 

P2.25. Combined application of several of Maxwell’s equations in integral form. Cur-
rent I flows along a straight wire from a point charge located at the origin
to a point charge located at (0, 0, 1). Find the line integral of H along the
square closed path having the vertices at (1, 1, 0), and

and traversed in that order.
P2.26. Combined application of several of Maxwell’s equations in integral form. Cur-

rent I flows along a straight wire from a point charge at the origin to a
point charge at the point (2, 2, 2). Find the line integral of H around theQ21t2

Q11t2
11, -1, 02

1-1, -1, 02,1-1, 1, 02,
Q21t2

Q11t2
u = p>3.r = 2r = 1

z = 1;z = 0
r = 2r = 1z = 1; y = 1, z = 0,

x = 0, x = 1, y = 0,
zaz2 A/m2,

J = 1xax + yay +

B = B01yax - xay2 Wb/m2.
z = 1x = 0, x = p, z = 0,y = sin x

AS B # dS = 0,

r 6 1, 0 6 u 6 p>2r1r, u, f2 = 1r0>r2 sin2 u
r 6 1, 0 6 z 6 1r1r, f, z2 = r0 e-r2

x2 + y2 + z2 6 1.x 7 0, y 7 0, z 7 0,
r01xyz2r1x, y, z2 =z = ;1;x = ;1, y = ;1,

r1x, y, z2 = r013 - x2 - y2 - z22
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triangular closed path having the vertices at (3, 0, 0), (0, 3, 0), and (0, 0, 3) and
traversed in that order.

Section 2.7

P2.27. Application of Gauss’ law for the electric field in integral form and symmetry.
Charge is distributed with density in a cubical box bounded by the
planes and Find the displacement flux ema-
nating from one side of the box for each of the following cases: (a)

and (b)
P2.28. Electric field due to a cylindrical charge distribution using Gauss’ law. Charge

is distributed with density in the cylindrical region Find D
everywhere.

P2.29. Electric field due to a spherical charge distribution using Gauss’ law. Charge is
distributed with uniform density in the region in spherical
coordinates. Find D everywhere and plot versus r.

P2.30. Application of Ampere’s circuital law in integral form and symmetry. Current
flows with density J(x, y) in an infinitely long thick wire having the z-axis as its
axis. The cross section of the wire in the xy-plane is the square bounded by

and Find the line integral of H along one side of the
square and traversed in the sense of increasing for each of the following cases:
(a) and (b)

P2.31. Magnetic field due to a solid wire of current using Ampere’s circuital law. Cur-
rent flows with density along an infinitely long solid cylin-
drical wire of radius a having the z-axis as its axis. Find H everywhere and plot

versus r.
P2.32. Magnetic field for a coaxial cable using Ampere’s circuital law. A coaxial cable

consists of an inner conductor of radius 3a and an outer conductor of inner ra-
dius 4a and outer radius 5a.Assume the cable to be infinitely long and its axis to
be along the z-axis. Current I flows with uniform density in the in
the inner conductor and returns with uniform density in the in the
outer conductor. Find H everywhere and plot versus r.

REVIEW PROBLEMS

R2.1. Determination of a specified static vector field to be a conservative field. Show
that the vector field given by

is a conservative field.Then find the value of from the point 
to the point 

R2.2. Induced emf around an expanding loop in a nonuniform static magnetic field. In
Fig. 2.42, a rectangular loop of wire with three sides fixed and the fourth side
movable is situated in a plane perpendicular to a nonuniform magnetic field

where is a constant. The position of the movable side is
varied with time in the manner where Find the in-
duced emf around the closed path C of the loop.Verify that Lenz’s law is satisfied.
Show also that the induced emf consists of two frequency components, and 2v.v

a 6 y0.y = y0 + a cos vt,
B0B = B0 yaz Wb/m2,

14, p>3, p>62.
11, p>6, p>321F # dI

F = cos u sin f ar - sin u sin f au + cot u cos u af

Hf

-z-direction
+z-direction

Hf

J = J01r>a2az A/m2

J1x, y2 = x2y2az A/m2.J1x, y2 = 1 ƒ x ƒ + ƒ y ƒ 2az A/m2
f

y = ;1 m.x = ;1 m

Dr

a 6 r 6 2ar0C/m3

r 6 1.r0 e-r2
 C/m3

r1x, y, z2 = 2 ƒ xyz ƒ  C/m3.13 - x2 - y2 - z22 C/m3
r1x, y, z2 =

z = ;1 m.x = ;1 m, y = ;1 m,
r1x, y, z2
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128 Chapter 2 Maxwell’s Equations in Integral Form

R2.3. Finding amplitude of current from sinusoidal voltage source connected to a ca-
pacitor. A voltage source is connected by means of wires to a parallel-plate ca-
pacitor made up of circular plates of radii a in the and planes and
having their centers on the z-axis.The electric field between the plates is given by

Find the amplitude of the current drawn from the voltage source, assuming the
region between the plates to be free space and that no field exists outside this
region.

R2.4. Combined application of several of Maxwell’s equations in integral form. Cur-
rent I flows along a straight wire from a point charge located at one of the
vertices of a cube to a point charge at the center of the cube. Find the ab-
solute value of the line integral of H around the periphery of one of the three
sides of the cube not containing the vertex at which is located.

R2.5. Electric field due to a spherical charge distribution using Gauss’ law. Charge is
distributed with density where is a constant, in the spherical re-
gion Find D everywhere and plot versus r.

R2.6. Magnetic field in the hollow region of wire bounded by two parallel cylindrical
surfaces. Current flows axially with uniform density in the region be-
tween two infinitely long parallel, cylindrical surfaces of radii a and 
and with their axes separated by the vector distance c, where 
Find the magnetic field intensity in the current-free region inside the cylindri-
cal surface of radius b.

ƒ c ƒ 6 1a - b2.
b 16a2,

J0 A/m2

Drr 6 a.
r0r = r01r>a22,

Q1

Q21t2
Q11t2

E = E0 sin 
pr

2a
 cos vt az for r 6 a

z = dz = 0

y

x

l

z

C

B

FIGURE 2.42

For Problem R2.2.
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C H A P T E R  3

Maxwell’s Equations 
in Differential Form, and Uniform
Plane Waves in Free Space

In Chapter 2, we introduced Maxwell’s equations in integral form. We learned
that the quantities involved in the formulation of these equations are the
scalar quantities, electromotive force, magnetomotive force, magnetic flux, dis-
placement flux, charge, and current, which are related to the field vectors and
source densities through line, surface, and volume integrals. Thus, the integral
forms of Maxwell’s equations, while containing all the information pertinent
to the interdependence of the field and source quantities over a given region
in space, do not permit us to study directly the interaction between the field
vectors and their relationships with the source densities at individual points. It
is our goal in this chapter to derive the differential forms of Maxwell’s equa-
tions that apply directly to the field vectors and source densities at a given
point.

We shall derive Maxwell’s equations in differential form by applying
Maxwell’s equations in integral form to infinitesimal closed paths, surfaces,
and volumes, in the limit that they shrink to points. We will find that the dif-
ferential equations relate the spatial variations of the field vectors at a given
point to their temporal variations and to the charge and current densities at
that point. Using Maxwell’s equations in differential form, we introduce the
important topic of uniform plane waves and the associated concepts, funda-
mental to gaining an understanding of the basic principles of electromagnetic
wave propagation.

129
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130 Chapter 3 Maxwell’s Equations in Differential Form . . .

3.1 FARADAY’S LAW AND AMPÈRE’S CIRCUITAL LAW

We recall from Chapter 2 that Faraday’s law is given in integral form by

(3.1)

where S is any surface bounded by the closed path C. In the most general case,
the electric and magnetic fields have all three components (x, y, and z) and are
dependent on all three coordinates (x, y, and z) in addition to time (t). For sim-
plicity, we shall, however, first consider the case in which the electric field has an
x component only, which is dependent only on the z coordinate, in addition to
time. Thus,

(3.2)

In other words, this simple form of time-varying electric field is everywhere di-
rected in the x-direction and it is uniform in planes parallel to the xy-plane.

Let us now consider a rectangular path C of infinitesimal size lying in a
plane parallel to the xz-plane and defined by the points 

and as shown in Fig. 3.1. According to Fara-
day’s law, the emf around the closed path C is equal to the negative of the time
rate of change of the magnetic flux enclosed by C. The emf is given by the line
integral of E around C. Thus, evaluating the line integrals of E along the four
sides of the rectangular path, we obtain

(3.3a)

(3.3b) L
1x + ¢x, z + ¢z2

1x, z + ¢z2
E # dl = [Ex]z + ¢z ¢x

 L
1x, z + ¢z2

1x, z2
E # dl = 0 since Ez = 0

1x + ¢x, z2,1x + ¢x, z + ¢z2, 1x, z2, 1x, z + ¢z2,

E = Ex1z, t2ax

CC
E # dl = -  

d

dtLS
B # dS

Faraday’s
law, special
case

x

zy

�z

�x S C

(x, z) (x, z � �z)

(x � �x, z � �z)(x � �x, z)
FIGURE 3.1

Infinitesimal rectangular path lying
in a plane parallel to the xz-plane.
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3.1 Faraday’s Law and Ampère’s Circuital Law 131

(3.3c)

(3.3d)

Adding up (3.3a)–(3.3d), we obtain

(3.4)

In (3.3a)–(3.3d) and (3.4), and denote values of evaluated
along the sides of the path for which and respectively.

To find the magnetic flux enclosed by C, let us consider the plane surface
S bounded by C. According to the right-hand screw rule, we must use the mag-
netic flux crossing S toward the positive y-direction, that is, into the page, since
the path C is traversed in the clockwise sense. The only component of B normal
to the area S is the y-component. Also since the area is infinitesimal in size, we
can assume to be uniform over the area and equal to its value at (x, z). The
required magnetic flux is then given by

(3.5)

Substituting (3.4) and (3.5) into (3.1) to apply Faraday’s law to the rectan-
gular path C under consideration, we get

or

(3.6)

If we now let the rectangular path shrink to the point (x, z) by letting and 
tend to zero, we obtain

or

(3.7)
0Ex

0z
= -  

0By

0t

lim
¢x:0
¢z:0

 

[Ex]z + ¢z - [Ex]z

¢z
= - lim

¢x:0
¢z:0

 

0[By]1x, z2
0t

¢z¢x

[Ex]z + ¢z - [Ex]z

¢z
= -  

0[By]1x, z2
0t

5[Ex]z + ¢z - [Ex]z6 ¢x = -  
d

dt
 5[By]1x, z2 ¢x ¢z6

LS
B # dS = [By]1x, z2 ¢x ¢z

By

z = z + ¢z,z = z
Ex[Ex]z + ¢z[Ex]z

 = 5[Ex]z + ¢z - [Ex]z6 ¢x

 CC
E # dl = [Ex]z + ¢z ¢x - [Ex]z ¢x

 L
1x, z2

1x + ¢x, z2
E # dl = -[Ex]z ¢x

 L
1x + ¢x, z2

1x + ¢x, z + ¢z2
E # dl = 0 since Ez = 0
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132 Chapter 3 Maxwell’s Equations in Differential Form . . .

Equation (3.7) is Faraday’s law in differential form for the simple case of
E given by (3.2). It relates the variation of with z (space) at a point to the
variation of with t (time) at that point. Since this derivation can be carried
out for any arbitrary point (x, y, z), it is valid for all points. It tells us in par-
ticular that an associated with a time-varying has a differential in the z-
direction. This is to be expected since if this is not the case, around the
infinitesimal rectangular path would be zero.

Example 3.1 Finding B for a given E

Given V/m, let us find B that satisfies (3.7).
From (3.7), we have

We shall now proceed to derive the differential form of (3.1) for the gen-
eral case of the electric field having all three components (x, y, z), each of them
depending on all three coordinates (x, y, and z), in addition to time (t); that is,

(3.8)

To do this, let us consider the three infinitesimal rectangular paths in planes par-
allel to the three mutually orthogonal planes of the Cartesian coordinate sys-
tem, as shown in Fig. 3.2. Evaluating around the closed paths abcda,
adefa, and afgba, we get

(3.9a)

(3.9b)
 -[Ez]1x + ¢x, y2 ¢z - [Ex]1y, z2 ¢x

 Cadefa
E # dl = [Ez]1x, y2 ¢z + [Ex]1y, z + ¢z2 ¢x

 -[Ey]1x, z + ¢z2 ¢y - [Ez]1x, y2 ¢z

 Cabcda
E # dl = [Ey]1x, z2 ¢y + [Ez]1x,y + ¢y2 ¢z

AE # dl

E = Ex1x, y, z, t2ax + Ey1x, y, z, t2ay + Ez1x, y, z, t2az

 B =
10-7

3
  cos 16p * 108t - 2pz2 ay

 By =
10-7

3
  cos 16p * 108t - 2pz2

 = -20p sin 16p * 108t - 2pz2
 = -  

0
0z

 [10 cos 16p * 108t - 2pz2]
 
0By

0t
= -  

0Ex

0z

E = 10 cos 16p * 108t - 2pz2 ax

AE # dl
ByEx

By

Ex

Faraday’s
law, general
case
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x

z

y

�z

�y

�x

d(x, y, z � �z)

a(x, y, z)

c(x, y � �y, z � �z)

g(x � �x, y � �y, z)

b(x, y � �y, z)

f(x � �x, y, z)

e(x � �x, y, z � �z)

FIGURE 3.2

Infinitesimal rectangular paths in
three mutually orthogonal planes.

(3.9c)

In (3.9a)–(3.9c), the subscripts associated with the field components in the vari-
ous terms on the right sides of the equations denote the values of the coordi-
nates that remain constant along the sides of the closed paths corresponding to
the terms. Now, evaluating over the surfaces abcd, adef, and afgb, keep-
ing in mind the right-hand screw rule, we have

(3.10a)

(3.10b)

(3.10c)

Applying Faraday’s law to each of the three paths by making use of
(3.9a)–(3.9c) and (3.10a)–(3.10c) and simplifying, we obtain

(3.11a)

(3.11b)

(3.11c) 
[Ey]1x + ¢x, z2 - [Ey]1x, z2

¢x
-

[Ex]1y + ¢y, z2 - [Ex]1y, z2
¢y

= -  

0[Bz]1x, y, z2
0t

 
[Ex]1y, z + ¢z2 - [Ex]1y, z2

¢z
-

[Ez]1x + ¢x, y2 - [Ez]1x, y2
¢x

= -  

0[By]1x, y, z2
0t

 
[Ez]1x, y + ¢y2 - [Ez]1x, y2

¢y
-

[Ey]1x, z + ¢z2 - [Ey]1x, z2
¢z

= -  

0[Bx]1x, y, z2
0t

 Lafgb
B # dS = [Bz]1x, y, z2 ¢x ¢y

 Ladef
B # dS = [By]1x, y, z2 ¢z ¢x

 Labcd
B # dS = [Bx]1x, y, z2 ¢y ¢z

1B # dS

 -[Ex]1y + ¢y, z2 ¢x - [Ey]1x, z2 ¢y

 Cafgba
E # dl = [Ex]1y, z2 ¢x + [Ey]1x + ¢x, z2 ¢y
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134 Chapter 3 Maxwell’s Equations in Differential Form . . .

If we now let all three paths shrink to the point a by letting and tend
to zero, (3.11a)–(3.11c) reduce to

(3.12a)

(3.12b)

(3.12c)

Equations (3.12a)–(3.12c) are the differential equations governing the re-
lationships between the space variations of the electric field components and
the time variations of the magnetic field components at a point. In particular, we
note that the space derivatives are all lateral derivatives, that is, derivatives eval-
uated along directions lateral to the directions of the field components and not
along the directions of the field components. An examination of one of the
three equations is sufficient to reveal the physical meaning of these relation-
ships. For example, (3.12a) tells us that a time-varying at a point results in an
electric field at that point having y- and z-components such that their net
right-lateral differential normal to the x-direction is nonzero. The right-lateral
differential of normal to the x-direction is its derivative in the or

that is, or The right-lateral differential of 
normal to the x-direction is its derivative in the or that is,

Thus, the net right-lateral differential of the y- and z-components of the
electric field normal to the x-direction is or 

Figure 3.3(a) shows an example in which the net right-lateral differen-
tial is zero although the individual derivatives are nonzero. This is because

and are both positive and equal so that their difference is zero.
On the other hand, for the example in Fig. 3.3(b), is positive and 
is negative so that their difference, that is, the net right-lateral differential, is
nonzero.

0Ey>0z0Ez>0y
0Ey>0z0Ez>0y

0Ey>0z2. 10Ez>0y -1-0Ey>0z2 + 10Ez>0y2,0Ez>0y.
ay-direction,az : ax,

Ez-0Ey>0z.0Ey>01-z2-az-direction,
ay : ax,Ey

Bx

 
0Ey

0x
-

0Ex

0y
= -  

0Bz

0t

 
0Ex

0z
-

0Ez

0x
= -  

0By

0t

 
0Ez

0y
-

0Ey

0z
= -  

0Bx

0t

¢z¢x, ¢y,

z

y

Ey

Ey

Ey

Ey

Ez EzEzEzx

(a) (b)

FIGURE 3.3

For illustrating (a) zero and (b) nonzero net right-lateral differential of and
normal to the x-direction.Ez

Ey
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3.1 Faraday’s Law and Ampère’s Circuital Law 135

Curl (del
cross)

Equations (3.12a)–(3.12c) can be combined into a single vector equation
as given by

(3.13)

This can be expressed in determinant form as

(3.14)

or as

(3.15)

The left side of (3.14) or (3.15) is known as the curl of E, denoted as (del
cross E), where (del) is the vector operator given by

(3.16)

Thus, we have

(3.17)

Equation (3.17) is Maxwell’s equation in differential form corresponding to
Faraday’s law. It tells us that at a point in an electromagnetic field, the curl of
the electric field intensity is equal to the time rate of decrease of the magnetic
flux density. We shall discuss curl further in Section 3.3, but note that for static
fields, is equal to the null vector. Thus, for a static vector field to be real-
ized as an electric field, the components of its curl must all be zero.

Although we have deduced (3.17) from (3.1) by considering the Cartesian
coordinate system, it is independent of the coordinate system since (3.1) is inde-
pendent of the coordinate system. The expressions for the curl of a vector in
cylindrical and spherical coordinate systems are derived in Appendix B. They
are reproduced here together with that in (3.14) for the Cartesian coordinate
system.

� � E

� � E = -  
0B
0t

� = ax 
0

0x
+ ay 

0
0y

+ az 
0
0z

�
� � E

aax 
0

0x
+ ay 

0
0y

+ az 
0
0z
b � 1Ex ax + Ey ay + Ez az2 = -  

0B
0t

4 ax ay az

0
0x

0
0y

0
0z

Ex Ey Ez

4 = -  
0B
0t

 = -  

0Bx

0t
 ax -

0By

0t
 ay -

0Bz

0t
 az

 a 0Ez

0y
-

0Ey

0z
bax + a 0Ex

0z
-

0Ez

0x
bay + a 0Ey

0x
-

0Ex

0y
baz
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136 Chapter 3 Maxwell’s Equations in Differential Form . . .

CARTESIAN

(3.18a)

CYLINDRICAL

(3.18b)

SPHERICAL

(3.18c)

Example 3.2 Evaluating curls of vector fields

Find the curls of the following vector fields: (a) and (b) in cylindrical
coordinates.

(a) Using (3.18a), we have

(b) Using (3.18b), we obtain

� � af =
5
ar

r
af

az

r

0
0r

0
0f

0
0z

0 r 0

5
=

ar

r
c -  

0
0z

 1r2 d +
az

r
c 0
0r

 1r2 d =
1
r

 az

 = -2az

 = ax c -  
0
0z

 1-x2 d + ay c 0
0z

 1y2 d + az c 0
0x

 1-x2 -
0

0y
 1y2 d

 � � 1yax - xay2 = 4 ax ay az

0
0x

0
0y

0
0z

y - x 0

4

afyax - xay

� � A =
5

ar

r2 sin u

au
r sin u

af
r

0
0r

0
0u

0
0f

Ar rAu r sin uAf

5

� � A =
5
ar

r
af

az

r

0
0r

0
0f

0
0z

Ar rAf Az

5

� � A = 4 ax ay az

0
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0
0y

0
0z

Ax Ay Az

4
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We shall now consider the derivation of the differential form of Ampère’s
circuital law given in integral form by

(3.19)

where S is any surface bounded by the closed path C.To do this, we need not re-
peat the procedure employed in the case of Faraday’s law. Instead, we note from
(3.1) and (3.17) that in converting to the differential form from integral form,
the line integral of E around the closed path C is replaced by the curl of E, the
surface integral of B over the surface S bounded by C is replaced by B itself, and
the total time derivative is replaced by partial derivative, as shown:

Then using the analogy between Ampère’s circuital law and Faraday’s law, we
can write the following:

Thus, for the general case of the magnetic field having all three compo-
nents (x, y, and z), each of them depending on all three coordinates (x, y, and z),
in addition to time (t), that is, for

(3.20)

the differential form of Ampère’s circuital law is given by

(3.21)� � H = J +
0D
0t

H = Hx1x, y, z, t2ax + Hy1x, y, z, t2ay + Hz1x, y, z, t2az

 � �
$%&

H =  J +
0
0t

 1D2

 CC
H # d l = LS

J # dS +
d

dtLS
D # dS

 � �
$%&

E = -  
0
0t

 1B2

 CC
E # dl = -  

d

dtLS
B # dS

CC
H # dl = LS

J # dS +
d

dtLS
D # dS

3.1 Faraday’s Law and Ampère’s Circuital Law 137

Ampère’s
circuital law,
general case
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138 Chapter 3 Maxwell’s Equations in Differential Form . . .

The quantity is known as the displacement current density. Equation (3.21)
tells us that at a point in an electromagnetic field, the curl of the magnetic field
intensity is equal to the sum of the current density due to flow of charges and the
displacement current density. In Cartesian coordinates, (3.21) becomes

(3.22)

This is equivalent to three scalar equations relating the lateral space derivatives
of the components of H to the components of the current density and the time
derivatives of the electric field components.These scalar equations can be inter-
preted in a manner similar to the interpretation of (3.12a)–(3.12c) in the case of
Faraday’s law.Also, expressions similar to (3.22) can be written in the cylindrical
and spherical coordinate systems by using the determinant expansions for the
curl in those coordinate systems, given by (3.18b) and (3.18c), respectively.

Having obtained the differential form of Ampère’s circuital law for the
general case, we can now simplify it for any particular case. Let us consider the
particular case of

(3.23)

that is, a magnetic field directed everywhere in the y-direction and uniform in
planes parallel to the xy-plane.Then since H does not depend on x and y, we can
replace and in the determinant expansion for by zeros. In ad-
dition, setting we have

(3.24)

Equating like components on the two sides and noting that the y- and z-components
on the left side are zero, we obtain

or

(3.25)

Equation (3.25) is Ampère’s circuital law in differential form for the simple case
of H given by (3.23). It relates the variation of with z (space) at a point to theHy

0Hy

0z
= -Jx -

0Dx

0t

-  

0Hy

0z
= Jx +

0Dx

0t

4 ax ay az

0 0
0
0z

0 Hy 0

4 = J +
0D
0t

Hx = Hz = 0,
� � H0>0y0>0x

H = Hy1z, t2ay

4 ax ay az

0
0x

0
0y

0
0z

Hz Hy Hz

4 = J +
0D
0t

0D>0t

Ampère’s
circuital law,
special case
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3.1 Faraday’s Law and Ampère’s Circuital Law 139

current density and to the variation of with t (time) at that point. It tells us
in particular that an associated with a current density or a time-varying 
or a nonzero combination of the two quantities, has a differential in the z-direction.

Example 3.3 Simultaneous satisfaction of Faraday’s and Ampere’s
circuital laws by E and B

Given in free space We wish to determine if there exists a
magnetic field such that both Faraday’s law and Ampère’s circuital law are satisfied
simultaneously.

Using Faraday’s law and Ampère’s circuital law in succession, we have

which is not the same as the original E. Hence, a magnetic field does not exist which to-
gether with the given E satisfies both laws simultaneously.The pair of fields 
and satisfies only Faraday’s law, whereas the pair of fields 
and satisfies only Ampère’s circuital law.

To generalize the observation made in the example just discussed, there
are certain pairs of time-varying electric and magnetic fields that satisfy only
Faraday’s law as given by (3.17) and certain other pairs that satisfy only Ampère’s
circuital law as given by (3.21). In the strictest sense, every physically realizable
pair of time-varying electric and magnetic fields must satisfy simultaneously both
laws as given by (3.17) and (3.21). However, under the low-frequency approxima-
tion, it is valid for the fields to satisfy the laws with certain terms neglected in one
or both laws. Lumped-circuit theory is based on such approximations. Thus, the
terminal voltage-to-current relationship for an inductor is
obtained by ignoring the effect of the time-varying electric field, that is,
term in Ampère’s circuital law. The terminal current-to-voltage relationship

for a capacitor is obtained by ignoring the effect of the time-
varying magnetic field, that is, term in Faraday’s law.The terminal voltage-
to-current relationship for a resistor is obtained by ignoring theV1t2 = RI1t20B>0t
I1t2 = d[CV1t2]>dt

0D>0t
V1t2 = d[LI1t2]>dt

E = 12E0>m0e02e-tax

B = 2E0 ze-tayB = 2E0 ze-tay

E = E0 z2e-tax

 E =
2E0

m0e0
 e-tax

 Ex =
2E0

m0e0
 e-t

 Dx =
2E0

m0
 e-t

 
0Dx

0t
= -  

0Hy

0z
= -  

2E0

m0
 e-t

 Hy =
2E0

m0
 ze-t

 By = 2E0 ze-t

 
0By

0t
= -  

0Ex

0z
= -2E0 ze-t

1J � 02.E = E0 z2e-tax

Dx,JxHy

DxJx

Lumped-
circuit theory
approxima-
tions
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z � �a z � az � 0

x

zy

Jx

J0

z
�a 0 a

J0 a

z

J0 ax

�J0 a

�2J0 a

�a a

(a) (c)

(b)

FIGURE 3.4

The determination of magnetic field due to a current distribution.

effects of both time-varying electric field and time-varying magnetic field, that
is, both term in Ampère’s circuital law and term in Faraday’s law.
In contrast to these approximations, electromagnetic wave propagation phe-
nomena and transmission-line (distributed circuit) theory are based on the si-
multaneous application of the two laws with all terms included, that is, as given
by (3.17) and (3.21).

We shall conclude this section with an example involving no time variations.

Example 3.4 Magnetic field of a current distribution from Ampere’s
circuital law in differential form

Let us consider the current distribution given by

as shown in Fig. 3.4(a), where is a constant, and find the magnetic field everywhere.
Since the current density is independent of x and y, the field is also independent of

x and y. Also, since the current density is not a function of time, the field is static. Hence
and we have

0Hy

0z
= -Jx

10Dx>0t2 = 0,

J0

J = J0 ax for - a 6 z 6 a

0B>0t0D>0t

RaoCh03v3.qxd  12/18/03  3:32 PM  Page 140



3.2 Gauss’ Laws and the Continuity Equation 141

Integrating both sides with respect to z, we obtain

where C is the constant of integration.
The variation of with z is shown in Fig. 3.4(b). Integrating with respect to z,

that is, finding the area under the curve of Fig. 3.4(b) as a function of z, and taking its
negative, we obtain the result shown by the dashed curve in Fig. 3.4(c) for 
From symmetry considerations, the field must be equal and opposite on either side of the
current region Hence, we choose the constant of integration C to be equal
to thereby obtaining the final result for as shown by the solid curve in Fig. 3.4(c).
Thus, the magnetic field intensity due to the current distribution is given by

The magnetic flux density, B, is equal to 

K3.1. Faraday’s law in differential form; Ampere’s circuital law in differential form;
Curl of a vector; Lumped circuit theory approximations.

D3.1. Given find the time rate of increase of
at for each of the following values of z: (a) 0; (b) and (c)

Ans. (a) 0; (b) (c)
D3.2. For the vector field find the following: (a) the net

right-lateral differential of and normal to the z-direction at the point
(1, 1, 1); (b) the net right-lateral differential of and normal to the x-direc-
tion at the point (1, 2, 1); and (c) the net right-lateral differential of and 
normal to the y-direction at the point 
Ans. (a) (b) 0; (c) 2.

D3.3. Given and find the time rate of increase of
for each of the following cases: (a) (b)

and (c)
Ans. (a) (b) (c) 0.

3.2 GAUSS’ LAWS AND THE CONTINUITY EQUATION

Thus far, we have derived Maxwell’s equations in differential form correspond-
ing to the two Maxwell’s equations in integral form involving the line integrals
of E and H around the closed path, that is, Faraday’s law and Ampère’s circuital
law, respectively. The remaining two Maxwell’s equations in integral form,
namely, Gauss’ law for the electric field and Gauss’ law for the magnetic field,
are concerned with the closed surface integrals of D and B, respectively. In this
section, we shall derive the differential forms of these two equations.

0.0733H0;-0.7358H0;
z = 3 m, t = 10-8 s.1

3 * 10-8 s;
z = 3 m, t =z = 2 m, t = 10-8 s;Dx

H = H0 e-13 * 108t - z22ay  A>m,J = 0

-1;
11, 1, -12.

AxAz

AzAy

AyAx

A = xy2ax + xzay + x2yzaz,
-13pE0.2pE0;

2
3 m.1

4 m;t = 10-8 sBy

E = E0 cos 16p * 108t - 2pz2 ax V>m,

m0 H.

H = c   J0 aay for z 6 -a

-J0 zay for - a 6 z 6 a

-J0 aay for z 7 a

HyJ0 a,
-a 6 z 6 a.

-1z
- qJx dz.

-JxJx

Hy = -L
z

- q
Jx dz + C
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142 Chapter 3 Maxwell’s Equations in Differential Form . . .
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y

�z

�y

�x

(x, y, z)

FIGURE 3.5

Infinitesimal rectangular box.

We recall from Section 2.5 that Gauss’ law for the electric field is given by

(3.26)

where V is the volume enclosed by the closed surface S.To derive the differential
form of this equation, let us consider a rectangular box of edges of infinitesimal
lengths and and defined by the six surfaces 

and as shown in Fig. 3.5, in a region of
electric field

(3.27)

and charge of density According to Gauss’ law for the electric field,
the displacement flux emanating from the box is equal to the charge enclosed
by the box. The displacement flux is given by the surface integral of D over the
surface of the box, which comprises six plane surfaces. Thus, evaluating the dis-
placement flux emanating from the box through each of the six plane surfaces
of the box, we have

(3.28a)

(3.28b)

(3.28c)

(3.28d)

(3.28e)

(3.28f)for the surface z = z + ¢z LD # dS = [Dz]z + ¢z ¢x ¢y

for the surface z = z LD # dS = -[Dz]z ¢x ¢y

for the surface y = y + ¢y LD # dS = [Dy]y + ¢y ¢z ¢x

for the surface y = y LD # dS = -[Dy]y ¢z ¢x

for the surface x = x + ¢x LD # dS = [Dx]x + ¢x ¢y ¢z

for the surface x = x LD # dS = -[Dx]x ¢y ¢z

r1x, y, z, t2.
D = Dx1x, y, z, t2ax + Dy1x, y, z, t2ay + Dz1x, y, z, t2az

z = z + ¢z,y = y, y = y + ¢y, z = z,
x = x + ¢x,x = x,¢z¢x, ¢y,

CS
D # dS = LV

 r dv

Gauss’ law
for the
electric field

RaoCh03v3.qxd  12/18/03  3:32 PM  Page 142



3.2 Gauss’ Laws and the Continuity Equation 143

Adding up (3.28a)–(3.28f), we obtain the total displacement flux emanating
from the box to be

(3.29)

Now the charge enclosed by the rectangular box is given by

(3.30)

where we have assumed to be uniform throughout the volume of the box and
equal to its value at (x, y, z), since the box is infinitesimal in volume.

Substituting (3.29) and (3.30) into (3.26), we get

or, dividing throughout by the volume ,

(3.31)

If we now let the box shrink to the point (x, y, z) by letting and tend
to zero, we obtain

or

(3.32)

Equation (3.32) is the differential equation governing the relationship
between the space variations of the components of D to the charge density. In
particular, we note that the derivatives are all longitudinal derivatives, that is,
derivatives evaluated along the directions of the field components, in contrast
to the lateral derivatives encountered in Section 3.1. Thus, (3.32) tells us that
the net longitudinal differential, that is, the algebraic sum of the longitudinal

0Dx

0x
+

0Dy

0y
+

0Dz

0z
= r

 + lim
¢z:0

 

[Dz]z + ¢z - [Dz]z

¢z
= lim

¢x : 0
¢y : 0
¢z : 0

r

 lim
¢x:0

 

[Dx]x + ¢x - [Dx]x

¢x
+ lim

¢y:0
 

[Dy]y + ¢y - [Dy]y

¢y

¢z¢x, ¢y,

[Dx]x + ¢x - [Dx]x

¢x
+

[Dy]y + ¢y - [Dy]y

¢y
+

[Dz]z + ¢z - [Dz]z

¢z
= r

¢v

 + 5[Dz]z + ¢z - [Dz]z6 ¢x ¢y = r¢x ¢y ¢z

 5[Dx]x + ¢x - [Dx]x6 ¢y ¢z + 5[Dy]y + ¢y - [Dy]y6 ¢z ¢x

r

LV
 r dv = r1x, y, z, t2 # ¢x ¢y ¢z = r¢x ¢y ¢z

 + 5[Dz]z + ¢z - [Dz]z6 ¢x ¢y

 + 5[Dy]y + ¢y - [Dy]y6 ¢z ¢x

 CS
D # dS = 5[Dx]x + ¢x - [Dx]x6 ¢y ¢z
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FIGURE 3.6

For illustrating (a) zero and 
(b) nonzero net longitudinal
differential of the components of D.

derivatives, of the components of D at a point in space is equal to the charge
density at that point. Conversely, a charge density at a point results in an elec-
tric field having components of D such that their net longitudinal differential is
nonzero. Figure 3.6(a) shows an example in which the net longitudinal differ-
ential is zero.This is because and are equal in magnitude but op-
posite in sign, whereas is zero. On the other hand, for the example in
Fig. 3.6(b), both and are positive and is zero, so that the
net longitudinal differential is nonzero.

Equation (3.32) can be written in vector notation as

(3.33)

The left side of (3.33) is known as the divergence of D, denoted as (del dot D).
Thus, we have

(3.34)

Equation (3.34) is Maxwell’s equation in differential form corresponding to
Gauss’ law for the electric field. It tells us that the divergence of the displace-
ment flux density at a point is equal to the charge density at that point. We shall
discuss divergence further in Section 3.3.

Example 3.5 Electric field of a charge distribution from Gauss’ law in
differential form

Let us consider the charge distribution given by

as shown in Fig. 3.7(a), where is a constant, and find the electric field everywhere.
Since the charge density is independent of y and z, the field is also independent of

y and z, thereby giving us and reducing Gauss’ law for the electric
field to

0Dx

0x
= r

0Dy>0y = 0Dz>0z = 0

r0

r = e -r0 for -a 6 x 6 0
  r0 for 0 6 x 6 a

� # D = r

� # D

aax 
0

0x
+ ay 

0
0y

+ az 
0
0z
b # 1Dx ax + Dy ay + Dz az2 = r

0Dz>0z0Dy>0y0Dx>0x
0Dz>0z

0Dy>0y0Dx>0x

Divergence
(del dot)
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FIGURE 3.7

The determination of electric field due to a charge distribution.

Integrating both sides with respect to x, we obtain

where C is the constant of integration.
The variation of with x is shown in Fig. 3.7(b). Integrating with respect to x, that

is, finding the area under the curve of Fig. 3.7(b) as a function of x, we obtain the result 

shown in Fig. 3.7(c) for The constant of integration C is zero since the symmetry 

of the field required by the symmetry of the charge distribution is already satisfied by the
curve of of Fig. 3.7(c). Alternatively, it can be seen that any nonzero value of C would re-
main even if the charge distribution is allowed to disappear, and hence it is not attribut-
able to the given charge distribution.Thus, the displacement flux density due to the charge
distribution is given by

The electric field intensity, E, is equal to D>e0.

D = d   0 for x 6 -a

-r01x + a2ax for -a 6 x 6 0
  r01x - a2ax for 0 6 x 6 a

  0 for x 7 a

L
x

- q
r dx.

rr

Dx = L
x

- q
r dx + C
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146 Chapter 3 Maxwell’s Equations in Differential Form . . .

Although we have deduced (3.34) from (3.26) by considering the Cartesian
coordinate system, it is independent of the coordinate system since (3.26) is in-
dependent of the coordinate system.The expressions for the divergence of a vec-
tor in cylindrical and spherical coordinate systems are derived in Appendix B.
They are reproduced here together with that in (3.32) for the Cartesian coordi-
nate system.

CARTESIAN

(3.35a)

CYLINDRICAL

(3.35b)

SPHERICAL

(3.35c)

Example 3.6 Evaluating divergences of vector fields

Find the divergences of the following vector fields: (a)
and (b) in spherical coordinates.

(a) Using (3.35a), we have

(b) Using (3.35c), we obtain

We shall now consider the derivation of the differential form of Gauss’
law for the magnetic field given in integral form by

(3.36)CS
B # dS = 0

 = 2r cos u

 =
1

r sin u
12r2 sin u cos u2

 � # r2 sin u au =
1

r sin u
 
0
0u

 1r2 sin2 u2

 = 3 + 1 - 1 = 3

 � # [3xax + 1y - 32ay + 12 - z2az] =
0

0x
 13x2 +

0
0y

 1y - 32 +
0
0z

 12 - z2

r2 sin u au
3xax + 1y - 32ay + 12 - z2az

� # A =
1

r2 
0
0r

 1r2Ar2 +
1

r sin u
 
0
0u

 1Au sin u2 +
1

r sin u
 

0Af
0f

� # A =
1
r

 
0
0r

 1rAr2 +
1
r

 

0Af
0f

+
0Az

0z

� # A =
0Ax

0x
+

0Ay

0y
+

0Az

0z

Gauss’ law
for the
magnetic field
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3.2 Gauss’ Laws and the Continuity Equation 147

where S is any closed surface. To do this, we need not repeat the procedure em-
ployed in the case of Gauss’ law for the electric field. Instead, we note from
(3.26) and (3.34) that in converting to the differential form from integral form,
the surface integral of D over the closed surface S is replaced by the divergence
of D and the volume integral of is replaced by itself, as shown:

Then using the analogy between the two Gauss’ laws, we can write the following:

Thus, Gauss’ law in differential form for the magnetic field

(3.37)

is given by

(3.38)

which tells us that the divergence of the magnetic flux density at a point is equal
to zero. Conversely, for a vector field to be realized as a magnetic field, its di-
vergence must be zero. In Cartesian coordinates, (3.38) becomes

(3.39)

pointing out that the net longitudinal differential of the components of B is
zero. Also, expressions similar to (3.39) can be written in cylindrical and spheri-
cal coordinate systems by using the expressions for the divergence in those co-
ordinate systems, given by (3.35b) and (3.35c), respectively.

Example 3.7 Realizability of a vector field as a magnetic field

Determine if the vector in cylindrical coordinates can
represent a magnetic field B.

A = 11>r221cos f ar + sin f af2

0Bx

0x
+

0By

0y
+

0Bz

0z
= 0

� # B = 0

B = Bx1x, y, z, t2ax + By1x, y, z, t2ay + Bz1x, y, z, t2az

 � #$%&

B = 0

 CS
B # dS = 0 = LV

0 dv

 � #$%&

D  =    r

 CS
D # dS = LV

 r dv

rr
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Noting that

we conclude that the given vector can represent a B.

We shall conclude this section by deriving the differential form of the law
of conservation of charge given in integral form by

(3.40)

Using analogy with Gauss’ law for the electric field, we can write the following:

Thus, the differential form of the law of conservation of charge is given by

(3.41)

Equation (3.41) is familiarly known as the continuity equation. It tells us that the
divergence of the current density due to flow of charges at a point is equal to the
time rate of decrease of the charge density at that point. It can be expanded in a
given coordinate system by using the expression for the divergence in that coor-
dinate system.

K3.2. Gauss’ law for the electric field in differential form; Gauss’ law for the magnet-
ic field in differential form; Divergence of a vector; Continuity equation.

D3.4. For the vector field find the net longitudinal dif-
ferential of the components of A at the following points: (a)
(b) and (c) (1, 1, 1).
Ans. (a) (b) 0; (c) 3.

D3.5. The following hold at a point in a charge-free region: (i) the sum of the longitu-
dinal differentials of and is and (ii) the longitudinal differential of DyD0DyDx

-1;
11, 1, -1

22;
11, 1, -12;

A = yzax + xyay + xyz2az,

� # J = -  

0r
0t

 � #$%&

J = -  
0
0t

 1r2

 CS
J # dS = -  

d

dtLV
r dv

CS
J # dS = -  

d

dtLV
 r dv

 = -  

cos f

r3 +
cos f

r3 = 0

 � # A =
1
r

 
0
0r

 a cos f

r
b +

1
r

 
0

0f
 a sin f

r2 b

148 Chapter 3 Maxwell’s Equations in Differential Form . . .

Continuity
equation
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is three times the longitudinal differential of Find: (a) (b)
and (c)
Ans. (a) (b) (c)

D3.6. In a small region around the origin, the current density due to flow of charges is
given by where is a constant. Find the
time rate of increase of the charge density at each of the following points:
(a) (0.02, 0.01, 0.01); (b) and (c)
Ans. (a) (b) 0; (c)

3.3 CURL AND DIVERGENCE

In Sections 3.1 and 3.2, we derived the differential forms of Maxwell’s equations
and the law of conservation of charge from their integral forms. Maxwell’s
equations are given by

(3.42a)

(3.42b)

(3.42c)
(3.42d)

whereas the continuity equation is given by

(3.43)

These equations contain two new vector (differential) operations, namely, the
curl and the divergence. The curl of a vector is a vector quantity, whereas the di-
vergence of a vector is a scalar quantity. In this section, we shall introduce the
basic definitions of curl and divergence and then discuss physical interpreta-
tions of these quantities. We shall also derive two associated theorems.

A. Curl

To discuss curl first, let us consider Ampère’s circuital law without the displace-
ment current density term; that is,

(3.44)

We wish to express at a point in the current region in terms of H at that
point. If we consider an infinitesimal surface at the point and take the dot
product of both sides of (3.44) with we get

(3.45)1� � H2 # ¢S = J # ¢S

¢S,
¢S

� � H

� � H = J

� # J = -  

0r
0t

 � # B = 0
 � # D = r

 � � H = J +
0D
0t

 � � E = -  
0B
0t

0.04J0 1C>m32>s.-0.08J0 1C>m32>s;
1-0.02, -0.01, 0.012.10.02, -0.01, -0.012;
J0J = J01x2ax + y2ay + z2az2 A>m2,

-D0.-3D0;4D0;
0Dz>0z.

0Dy>0y;0Dx>0x;Dz.
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150 Chapter 3 Maxwell’s Equations in Differential Form . . .

But is simply the current crossing the surface and according to Am-
père’s circuital law in integral form without the displacement current term,

(3.46)

where C is the closed path bounding Comparing (3.45) and (3.46), we have

or

(3.47)

where is the unit vector normal to and directed toward the side of ad-
vance of a right-hand screw as it is turned around C. Dividing both sides of
(3.47) by we obtain

(3.48)

The maximum value of and hence that of the right side of
(3.48), occurs when is oriented parallel to that is, when the surface

is oriented normal to the current density vector J. This maximum value is
simply Thus,

Since the direction of is the direction of J, or that of the unit vector nor-
mal to we can then write

This result is, however, approximate, since (3.47) is exact only in the limit that
tends to zero. Thus,

(3.49)

which is the expression for at a point in terms of H at that point. Al-
though we have derived this for the H vector, it is a general result and, in fact,

� � H

� � H = lim
¢S:0

c AC H # dl

¢S
d

max
 an

¢S

� � H = c AC H # dl

¢S
d

max
 an

¢S,
� � H

ƒ � � H ƒ = c AC H # dl

¢S
d

max

ƒ � � H ƒ .
¢S

� � H,an

1� � H2 # an,

1� � H2 # an = AC H # dl

¢S

¢S,

¢San

1� � H2 # ¢S an = CC
 H # dl

1� � H2 # ¢S = CC
 H # dl

¢S.

CC
 H # dl = J # ¢S

¢S,J # ¢S
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3.3 Curl and Divergence 151

is often the starting point for the introduction of curl. Thus, for any vector
field A,

(3.50)

Equation (3.50) tells us that to find the curl of a vector at a point in that
vector field, we first consider an infinitesimal surface at that point and compute
the closed line integral or circulation of the vector around the periphery of this
surface by orienting the surface such that the circulation is maximum. We then
divide the circulation by the area of the surface to obtain the maximum value of
the circulation per unit area. Since we need this maximum value of the circula-
tion per unit area in the limit that the area tends to zero, we do this by gradually
shrinking the area and making sure that each time we compute the circulation
per unit area, an orientation for the area that maximizes this quantity is main-
tained. The limiting value to which the maximum circulation per unit area ap-
proaches is the magnitude of the curl. The limiting direction to which the normal
vector to the surface approaches is the direction of the curl. The task of comput-
ing the curl is simplified if we consider one component at a time and compute
that component, since then it is sufficient if we always maintain the orientation
of the surface normal to that component axis. In fact, this is what we did in
Section 3.1, which led us to the determinant expression for the curl in Cartesian
coordinates, by choosing for convenience rectangular surfaces whose sides are
all parallel to the coordinate planes.

We are now ready to discuss the physical interpretation of the curl. We do
this with the aid of a simple device known as the curl meter, which responds to
the circulation of the vector field. Although the curl meter may take several
forms, we shall consider one consisting of a circular disk that floats in water with
a paddle wheel attached to the bottom of the disk, as shown in Fig. 3.8. A dot at
the periphery on top of the disk serves to indicate any rotational motion of the
curl meter about its axis (i.e., the axis of the paddle wheel). Let us now consider
a stream of rectangular cross section carrying water in the z-direction, as shown
in Fig. 3.8(a). Let us assume the velocity v of the water to be independent of
height but increasing sinusoidally from a value of zero at the banks to a maxi-
mum value at the center, as shown in Fig. 3.8(b), and investigate the behavior
of the curl meter when it is placed vertically at different points in the stream.We
assume that the size of the curl meter is vanishingly small so that it does not dis-
turb the flow of water as we probe its behavior at different points.

Since exactly in midstream the blades of the paddle wheel lying on either
side of the centerline are hit by the same velocities, the paddle wheel does not ro-
tate. The curl meter simply slides down the stream without any rotational mo-
tion, that is, with the dot on top of the disk maintaining the same position relative
to the center of the disk, as shown in Fig. 3.8(c). At a point to the left of the mid-
stream, the blades of the paddle wheel are hit by a greater velocity on the right
side than on the left side so that the paddle wheel rotates in the counterclockwise

v0

� � A = lim
¢S:0

c AC A # dl

¢S
d

max
 an

Physical
interpretation
of curl
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152 Chapter 3 Maxwell’s Equations in Differential Form . . .

x

z

y

(b)(a)

(c) (d) (e)

a/2 a0
x

vz

v0

FIGURE 3.8

For explaining the physical interpretation of curl using the curl meter.

sense, as seen looking along the positive y-axis. The curl meter rotates in the
counterclockwise direction about its axis as it slides down the stream, as indicat-
ed by the changing position of the dot on top of the disk relative to the center of
the disk, as shown in Fig. 3.8(d). At a point to the right of midstream, the blades
of the paddle wheel are hit by a greater velocity on the left side than on the right
side so that the paddle wheel rotates in the clockwise sense, as seen looking
along the positive y-axis. The curl meter rotates in the clockwise direction about
its axis as it slides down the stream, as indicated by the changing position of the
dot on top of the disk relative to the center of the disk, as shown in Fig 3.8(e).

If we now pick up the curl meter and insert it in the water with its axis par-
allel to the x-axis, the curl meter does not rotate because its blades are hit with
the same force above and below its axis. If the curl meter is inserted in the water
with its axis parallel to the z-axis, it does not rotate since the water flow is then
parallel to the blades.
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3.3 Curl and Divergence 153

To relate the behavior of the curl meter with the curl of the velocity vector
field of the water flow, we note that since the velocity vector is given by

its curl is given by

Therefore, the x- and z-components of the curl are zero, whereas the y-component
is nonzero varying with x in a cosinusoidal manner, from negative values left of
midstream, to zero at midstream, to positive values right of midstream.Thus, no ro-
tation of the curl meter corresponds to zero value for the component of the curl
along its axis. Rotation of the curl meter in the counterclockwise or left-hand sense
as seen looking along its axis corresponds to a nonzero negative value, and rotation
in the clockwise or right-hand sense corresponds to a nonzero positive value for
the component of the curl. It can further be visualized that the rate of rotation of
the curl meter is a measure of the magnitude of the pertinent nonzero component
of the curl.

The foregoing illustration of the physical interpretation of the curl of a
vector field can be used to visualize the behavior of electric and magnetic fields.
Thus, from

we know that at a point in an electromagnetic field, the circulation of the elec-
tric field per unit area in a given plane is equal to the component of 
along the unit vector normal to that plane and directed in the right-hand sense.
Similarly, from

we know that at a point in an electromagnetic field, the circulation of the mag-
netic field per unit area in a given plane is equal to the component of 
along the unit vector normal to that plane and directed in the right-hand sense.

J + 0D>0t

� � H = J +
0D
0t

-0B>0t

� � E = -  
0B
0t

 = -  

pv0

a
  cos 
px
a

  ay

 = -  

0vz

0x
 ay

 � � v = 4 ax ay az

0
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0
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154 Chapter 3 Maxwell’s Equations in Differential Form . . .

B. Divergence

Turning now to the discussion of divergence, let us consider Gauss’ law for the
electric field in differential form; that is,

(3.51)

We wish to express at a point in the charge region in terms of D at that
point. If we consider an infinitesimal volume at that point and multiply both
sides of (3.51) by we get

(3.52)

But is simply the charge contained in the volume and according to
Gauss’ law for the electric field in integral form,

(3.53)

where S is the closed surface bounding Comparing (3.52) and (3.53), we have

(3.54)

Dividing both sides of (3.54) by we obtain

(3.55)

This result is however approximate since (3.54) is exact only in the limit that 
tends to zero. Thus,

(3.56)

which is the expression for at a point in terms of D at that point. Although
we have derived this for the D vector, it is a general result and, in fact, is often the
starting point for the introduction of divergence. Thus, for any vector field, A,

(3.57)

Equation (3.57) tells us that to find the divergence of a vector at a point in
that vector field, we first consider an infinitesimal volume at that point and
compute the surface integral of the vector over the surface bounding that vol-
ume, that is, the outward flux of the vector field from that volume. We then di-
vide the flux by the volume to obtain the flux per unit volume. Since we need
this flux per unit volume in the limit that the volume tends to zero, we do this by
gradually shrinking the volume. The limiting value to which the flux per unit

� # A = lim
¢v:0

 
AS A # dS

¢v

� # D

� # D = lim
¢v:0

 
AS D # dS

¢v

¢v

� # D = AS D # dS

¢v

¢v,

1� # D2 ¢v = CS
D # dS

¢v.

CS
D # dS = r ¢v

¢v,r ¢v

1� # D2 ¢v = r ¢v

¢v,
¢v

� # D

� # D = r

Divergence,
basic
definition
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Physical
interpretation
of divergence

volume approaches is the value of the divergence of the vector field at the point
to which the volume is shrunk. In fact, this is what we did in Section 3.2, which
led to the expression for the divergence in Cartesian coordinates, by choosing
for convenience the volume of a rectangular box whose surfaces are parallel to
the coordinate planes.

We are now ready to discuss the physical interpretation of the divergence.
To simplify this task, we shall consider the continuity equation given by

(3.58)

Let us investigate three different cases: (1) positive value, (2) negative value,
and (3) zero value of the time rate of decrease of the charge density at a point,
that is, the divergence of the current density vector at that point.We shall do this
with the aid of a simple device, which we shall call the divergence meter. The di-
vergence meter can be imagined to be a tiny elastic balloon that encloses the
point and that expands when hit by charges streaming outward from the point
and contracts when acted on by charges streaming inward toward the point. For
case 1, that is, when the time rate of decrease of the charge density at the point
is positive, there is a net amount of charge streaming out of the point in a given
time, resulting in a net current flow outward from the point that will make the
imaginary balloon expand. For case 2, that is, when the time rate of decrease of
the charge density at the point is negative or the time rate of increase of the
charge density is positive, there is a net amount of charge streaming toward the
point in a given time, resulting in a net current flow toward the point that will
make the imaginary balloon contract. For case 3, that is, when the time rate of
decrease of the charge density at the point is zero, the balloon will remain un-
affected, since the charge is streaming out of the point at exactly the same rate
as it is streaming into the point. The situation corresponding to case 1 is illus-
trated in Figs. 3.9(a) and (b), whereas that corresponding to case 2 is illus-
trated in Figs. 3.9(c) and (d), and that corresponding to case 3 is illustrated in
Fig. 3.9(e). Note that in Figs. 3.9(a), (c), and (e), the imaginary balloon slides
along the lines of current flow while responding to the divergence by expand-
ing, contracting, or remaining unaffected.

Generalizing the foregoing discussion to the physical interpretation of the
divergence of any vector field at a point, we can imagine the vector field to be a
velocity field of streaming charges acting on the divergence meter and obtain in
most cases a qualitative picture of the divergence of the vector field. If the di-
vergence meter expands, the divergence is positive and a source of the flux of
the vector field exists at that point. If the divergence meter contracts, the diver-
gence is negative and a sink of the flux of the vector field exists at that point. It
can be further visualized that the rate of expansion or contraction of the diver-
gence meter is a measure of the magnitude of the divergence. If the divergence
meter remains unaffected, the divergence is zero, and neither a source nor a
sink of the flux of the vector field exists at that point; alternatively, there can
exist at the point pairs of sources and sinks of equal strengths.

� # J = -  

0r
0t
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156 Chapter 3 Maxwell’s Equations in Differential Form . . .

C. Stokes’ and Divergence Theorems

We shall now derive two useful theorems in vector calculus, Stokes’ theorem and
the divergence theorem. Stokes’ theorem relates the closed line integral of a vec-
tor field to the surface integral of the curl of that vector field, whereas the di-
vergence theorem relates the closed surface integral of a vector field to the
volume integral of the divergence of that vector field.

To derive Stokes’ theorem, let us consider an arbitrary surface S in a mag-
netic field region and divide this surface into a number of infinitesimal surfaces

bounded by the contours respectively. Then,
applying (3.45) to each one of these infinitesimal surfaces and adding up, we get

(3.59)

where are unit vectors normal to the surfaces chosen in accordance with
the right-hand screw rule. In the limit that the number of infinitesimal surfaces
tends to infinity, the left side of (3.59) approaches to the surface integral of

over the surface S. The right side of (3.59) is simply the closed line inte-
gral of H around the contour C, since the contributions to the line integrals
from the portions of the contours interior to C cancel, as shown in Fig. 3.10.
Thus, we get

(3.60)LS
1� � H2 # dS = CC

H # dl

� � H

¢Sjanj

a
j
1� � H2j # ¢Sj anj = CC1

H # dl + CC2

H # dl + Á

C1, C2, C3, Á ,¢S1, ¢S2, ¢S3, Á ,

Stokes’
theorem

(c) (d)

(b)(a)

(e)

FIGURE 3.9

For explaining the physical interpretation of divergence using the divergence meter.
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C

FIGURE 3.10

For deriving Stokes’ theorem.

Equation (3.60) is Stokes’ theorem.Although we have derived it by considering
the H field, it is general and can be derived from the application of (3.50) to a
geometry such as that in Fig. 3.10. Thus, for any vector field A,

(3.61)

where S is any surface bounded by C.

Example 3.8 Evaluation of line integral around a closed path using
Stokes’ theorem

Let us evaluate the line integral of Example 2.1 by using Stokes’ theorem.
For 

With reference to Fig. 2.4, we then have

which agrees with the result obtained in Example 2.1.

 = 6
 = area ABCDA

 = Larea
ABCDA

 dx dy

 = Larea
ABCDA

az
# dx dy az

 CABCDA
F # dl = Larea

ABCDA

1� � F2 # dS

� � F = 3 ax ay az

0
0x

0
0y

0
0z

0 x 0

3 = az

F = xay,

CC
A # dl = LS

1� � A2 # dS
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S

FIGURE 3.11

For deriving the divergence theorem.

To derive the divergence theorem, let us consider an arbitrary volume V in
an electric field region and divide this volume into a number of infinitesimal vol-
umes bounded by the surfaces respectively.Then,
applying (3.54) to each one of these infinitesimal volumes and adding up, we get

(3.62)

In the limit that the number of the infinitesimal volumes tends to infinity, the
left side of (3.62) approaches to the volume integral of over the volume V.
The right side of (3.62) is simply the closed surface integral of D over S since the
contribution to the surface integrals from the portions of the surfaces interior to
S cancel, as shown in Fig. 3.11. Thus, we get

(3.63)

Equation (3.63) is the divergence theorem.Although we have derived it by con-
sidering the D field, it is general and can be derived from the application of
(3.57) to a geometry such as that in Fig. 3.11. Thus, for any vector field A,

(3.64)

where V is the volume bounded by S.

Example 3.9 Showing that the divergence of the curl of a vector is zero

By using the Stokes and divergence theorems, show that for any vector field A,

Let us consider volume V bounded by the closed surface where and 
are bounded by the closed paths and respectively, as shown in Fig. 3.12. Note thatC2,C1

S2S1S1 + S2,
� # � � A = 0.

CS
A # dS = LV

1� # A2 dv

LV
1� # D2 dv = CS

D # dS

� # D

a
j
1� # D2j ¢vj = CS1

D # dS + CS2

D # dS + Á

S1, S2, S3, Á ,¢v1, ¢v2, ¢v3, Á ,

Divergence of
the curl of a
vector

Divergence
theorem
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C1 C2

S1 S2

dS2dS1

FIGURE 3.12

For proving the identity � # � � A = 0.

and touch each other and are traversed in opposite senses and that and are
directed in the right-hand sense relative to and respectively. Then, using diver-
gence and Stokes’ theorems in succession, we obtain

Since this result holds for any arbitrary volume V, it follows that

(3.65)

K3.3. Basic definition of curl; Physical interpretation of curl; Basic definition of diver-
gence; Physical interpretation of divergence; Stokes’ theorem; Divergence theo-
rem; Divergence of the curl of a vector.

D3.7. With the aid of the curl meter, determine if the z-component of the curl of the
vector field is positive, zero, or negative at each of the follow-
ing points: (a) (b) (0, 2, 4); and (c)

Ans. (a) positive; (b) zero; (c) negative.

D3.8. With the aid of the divergence meter, determine if the divergence of the vector
field is positive, zero, or negative at each of the following
points: (a) (2, 4, 3); (b) and (c)

Ans. (a) zero; (b) negative; (c) positive.

D3.9. Using Stokes’ theorem, find the absolute value of the line integral of the vector
field around each of the following closed paths: (a) the perime-
ter of a square of sides 2 m lying in the xy-plane; (b) a circular path of radius

lying in the xy-plane; and (c) the perimeter of an equilateral triangle of
sides 2 m lying in the yz-plane.
Ans. (a) 4; (b) 1; (c) 3.

1>1p m

1xay + 13yaz2

13, -1, 42.11, 1, -12;
A = 1x - 222ax

1-1, 2, -12.12, -3, 12;
A = 1x2 - 42ay

� # � � A = 0

 = 0

 = CC1

A # dl + CC2

A # dl

 = LS1

1� � A2 # dS1 + LS2

1� � A2 # dS2

 LV
1� # � � A2 dv = CS1 + S2

1� � A2 # dS

C2,C1

dS2dS1C2C1
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160 Chapter 3 Maxwell’s Equations in Differential Form . . .

D3.10. Using the divergence theorem, find the surface integral of the vector field
over each of the following closed surfaces: (a) the surface of

a cube of sides 1 m; (b) the surface of a cylinder of radius and length 2 m;
and (c) the surface of a sphere of radius 
Ans. (a) 3; (b) 6; (c) 4.

3.4 UNIFORM PLANE WAVES IN TIME DOMAIN IN FREE SPACE

In Section 3.1, we learned that the space variations of the electric- and magnetic-
field components are related to the time variations of the magnetic- and electric-
field components, respectively, through Maxwell’s equations.This interdependence
gives rise to the phenomenon of electromagnetic wave propagation. In the general
case, electromagnetic wave propagation involves electric and magnetic fields
having more than one component, each dependent on all three coordinates, in
addition to time. However, a simple and very useful type of wave that serves as
a building block in the study of electromagnetic waves consists of electric and
magnetic fields that are perpendicular to each other and to the direction of
propagation and are uniform in planes perpendicular to the direction of propa-
gation.These waves are known as uniform plane waves. By orienting the coordi-
nate axes such that the electric field is in the x-direction, the magnetic field is in
the y-direction, and the direction of propagation is in the z-direction, as shown
in Fig. 3.13, we have

(3.66a)
(3.66b)

Uniform plane waves do not exist in practice because they cannot be pro-
duced by finite-sized antennas. At large distances from physical antennas and
ground, however, the waves can be approximated as uniform plane waves. Fur-
thermore, the principles of guiding of electromagnetic waves along transmission
lines and waveguides and the principles of many other wave phenomena can be
studied basically in terms of uniform plane waves. Hence, it is very important
that we understand the principles of uniform plane wave propagation.

H = Hy1z, t2ay

E = Ex1z, t2ax

1>1p21>3 m.
1>1p m

1xax + yay + zaz2

Uniform
plane wave
defined

E

z

y

x

H

Direction of
propagation

FIGURE 3.13

Directions of electric and magnetic fields and direction
of propagation for a simple case of uniform plane wave.
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w

z

y

x

JS

e0, m0 e0, m0

FIGURE 3.14

Infinite plane sheet in the xy-plane carrying
surface current of uniform density.

To illustrate the phenomenon of interaction of electric and magnetic fields
giving rise to uniform plane electromagnetic wave propagation and the princi-
ple of radiation of electromagnetic waves from an antenna, we shall consider a
simple, idealized, hypothetical source. This source consists of an infinite sheet
lying in the xy-plane, as shown in Fig. 3.14. On this infinite plane sheet, a uni-
formly distributed current flows in the negative x-direction, as given by

(3.67)

where is a given function of time. Because of the uniformity of the surface
current density on the infinite sheet, if we consider any line of width w parallel
to the y-axis, as shown in Fig. 3.14, the current crossing that line is simply given
by w times the current density, that is, If then the cur-
rent crossing the width w, actually alternates between negative x-
and positive x-directions, that is, downward and upward.The time history of this
current flow for one period of the sinusoidal variation is illustrated in Fig. 3.15,
with the lengths of the lines indicating the magnitudes of the current. We shall
consider the medium on either side of the current sheet to be free space.

wJS0 cos vt,
JS1t2 = JS0 cos vt,wJS1t2.

JS1t2
JS = -JS1t2ax for z = 0

Infinite plane
current sheet
source

0 p 2p

wJS0 wJS0

vt vt

FIGURE 3.15

Time history of current flow across a line of width w parallel to the y-axis for
the current sheet of Fig. 5.2, for JS = -JS0 cos vt ax.
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To find the electromagnetic field due to the time-varying current sheet, we
shall begin with Faraday’s law and Ampère’s circuital law given, respectively, by

(3.68a)

(3.68b)

and use a procedure that consists of the following steps:

1. Obtain the particular differential equations for the case under consideration.
2. Derive the general solution to the differential equations of step 1 without

regard to the current on the sheet.
3. Show that the solution obtained in step 2 is a superposition of traveling

waves propagating in the and 
4. Extend the general solution of step 2 to take into account the current on

the sheet, thereby obtaining the required solution.

Although the procedure may be somewhat lengthy, we shall in the process learn
several useful concepts and techniques.

1. To obtain the particular differential equations for the case under con-
sideration, we first note that since (3.67) can be thought of as a current
distribution having only an x-component of the current density that varies only
with z, we can set and all derivatives with respect to x and y in (3.68a) and
(3.68b) equal to zero. Hence, (3.68a) and (3.68b) reduce to

(3.69a) (3.70a)

(3.69b) (3.70b)

(3.69c) (3.70c)

In these six equations, there are only two equations involving and the perti-
nent electric- and magnetic-field components, namely, the simultaneous pair
(3.69b) and (3.70a). Thus, the equations of interest are

(3.71a)

(3.71b)
0Hy

0z
= -Jx -

0Dx

0t

0Ex

0z
= -  

0By

0t

Jx

 0 =
0Dz

0t
 0 = -  

0Bz

0t

 
0Hx

0z
=

0Dy

0t
 
0Ex

0z
= -  

0By

0t

 -  

0Hy

0z
= Jx +

0Dx

0t
 -  

0Ey

0z
= -  

0Bx

0t

Jy, Jz,

-z-directions.+z-

� � H = J +
0D
0t

� � E = -  
0B
0t
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which are the same as (3.7) and (3.25), the simplified forms of Faraday’s law and
Ampère’s circuital law, respectively, for the special case of electric and magnet-
ic fields characterized by (3.66a) and (3.66b), respectively.

2. In applying (3.71a) and (3.71b) to (3.67), we note that in (3.71b) is a
volume current density, whereas (3.67) represents a surface current density.
Hence, we shall solve (3.71a) and (3.71b) by setting and then extend the
solution to take into account the current on the sheet. For (3.71a) and
(3.71b) become

(3.72a)

(3.72b)

Differentiating (3.72a) with respect to z and then substituting for from
(3.72b), we obtain

or

(3.73)

We have thus eliminated from (3.72a) and (3.72b) and obtained a single
second-order partial differential equation involving only. Equation (3.73) is
known as the wave equation. In particular, it is a one-dimensional wave equa-
tion in time-domain form, that is, for arbitrary time dependence of 

To obtain the solution for (3.73), we introduce a change of variable by
defining Substituting for z in (3.73) in terms of we then have

(3.74)

or

(3.75)

where the quantities in parentheses are operators operating on one another and
on Equation (3.75) is satisfied if

a 0
0t

;
0
0t
bEx = 0

Ex.

a 0
0t

+
0
0t
b a 0

0t
-

0
0t
bEx = 0

02Ex

0t2 -
02Ex

0t2 = 0

02Ex

0t2 =
02Ex

0t2

t,t = z1m0e0.

Ex.

Ex

Hy

02Ex

0z2 = m0e0 

02Ex

0t2

02Ex

0z2 = -m0 
0
0z

 a 0Hy

0t
b = -m0 

0
0t

 a 0Hy

0z
b = -m0 

0
0t

 a -e0 

0Ex

0t
b

0Hy>0z

0Hy

0z
= -  

0Dx

0t
= -e0 

0Ex

0t

0Ex

0z
= -  

0By

0t
= -m0 

0Hy

0t

Jx = 0,
Jx = 0

Jx
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Derivation of
wave
equation

Solution of
wave
equation
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or

(3.76)

Let us first consider the equation corresponding to the upper sign in (3.76); that is,

This equation says that the partial derivative of with respect to is
equal to the negative of the partial derivative of with respect to t. The
simplest function that satisfies this requirement is the function It then
follows that any arbitrary function of say, satisfies the re-
quirement since

and

where the prime associated with denotes differentiation of f with re-
spect to In a similar manner, the solution for the equation correspond-
ing to the lower sign in (3.76), that is, for

can be seen to be any arbitrary function of say, Combining
the two solutions, we write the solution for (3.76) to be

(3.77)

where A and B are arbitrary constants.
Substituting now for in (3.77) in terms of z, we obtain the solution for

(3.73) to be

(3.78)

The corresponding solution for can be obtained by substituting (3.78)
into (3.72a) or (3.72b). Thus, using (3.72a),

(3.79)Hy1z, t2 =
11m0>e0

 [Af1t - z1m0e02 - Bg1t + z1m0e02]

0Hy

0t
= A e0

m0
 [Af¿1t - z1m0e02 - Bg¿1t + z1m0e02]

Hy1z, t2
Ex1z, t2 = Af1t - z1m0e02 + Bg1t + z1m0e02

t

Ex1t, t2 = Af1t - t2 + Bg1t + t2

g1t + t2.1t + t2,

0Ex

0t
=

0Ex

0t

1t - t2. f¿1t - t2

0
0t

 [f1t - t2] = f¿1t - t2 
0
0t

 1t - t2 = -f¿1t - t2 = -  
0
0t

 [f1t - t2]

0
0t

 [f1t - t2] = f¿1t - t2 
0
0t

 1t - t2 = f¿1t - t2

f1t - t2,1t - t2, 1t - t2.Ex1t, t2
tEx1t, t2

0Ex

0t
= -  

0Ex

0t

0Ex

0t
= <  

0Ex

0t

RaoCh03v3.qxd  12/18/03  3:32 PM  Page 164



3.4 Uniform Plane Waves in Time Domain in Free Space 165

The fields given by (3.78) and (3.79) are the general solutions to the differential
equations (3.72a) and (3.72b).

3. To proceed further, we need to know the meanings of the functions f
and g in (3.78) and (3.79). To discuss the meaning of f, let us consider a specific
example

Plots of this function versus z for two values of and are shown
in Fig. 3.16(a).An examination of these plots reveals that as time increases from 0
to every point on the plot for moves by one unit in the +z-direction,t = 01m0e0,

t = 1m0e0,t, t = 0

f1t - z1m0e02 = 1t - z1m0e022

Traveling
wave
functions
explained

m0e0

4m0e0

3210

(a)

�1�2
z

�3

(t � z   m0e0)
2

t =    m0e0t = 0

m0e0

4m0e0

3210

(b)

�1�2
z

�3

(t � z   m0e0)
2

t �    m0e0 t � 0

FIGURE 3.16

(a) Plots of the function versus z for and (b) Plots of the
function versus z for and t = 1m0e0.t = 01t + z1m0e022

t = 1m0e0.t = 01t - z1m0e022
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166 Chapter 3 Maxwell’s Equations in Differential Form . . .

thereby making the plot for an exact replica of the plot for ex-
cept displaced by one unit in the The function f is therefore said to
represent a traveling wave propagating in the -direction, or simply a wave.
In particular, it is a uniform plane wave since its value does not vary with position
in a given constant z-plane. By dividing the distance traveled by the time taken, the
velocity of propagation of the wave can be obtained to be

(3.80)

which is equal to c, the velocity of light in free space. Similarly, to discuss the
meaning of g, we shall consider

Then plotting the function versus z for and as shown in Fig.
3.16(b), we can see that the plot for is an exact replica of the plot for

except displaced by one unit in the The function g is there-
fore said to represent a traveling wave propagating in the or simply
a wave. Once again, it is a uniform plane wave with the velocity of propaga-
tion equal to 

To generalize the foregoing discussion of the functions f and g, let us con-
sider two pairs of t and z, say, and and and Then for the
function f to maintain the same value for these two pairs of z and t, we must
have

or

Since is a positive quantity, this indicates that as time progresses, a given
value of the function moves forward in z with the velocity thereby giv-
ing the characteristic of a wave for f. Similarly, for the function g to main-
tain the same value for the two pairs of t and z, we must have

or

The minus sign associated with indicates that as time progresses, a
given value of the function moves backward in z with the velocity giv-
ing the characteristic of a wave for g.1-2 1>1m0e0,

1>1m0e0

¢z = -  
11m0e0

 ¢t

t1 + z11m0e0 = 1t1 + ¢t2 + 1z1 + ¢z21m0e0

1+2 1>1m0e0,
1m0e0

¢z =
11m0e0

 ¢t

t1 - z11m0e0 = 1t1 + ¢t2 - 1z1 + ¢z21m0e0

z1 + ¢z.t1 + ¢tz1,t1

1>1m0e0.
1-2 -z-direction,

-z-direction.t = 0,
t = 1m0e0

t = 1m0e0,t = 0

g1t + z1m0e02 = 1t + z1m0e022

vp =
11m0e0

= 3 * 108 m>s

1+2+z
+z-direction.

t = 0,t = 1m0e0
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We shall now define the intrinsic impedance of free space, to be

(3.81)

From (3.78) and (3.79), we see that is the ratio of to for the wave
or the negative of the same ratio for the wave. Since the units of are volts
per meter and the units of are amperes per meter, the units of are
volts per ampere or ohms, thereby giving the character of impedance for Re-
placing in (3.79) by and substituting for in the arguments
of the functions f and g in both (3.78) and (3.79), we can now write (3.78) and
(3.79) as

(3.82a)

(3.82b)

4. Having learned that the solution to (3.72a) and (3.72b) consists of super-
position of traveling waves propagating in the and we now
make use of this solution together with other considerations to find the electro-
magnetic field due to the infinite plane current sheet of Fig. 3.14, and with the
current density given by (3.67). To do this, we observe the following:

(a) Since the current sheet, which is the source of waves, is in the plane,
there can be only a wave in the region and only a wave in
the region Thus,

(3.83a)

(3.83b)

(b) Applying Faraday’s law in integral form to the rectangular closed path
abcda in Fig. 3.17 in the limit that the sides bc and with the sides
ab and dc remaining on either side of the current sheet, we have

(3.84)1ab2[Ex]z = 0 + - 1dc2[Ex]z = 0 - = 0

da : 0,

 H1z, t2 = e
A
h0

 fa t -
z
vp
bay for z 7 0

-  
B
h0

 ga t +
z
vp
bay for z 6 0

 E1z, t2 = e Afa t -
z
vp
bax for z 7 0

Bga t +
z
vp
bax for z 6 0

z 6 0.
1-2z 7 01+2 z = 0

-z-directions,+z-

 Hy1z, t2 =
1
h0

 cAfa t -
z
vp
b - Bga t +

z
vp
b d

 Ex1z, t2 = Afa t -
z
vp
b + Bga t +

z
vp
b

1>1m0e0vph01m0>e0

h0.
Ex>HyHy

Ex1-2 1+2HyExh0

h0 = Am0

e0
L 120p Æ = 377 Æ

h0,
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Electro-
magnetic field
due to the
current sheet
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z

x

y

h e

g
f

b

ad

c

e0, m0

JS

FIGURE 3.17

Rectangular closed paths with sides on either
side of the infinite plane current sheet.

or Thus, (3.83a) and (3.83b) reduce to

(3.85a)

(3.85b)

where we have used 
(c) Applying Ampere’s circuital law in integral form to the rectangular closed

path efghe in Fig. 3.17 in the limit that the sides fg and with the
sides ef and hg remaining on either side of the current sheet, we have

(3.86)

or Thus, and (3.85a) and (3.85b)
become

(3.87a)

(3.87b)

Equations (3.87a) and (3.87b) represent the complete solution for the
electromagnetic field due to the infinite plane current sheet of surface current

 H1z, t2 = ;
1
2

 JSa t <
z
vp
bay for z � 0

 E1z, t2 =
h0

2
 JSa t <

z
vp
bax for z � 0

F1t2 = 1h0>22JS1t2,12>h02F1t2 = JS1t2.
1ef2[Hy]z = 0 + - 1hg2[Hy]z = 0 - = 1ef2Js1t2

he : 0,

Af1t2 = Bg1t2 = F1t2.

 H1z, t2 = ;
1
h0

Fa t <
z
vp
bay for z � 0

 E1z, t2 = Fa t <
z
vp
bax for z � 0

Af1t2 = Bg1t2.
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3.4 Uniform Plane Waves in Time Domain in Free Space 169

density given by

(3.88)

The solution corresponds to uniform plane waves having their field components
uniform in planes parallel to the current sheet and propagating to either side of
the current sheet with the velocity The time variation of the electric
field component in a given plane is the same as the current
density variation delayed by the time and multiplied by The time
variation of the magnetic field component in a given plane is the
same as the current density variation delayed by and multiplied by 
depending on Using these properties, one can construct plots of the field
components versus time for fixed values of z and versus z for fixed values of t.
We shall illustrate by means of an example.

Example 3.10 Plotting field variations for an infinite plane-sheet
current source

Let us consider the function in (3.88) to be that given in Fig. 3.18. We wish to find
and sketch (a) versus t for (b) versus t for (c) versus z
for and (d) versus z for 

(a) Since the time delay corresponding to 300 m is Thus,
the plot of versus t for is the same as that of multiplied by 
or 188.5, and delayed by as shown in Fig. 3.19(a).

(b) The time delay corresponding to 450 m is Thus, the plot of versus t for
is the same as that of multiplied by and delayed by 

as shown in Fig. 3.19(b).
(c) To sketch versus z for a fixed value of t, say, we use the argument that a given

value of existing at the source at an earlier value of time, say, travels away
from the source by the distance equal to times Thus, at the
values of corresponding to points A and B in Fig. 3.18 move to the locations

and respectively, and the value of corresponding to
point C exists right at the source. Hence, the plot of versus z for is as
shown in Fig. 3.19(c). Note that points beyond C in Fig. 3.18 correspond to

and therefore they do not appear in the plot of Fig. 3.19(c).
(d) Using arguments as in part (c), we see that at the values of corre-

sponding to points A, B, C, D, and E in Fig. 3.18 move to the locations 
and respectively, as shown in Fig. 3.19(d). Note

that the plot is an odd function of z, since the factor by which is multiplied to
obtain is depending on z � 0.;  

1
2,Hy

JS0

;150 m,;600 m, ;450 m, ;300 m,
z = ;750 m,

Hyt = 2.5 ms,
t 7 1 ms,

t = 1 msEx

Exz = ;150 m,z = ;300 m
Ex

t = 1 ms,vp.1t1 - t22
t2,Ex

t1,Ex

1.5 ms,-1>2JS1t2z = -450 m
Hy1.5 ms.

1 ms,
h0>2,JS1t2z = 300 mEx

1 ms.vp = c = 3 * 108 m>s,

t = 2.5 ms.Hyt = 1 ms,
Exz = -450 m,Hyz = 300 m,Ex

JS1t2

z � 0.
;1

2,ƒ z ƒ >vp

z = constant
h0>2.ƒ z ƒ >vp

z = constantEx

vp1=  c2.

JS1t2 = -JS1t2ax for z = 0

10 2

0.1

t, �s

JS, A/m

A

B

C D E

FIGURE 3.18

Plot of versus t for Example 3.10.Js
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1
0

(a)

2 3 4 5

�18.85

t, �s

18.85

A

B

C D E

[Ex]z � 300 m, V/m

1
0

(b)

2 3 4 5

�0.05

t, �s

0.05

A

B

C D E

[Hy]z � �450 m, A/m

�900 �600 �300

(d)

0 300 600 900

�0.05

0.05

[Hy]t � 2.5 �s, A/m

A

A

B

B

C D E

CDE

�900 �600 �300

(c)

0 300 600 900
z, m

z, m

18.85

[Ex]t � 1 �s, V/m

AA
BB

C

FIGURE 3.19

Plots of field components versus t for fixed values of z and versus z for fixed values of t for
Example 3.10.
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K3.4. Infinite plane current sheet; Uniform plane wave;Wave equation;Time domain;
Traveling-wave functions; Velocity of propagation; Intrinsic impedance of free
space; Time delay.

D3.11. For each of the following traveling-wave functions, find the velocity of propaga-
tion both in magnitude and direction: (a) (b) and
(c)
Ans. (a) (b) (c)

D3.12. The time variation for of a function f(z, t) representing a traveling wave
propagating in the with velocity 200 m/s is shown in Fig. 3.20. Find
the value of the function for each of the following cases: (a)
(b) and (c)
Ans. (a) 0.25A; (b) 0.6A; (c) 0.

z = 100 m, t = 0.5 s.z = -200 m, t = 0.4 s;
z = 300 m, t = 2.0 s;

+z-direction
z = 0

108az m>s.-50ax m>s;20ay m>s;
cos 12p * 108t - 2pz2.

u1t + 0.02x2;10.05y - t22;

10 t, s

[ f ]z � 0

At2

2 3

A

FIGURE 3.20

For Problem D3.12.

10 t, s2 3 4 5

A

[g ]z � 0

FIGURE 3.21

For Problem D3.13.

Solution for
the field for
the sinusoidal
case

D3.13. The time variation for of a function g(z, t) representing a traveling wave
propagating in the with velocity 100 m/s is shown in Fig. 3.21. Find
the value of the function for each of the following cases: (a)
(b) and (c)
Ans. (a) 0.9A; (b) 0.4A; (c) A.

z = 100 m, t = 0.6 s.z = -300 m, t = 3.4 s;
z = 200 m, t = 0.2 s;

-z-direction
z = 0

3.5 SINUSOIDALLY TIME-VARYING UNIFORM PLANE WAVES 
IN FREE SPACE

In the previous section, we considered the current density on the infinite plane
current sheet to be an arbitrary function of time and obtained the solution for the
electromagnetic field. Of particular interest are fields varying sinusoidally with
time. Sinusoidally time-varying fields are important because of their natural oc-
currence and ease of generation. For example, when we speak, we emit sine
waves; when we tune our radio to a broadcast station, we receive sine waves; and
so on.Also, any function for which the time variation is arbitrary can be expressed
in terms of sinusoidally time-varying functions having a discrete or continuous
spectrum of frequencies, depending on whether the function is periodic or aperi-
odic. Thus, if the response of a system to a sinusoidal excitation is known, its re-
sponse for a nonsinusoidal excitation can be found. Sinusoidally time-varying
fields are produced by a source whose current density varies sinusoidally with
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time. Thus, assuming the current density on the infinite plane sheet of Fig. 3.14
to be

(3.89)

where is the amplitude and is the radian frequency, we obtain the corre-
sponding solution for the electromagnetic field by substituting 
in (3.87a) and (3.87b):

(3.90a)

(3.90b)

where

(3.91)

Equations (3.90a) and (3.90b) represent sinusoidally time-varying uni-
form plane waves propagating away from the current sheet.The phenomenon is
illustrated in Fig. 3.22, which shows sketches of the current density on the sheet
and the distance variation of the electric and magnetic fields on either side of
the current sheet for three values of t. It should be understood that in these
sketches the field variations depicted along the z-axis hold also for any other
line parallel to the z-axis. We shall now discuss in detail several important para-
meters and properties associated with the sinusoidal waves:

1. The argument of the cosine functions is the phase of the
fields. We shall denote the phase by the symbol Thus,

(3.92)

Note that is a function of t and z.
2. Since

(3.93)

the rate of change of phase with time for a fixed value of z is equal to the ra-
dian frequency of the wave. The linear frequency given by

(3.94)

is the number of times the phase changes by radians in one second for a
fixed value of z. The situation is pertinent to an observer at a point in the field

2p

f =
v

2p

v,

0f
0t

= v

f

f = vt < bz

f.
1vt < bz2

b =
v

vp

 H = ;  

JS0

2
 cos 1vt < bz2 ay for z � 0

 E =
h0JS0

2
 cos 1vt < bz2 ax for z � 0

JS1t2 = JS0 cos vt
vJS0

JS = -JS0 cos vt ax for z = 0
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Properties
and
parameters of
sinusoidal
waves

Frequency
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H
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E

JS � � JS0 cos vt ax t � 0, JS � � JS0ax

JS � � ax
JS0t �       ,p

4v 2

JS � 0t �       ,p
2v

FIGURE 3.22

Time history of uniform plane electromagnetic wave radiating away from an infinite plane
current sheet in free space.
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Phase
constant

Wavelength

region watching a movie of the field variations with time and counting the num-
ber of times in one second the field goes through a certain phase point, say, the
positive maximum.

3. Since

(3.95)

the magnitude of the rate of change of phase with distance z for a fixed value of
time is equal to known as the phase constant.The situation is pertinent to tak-
ing a still photograph of the phenomenon at any given time along the z-axis,
counting the number of radians of phase change in one meter.

4. It follows from property 3 that the distance, along the z-direction, in
which the phase changes by radians for a fixed value of time is equal to

This distance is known as the wavelength, denoted by the symbol Thus,

(3.96)

It is the distance between two consecutive positive maximum points on the si-
nusoid, or between any other two points that are displaced from these two pos-
itive maximum points by the same distance and to the same side, as shown in
Fig. 3.23.

5. From (3.91), we note that the velocity of propagation of the wave is
given by

(3.97)

Here, it is known as the phase velocity, since a constant value of phase progress-
es with that velocity along the z-direction. It is the velocity with which an ob-
server has to move along the direction of propagation of the wave to be
associated with a particular phase point on the moving sinusoid. Thus, it follows
from (3.92) that

d1vt < bz2 = 0

vp =
v

b

l =
2p
b

l.2p>b.
2p

b,

0f
0z

= <b

Phase
velocity

z

l

l

l

FIGURE 3.23

For explaining wavelength.
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3.5 Sinusoidally Time-Varying Uniform Plane Waves in Free Space 175

which gives

where the and signs correspond to and waves, respectively. We
recall that for free space,

6. From (3.96), (3.94), and (3.97), we note that

or

(3.98)

Thus, the wavelength and frequency of a wave are not independent of each
other, but are related through the phase velocity. This is not surprising because

is a parameter governing the variation of the field with distance for a fixed
time, f is a parameter governing the variation of the field with time for a fixed
value of z, and we know from Maxwell’s equations that the space and time vari-
ations of the fields are interdependent. For free space, (3.98) gives

(3.99a)

or

(3.99b)

It can be seen from these relationships that the higher the frequency, the
shorter the wavelength. Waves are classified according to frequency or wave-
length. Table 3.1 lists the commonly used designations for the various bands
up to 300 GHz, where 1 GHz is The corresponding frequency ranges109 Hz.

l in meters * f in megahertz = 300

l in meters * f in hertz = 3 * 108

l

lf = vp

lf = a2p
b
b a v

2p
b =

v

b

vp = 1>1m0e0 = c = 3 * 108 m>s.
1-21+2-+

dz

dt
= <  

v

b

v dt < b dz = 0

Classification
of waves

TABLE 3.1 Commonly Used Designations for the Various Frequency Ranges

Frequency Wavelength
Designation Range Range

ELF (extremely low frequency) 30–3000 Hz 10,000–100 km
VLF (very low frequency) 3–30 kHz 100–10 km
LF (low frequency) or long waves 30–300 kHz 10–1 km
MF (medium frequency) or medium waves 300–3000 kHz 1000–100 m
HF (high frequency) or short waves 3–30 MHz 100–10 m
VHF (very high frequency) 30–300 MHz 10–1 m
UHF (ultrahigh frequency) 300–3000 MHz 100–10 cm
Microwaves 1–30 GHz 30–1 cm
Millimeter waves 30–300 GHz 10–1 mm
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176 Chapter 3 Maxwell’s Equations in Differential Form . . .

and wavelength ranges are also given. The frequencies above about 300 GHz
fall into regions far infrared and beyond. The AM radio (550–1650 kHz) falls
in the medium wave band, whereas the FM radio makes use of 88–108 MHz in
the VHF band. The VHF TV channels 2–6 use 54–88 MHz, and 7–13 employ
174–216 MHz. The UHF TV channels are in the 470–890-MHz range. Mi-
crowave ovens operate at 2450 MHz. Police traffic radars operate at about
10.5 and 24.1 GHz. Various other ranges in Table 3.1 are used for various
other applications too numerous to mention here.

7. The electric and magnetic fields are such that

(3.100)

We recall that the intrinsic impedance of free space, has a value approxi-
mately equal to or 

8. The electric and magnetic fields have components lying in the planes of
constant phase and perpendicular to each other and to
the direction of propagation. In fact, the cross product of E and H results in a
vector that is directed along the direction of propagation, as can be seen by not-
ing that

(3.101)

We shall now consider two examples of the application of the properties
we have learned thus far in this section.

Example 3.11 Finding parameters for a specified sinusoidal uniform
plane-wave electric field

The electric field of a uniform plane wave is given by

Let us find (a) the various parameters associated with the wave and (b) the correspond-
ing magnetic field H.

(a) From the argument of the sine and cosine functions, we can identify the following:

Then

 vp =
v

b
= 3 * 108 m>s

 l =
2p
b

= 2 m

 f =
v

2p
= 1.5 * 108

 Hz

 b = p rad>m
 v = 3p * 108 rad>s

E = 10 sin 13p * 108t - pz2 ax + 10 cos 13p * 108t - pz2 ay V>m

E � H = ;  

h0Js0
2

4
  cos2 1vt < bz2 az for z � 0

1z = constant planes2
377 Æ.120p

h0,

amplitude of E
amplitude of H

= h0

Intrinsic
impedance
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3.5 Sinusoidally Time-Varying Uniform Plane Waves in Free Space 177

Note also that In view of the minus sign associated with 
the direction of propagation of the wave is the 

(b) The unit vectors and associated with the first and second terms, respectively,
tell us that the electric field contains components directed along the x- and y-di-
rections. Using the properties 7 and 8 discussed earlier, we obtain the magnetic
field of the wave to be

Example 3.12 Electric field due to an array of two infinite plane current
sheets

An antenna array consists of two or more antenna elements spaced appropriately and
excited with currents having the appropriate amplitudes and phases in order to obtain a
desired radiation characteristic.To illustrate the principle of an antenna array, let us con-
sider two infinite plane parallel current sheets, spaced apart and carrying currents of
equal amplitudes but out of phase by as given by the densities

and find the electric field due to the array of the two current sheets.
We apply the result given by (3.90a) to each current sheet separately and then use

superposition to find the required total electric field due to the array of the two current
sheets. Thus, for the current sheet in the plane, we have

For the current sheet in the plane, we have

 = d h0 JS0

2
  cos 1vt - bz2 ax for z 7

l

4

-  

h0 JS0

2
  cos 1vt + bz2 ax for z 7

l

4

 = d h0 JS0

2
  sin avt - bz +

p

2
b  ax for z 7

l

4
h0 JS0

2
  sin avt + bz -

p

2
b  ax for z 6

l

4

 E2 = d h0 JS0

2
  sin cvt - b az -

l

4
b d  ax for z 7

l

4
h0 JS0

2
  sin cvt + b az -

l

4
b d  ax for z 6

l

4

z = l>4

E1 = d h0 JS0

2
  cos 1vt - bz2 ax for z 7 0

h0 JS0

2
  cos 1vt + bz2 ax for z 6 0

z = 0

 JS2 = -JS0 sin vt ax for z = l>4
 JS1 = -JS0 cos vt ax for z = 0

p>2
l>4

 = -  
10
377

  cos 13p * 108t - pz2 ax +
10

377
  sin 13p * 108t - pz2 ay A>m

 H =
10

377
  sin 13p * 108t - pz2 ay +

10
377

  cos 13p * 108t - pz2 1-ax2

ayax

+z-direction.
pz,lf = 3 * 108 = vp.

Principle of
antenna array

RaoCh03v3.qxd  12/18/03  3:32 PM  Page 177



178 Chapter 3 Maxwell’s Equations in Differential Form . . .

Now, using superposition, we find the total electric field due to the two current sheets to be

Thus, the total field is zero in the region due to the phase opposition of the
individual fields, and, hence, there is no radiation toward that side of the array. In the re-
gion the total field is twice that of the field of a single sheet due to the individ-
ual fields being in phase. The phenomenon is illustrated in Fig. 3.24, which shows the
individual fields and and the total field for a few values of t. The
result that we have obtained here for the total field due to the array of two current
sheets, spaced apart and fed with currents of equal amplitudes but out of phase by

is said to correspond to an “endfire” radiation pattern.

K3.5. Sinusoidal waves; Phase; Frequency; Wavelength; Phase velocity; Frequency
times wavelength; Intrinsic impedance; Antenna array.

D3.14. For a sinusoidally time-varying uniform plane wave propagating in free space,
find the following: (a) the frequency f, if the phase of the field at a point is ob-
served to change by rad in (b) the wavelength if the phase of the
field at a particular value of time is observed to change by in a distance of
1 m along the direction of propagation of the wave; (c) the frequency f, if the
wavelength is 25 m; and (d) the wavelength if the frequency is 5 MHz.
Ans (a) 15 MHz; (b) 50 m; (c) 12 MHz; (d) 60 m.

D3.15. The magnetic field of a uniform plane wave in free space is given by

Find unit vectors along the following: (a) the direction of propagation of the
wave; (b) the direction of the magnetic field at and (c) the direc-
tion of the electric field at 
Ans. (a) (b) (c)

D3.16. For the array of two infinite plane current sheets of Example 3.12, assume that

where Find the value of k for each of the following values of the ratio
of the amplitude of the electric-field intensity for to the amplitude of
the electric-field intensity for (a) 1/3; (b) 3; and (c) 7.
Ans. (a) (b) 1/2; (c) 3/4.

3.6 POLARIZATION OF SINUSOIDALLY TIME-VARYING VECTOR FIELDS

Returning now to the solution for the uniform plane wave fields given by
(3.90a) and (3.90b), we can talk about wave polarization. Polarization is the
characteristic that describes how the tip of a sinusoidally time-varying field vec-
tor at a point in space changes position with time. In the case of waves, when we

-1>2;
z 6 0:

z 7 l>4
ƒ k ƒ … 1.

JS2 = -kJS0 sin vt ax for z = l>4

-az.ax;-ay;
t = 0, y = 0.

t = 0, y = 0;

H = H0 cos 16p * 108t + 2py2 ax A>m

l,

0.04p
l,0.1 ms;3p

p>2,
l>4

Ex = Ex1 + Ex2Ex2Ex1

z 7 l>4,

z 6 0

 = c h0 JS0 cos 1vt - bz2 ax for z 7 l>4
h0 JS0 sin vt sin bz ax for 0 6 z 6 l>4
0 for z 6 0

 E = E1 + E2
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Ex1

Ex2
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FIGURE 3.24

Time history of individual fields and the total field due to an array of two infinite plane
parallel current sheets.

talk about polarization, we refer to the electric field associated with the wave.
The electric field given by (3.90a) has only an x-component. We can visualize
the sinusoidal variation with time of this field at a particular point in the field
region by a vector changing in magnitude and direction, as shown in Fig. 3.25(a).
Since the tip of the vector moves back and forth along a line, which in this case
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180 Chapter 3 Maxwell’s Equations in Differential Form . . .

is parallel to the x-axis, the field is said to be linearly polarized in the x-direction.
Similarly, the sinusoidal variation with time of a field having a y-component
only can be visualized by a vector changing its magnitude and direction, as
shown in Fig. 3.25(b). Since the tip of the vector moves back and forth parallel
to the y-axis, the field is said to be linearly polarized in the y-direction.

For fields having more than one component, the polarization can be lin-
ear, circular, or elliptical, that is, the tip of the field vector can describe a
straight line, a circle, or an ellipse with time, as shown in Fig. 3.26, depending
on the relative amplitudes and phase angles of the component vectors. Note
that in the case of linear polarization, the direction of the vector remains
along a straight line, but its magnitude changes with time. For circular polar-
ization, the magnitude remains constant, but its direction changes with time.
Elliptical polarization is characterized by both magnitude and direction of the
vector changing with time. Let us consider two components and discuss the
different cases.

t

x

t

y

0

0

p

2v

p
v

2v
3p

v

2p
v

3p

2v
5p

2v
7p

(a)

(b)

FIGURE 3.25

(a) Time variation of a linearly polarized vector in the x-direction. (b) Time variation of
a linearly polarized vector in the y-direction.

tt

t

(a) (b) (c)

FIGURE 3.26

(a) Linear, (b) circular, and
(c) elliptical polarizations.
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3.6 Polarization of Sinusoidally Time-Varying Vector Fields 181

If the two component sinusoidally time-varying vectors have arbitrary am-
plitudes but are in phase or in phase opposition as, for example,

(3.102a)
(3.102b)

then the sum vector is linearly polarized in a direction making an
angle

(3.103)

with the x-direction, as shown in the series of sketches in Fig. 3.27 for the in-phase
case illustrating the time history of the magnitude and direction of F over an in-
terval of one period.The reasoning can be extended to two (or more) linearly po-
larized vectors that are not necessarily along the coordinate axes, but are all in
phase. Thus, the sum vector of any number of linearly polarized vectors having
different directions and amplitudes but in phase is also a linearly polarized vector.

If the two component sinusoidally time-varying vectors have equal ampli-
tudes, differ in direction by 90°, and differ in phase by as, for example,

(3.104a)

(3.104b)

then, to determine the polarization of the sum vector we note that
the magnitude of F is given by

(3.105)

and that the angle which F makes with is given by

(3.106)

Thus, the sum vector rotates with constant magnitude and at a rate of rad/s, so
that its tip describes a circle.The sum vector is then said to be circularly polarized.

vF0

a = tan-1
 

Fy

Fx
= tan-1

 

F0 sin 1vt + f2
F0 cos 1vt + f2 = vt + f

axa

ƒ F ƒ = ƒ F0 cos 1vt + f2 ax + F0 sin 1vt + f2 ay ƒ = F0

F = F1 + F2,

 F2 = F0 sin 1vt + f2 ay

 F1 = F0 cos 1vt + f2 ax

p>2,

a = tan-1
 

Fy

Fx
= ;tan-1

 

F2

F1

F = F1 + F2

 F2 = ;F2 cos 1vt + f2 ay

 F1 = F1 cos 1vt + f2 ax

Linear
polarization

x

y

F1

F2

F

a aa a

a a a

FIGURE 3.27

The sum vector of two linearly polarized vectors in phase is a linearly polarized vector.

Circular
polarization
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182 Chapter 3 Maxwell’s Equations in Differential Form . . .

The series of sketches in Fig. 3.28 illustrates the time history of the magnitude and
direction of F over an interval of one period.

The reasoning can be generalized to two linearly polarized vectors not
necessarily along the coordinate axes.Thus, if two linearly polarized vectors sat-
isfy the three conditions of (1) equal amplitudes, (2) perpendicularity in direc-
tion, and (3) phase difference of 90°, then their sum vector is circularly
polarized. We shall illustrate this by means of an example.

Example 3.13 Determination of the polarization of the sum of two
linearly polarized vectors

Suppose we are given two vectors

at a point. Note that the vector consists of two components (x and z) that are in phase
opposition. Hence, it is linearly polarized, but along the direction of The
vector is linearly polarized along the y-direction. We wish to determine the polariza-
tion of the vector 

Since the two linearly polarized vectors and are not in phase, we rule out the
possibility of F being linearly polarized. In fact, since varies with time in a cosine man-
ner, whereas varies in a sine manner, we note that and differ in phase by 90°.The
amplitude of is or 5, which is equal to that of Also,

so that and are perpendicular.Thus, and satisfy all three conditions for the sum of
two linearly polarized vectors to be circularly polarized.Therefore, F is circularly polarized.

Alternatively, we observe that

Hence, F is circularly polarized.

 = 125 = 5, a constant with time

 = 125 cos2 2p * 106t + 25 sin2 2p * 106t21>2
 = ƒ 3 cos 2p * 106t ax + 5 sin 2p * 106t ay - 4 cos 2p * 106t az ƒ

 ƒ F ƒ = ƒ F1 + F2 ƒ

F2F1F2F1

F1
# F2 = 13ax - 4az2 # 5ay = 0

F2.232 + 1-422,F1

F2F1F2

F1

F2F1

F = F1 + F2.
F2

13ax - 4az2.
F1

 F2 = 5ay sin 2p * 106t

 F1 = 13ax - 4az2 cos 2p * 106t

x

y

F1

F2

F
a

FIGURE 3.28

Circular polarization.
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3.6 Polarization of Sinusoidally Time-Varying Vector Fields 183

For the general case in which the conditions for the sum vector to be lin-
early polarized or circularly polarized are not satisfied, the sum vector is
elliptically polarized; that is, its tip describes an ellipse. Thus, linear and circular
polarizations are special cases of elliptical polarization. For example, the ellipse
described by the tip of the vector resulting from the superposition of two sinu-
soidally time-varying, orthogonal component vectors and

of the same frequency, for values of 
and is shown in Fig. 3.29, where the component vectors and

the resultant vector are also shown for one value of time, and the interval be-
tween the dots is one-hundredth of the period 

An example in which polarization is relevant is in the reception of radio
waves. If the incoming signal is linearly polarized, then for maximum voltage to
be induced in a linear receiving antenna, the antenna must be oriented parallel
to the direction of polarization of the signal. Any other orientation of the an-
tenna will result in a smaller induced voltage, since the antenna “sees” only that
component of the electric field parallel to itself. In particular, if the antenna is in
the plane perpendicular to the direction of polarization of the incoming signal,
no voltage is induced. On the other hand, if the incoming signal is circularly or
elliptically polarized, a voltage is induced in the antenna, except for one orien-
tation that is along the line perpendicular to the plane of the circle or the ellipse.

Finally, in the case of circular and elliptical polarizations, since the circle or
the ellipse can be traversed in one of two opposite senses, we talk of right-hand-
ed or clockwise polarization and left-handed or counterclockwise polarization.
The convention is that if in a given constant phase plane, the tip of the field vec-
tor of a circularly polarized wave rotates with time in the clockwise sense as
seen looking along the direction of propagation of the wave, the wave is said to
be right circularly polarized. If the tip of the field vector rotates in the counter-
clockwise sense, the wave is said to be left circularly polarized. Similar consider-
ations hold for elliptically polarized waves, which arise due to the superposition
of two linearly polarized waves in the general case.

For example, for the uniform plane wave of Example 3.11, The two com-
ponents of E are equal in amplitude, perpendicular, and out of phase by 90°.
Therefore, the wave is circularly polarized. To determine if the polarization is
right-handed or left-handed, we look at the electric field vectors in the z = 0

2p>v.

u = 105°,f = 60°,
A = 40, B = 60,F2 = B cos 1vt + u2 ay

F1 = A cos 1vt + f2 ax

Elliptical
polarization

40
60

x

y

FIGURE 3.29

Ellipse traced by the tip of the vector
40 cos 1vt + 60°2 ax + 60 cos 1vt + 105°2 ay.

Relevance of
polarization
in reception
of radio
waves
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184 Chapter 3 Maxwell’s Equations in Differential Form . . .

plane for two values of time, and 
These are shown in Fig. 3.30. As time progresses, the tip of the vector rotates in
the counterclockwise sense, as seen looking in the Hence, the
wave is left circularly polarized.

K3.6. Polarization; Linear polarization; Circular polarization; Elliptical polarization.
D3.17. Two sinusoidally time-varying vector fields are given by

Find the polarization of at each of the following points: (a) (3, 4, 0);
(b) (c) and (d)
Ans. (a) Linear; (b)circular; (c) linear; (d) elliptical.

D3.18. A sinusoidally time-varying vector field is given at a point by 
Find the value(s) of between 0° and 360° for

each of the following cases: (a) F is linearly polarized along a line lying in the
second and fourth quadrants; (b) F is circularly polarized with the sense of rota-
tion from the toward the with time; and (c) F is cir-
cularly polarized with the sense of rotation from the toward the

with time.
Ans. (a) 240°; (b) 330°; (c) 150°.

3.7 POWER FLOW AND ENERGY STORAGE

In Sec. 3.4, we obtained the solution for the electromagnetic field due to an infi-
nite plane current sheet situated in the plane, for arbitrary time variation,
and then in Sec. 3.5 we considered the solution for the sinusoidal case. For a sur-
face current flowing in the negative x-direction, we found the electric field on
the sheet to be directed in the positive x-direction. Since the current is flowing
against the force due to the electric field, a certain amount of work must be
done by the source of the current to maintain the current flow on the sheet. Let
us consider a rectangular area of length and width on the current sheet
as shown in Fig. 3.31. Since the current density is the charge crossingJS0 cos vt,

¢y¢x

z = 0

+x-direction
+y-direction

+y-direction+x-direction

a60°2 ax + 1 cos 1vt + a2 ay.
F = 1 cos 1vt +

1-1, -3, 0.22.1-2, 1, 12;13, -2, 0.52;
F1 + F2

 F2 = F0 cos 12p * 108t - 3pz2 ay

 F1 = F0 cos 12p * 108t - 2pz2 ax

+z-direction.

t = 1
6 * 10-8 s 13p * 108t = p>22.t = 0

y
z

x

[E]t � 0

[E]t �   	 10–8 s
1
6

FIGURE 3.30

For the determination of the sense of
circular polarization for the field of Ex. 3.11.
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3.7 Power Flow and Energy Storage 185

the width in time dt is The force exerted on this
charge by the electric field is given by

(3.107)

The amount of work required to be done against the electric field in displacing
this charge by the distance is

(3.108)

Thus the power supplied by the source of the current in maintaining the surface
current over the area is

(3.109)

Recalling that on the sheet is we obtain

(3.110)

We would expect the power given by (3.110) to be carried by the electro-
magnetic wave, half of it to either side of the current sheet. To investigate this,
we note that the quantity has the units of

which represents power density. Let us then consider the rectangular box en-
closing the area on the current sheet and with its sides almost touching¢x ¢y

 =
newton-meters

second
*

1

1meter22 =
watts

1mater22

 
newtons
coulomb

*
amperes

meter
=

newtons
coulomb

*
coulomb

second-meter
*

meter
meter

E � H

dw

dt
= h0 

JS0
2

2
   cos2 vt ¢x ¢y

h0 

JS0

2
  cos vt,Ex

dw

dt
= JS0Ex cos vt ¢x ¢y

¢x ¢y

dw = Fx ¢x = JS0Ex cos vt dt ¢x ¢y

¢x

F = dq E = JS0 ¢y cos vt dt Ex ax

dq = JS0 ¢y cos vt dt.¢y

y

x

�x

�y

z

FIGURE 3.31

For the determination of power flow density
associated with the electromagnetic field.
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186 Chapter 3 Maxwell’s Equations in Differential Form . . .

the current sheet on either side of it, as shown in Fig. 3.31. Evaluating the sur-
face integral of over the surface of the rectangular box, we obtain the
power flow out of the box as

(3.111)

This result is exactly equal to the power supplied by the current source as given
by (3.110).

We now interpret the quantity as the power flow density vector as-
sociated with the electromagnetic field. It is known as the Poynting vector after
J.H. Poynting and is denoted by the symbol P. Thus,

(3.112)

In particular, it is the instantaneous Poynting vector, since E and H are instanta-
neous field vectors. Although we have here introduced the Poynting vector by
considering the specific case of the electromagnetic field due to the infinite
plane current sheet, the interpretation that is equal to the power
flow out of the closed surface S is applicable in the general case.

Example 3.14 Distance variations of fields far from a physical antenna

Far from a physical antenna, that is, at a distance of several wavelengths from the anten-
na, the radiated electromagnetic waves are approximately uniform plane waves with
their constant phase surfaces lying normal to the radial directions away from the anten-
na, as shown for two directions in Fig. 3.32. We wish to show from the Poynting vector
and physical considerations that the electric and magnetic fields due to the antenna vary
inversely proportional to the radial distance away from the antenna.

From considerations of electric and magnetic fields of a uniform plane wave, the
Poynting vector is directed everywhere in the radial direction, indicating power flow ra-
dially away from the antenna, and is proportional to the square of the magnitude of the
electric field intensity. Let us now consider two spherical surfaces of radii and and
centered at the antenna, and insert a cone through these two surfaces such that the ver-
tex is at the antenna, as shown in Fig. 3.32. Then the power crossing the portion of the
spherical surface of radius inside the cone must be the same as the power crossing the
portion of the spherical surface of radius inside the cone. Since these surface areas are
proportional to the square of the radius and since the surface integral of the Poynting
vector gives the power, the Poynting vector must be inversely proportional to the square
of the radius. This in turn means that the electric field intensity and hence the magnetic
field intensity must be inversely proportional to the radius.

Thus, from these simple considerations, we have established that far from a radiat-
ing antenna the electromagnetic field is inversely proportional to the radial distance
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3.7 Power Flow and Energy Storage 187

away from the antenna.This reduction of the field intensity inversely proportional to the
distance is known as the “free space reduction.” For example, let us consider communi-
cation from earth to the moon. The distance from the earth to the moon is approximate-
ly or Hence, the free space reduction factor for the field
intensity is or, in terms of decibels, the reduction is or 171.6 db.

Returning to the electromagnetic field due to the infinite plane current
sheet, let us consider the region The magnitude of the Poynting vector in
this region is given by

(3.113)

The variation of with z for is shown in Fig. 3.33. If we now consider a rec-
tangluar box lying between and planes and having dimensionsz = z + ¢zz = z

t = 0Pz

Pz = ExHy = h0 

JS0
2

4
  cos2 1vt - bz2

z 7 0.

20 log10 38 * 107,10-7>38
38 * 107 m.38 * 104 km

Constant Phase
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Antenna
ra

ra
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FIGURE 3.32

Radiation of electromagnetic waves far from a physical antenna.
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For the discussion of energy storage
in electric and magnetic fields.
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188 Chapter 3 Maxwell’s Equations in Differential Form . . .

and in the x and y directions, respectively, we would in general obtain a
nonzero result for the power flowing out of the box, since is not every-
where zero. Thus there is some energy stored in the volume of the box. We then
ask ourselves the question,“Where does this energy reside?”A convenient way of
interpretation is to attribute the energy storage to the electric and magnetic fields.

To discuss the energy storage in the electric and magnetic fields further,
we evaluate the power flow out of the rectangular box. Thus

where is the volume of the box. Letting equal to and using (3.72a)
and (3.72b), we obtain

(3.114)

Equation (3.114) tells us that the power flow out of the box is equal to the sum of
the time rates of decrease of the quantities and These
quantities are obviously the energies stored in the electric and magnetic fields,
respectively, in the volume of the box. It then follows that the energy densities as-
sociated with the electric and magnetic fields in free space are and 
respectively, having the units Although we have obtained these results by
considering the particular case of the uniform plane wave, they hold in general.

Equation (3.114) is a special case of a theorem known as the Poynting’s
theorem. To derive Poynting’s theorem for the general case, we make use of the
vector identity.

(3.115)� # 1E � H2 = H # � � E - E # � � H
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and Maxwell’s curl equations

to obtain

(3.116)

Substituting P for and taking the volume integral of both sides of
(3.116) over the volume V, we obtain

(3.117)

Interchanging the differentiation operation with time and integration operation
over volume in the second and third terms on the right side and replacing the
volume integral on the left side by a closed surface integral in accordance with
the divergence theorem, we get

(3.118)

where S is the surface bounding the volume V. Equation (3.118) is the Poynt-
ing’s theorem for the general case. Since it should hold for any size V, it follows
that the electric stored energy density and the magnetic stored energy density in
free space are given by

(3.119a)

(3.119b)

respectively. The quantity having the units or is the
power density associated with the work done by the field, having to do with the
current flow.
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190 Chapter 3 Maxwell’s Equations in Differential Form . . .

Returning now to (3.113), we can talk about the time-average value of 
denoted It is the value of averaged over one period of the sinusoidal
time variation of the source; that is,

(3.120)

where is the period. From (3.113), we have

(3.121)

This can be expressed in the manner

(3.122)

where and are the phasor electric and magnetic field components, re-
spectively. See Appendix A for phasors. In terms of vector quantities,

(3.123)

which is the time-average Poynting vector, where

(3.124)

is the complex Poynting vector.
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Summary 191

K3.7. Power flow; Poynting vector; Poynting’s theorem; Electric stored energy densi-
ty; Magnetic stored energy density; Time-average Poynting vector.

D3.19. The magnetic field associated with a uniform plane wave propagating in the
in free space is given by

Find the following: (a) the instantaneous power flow across a surface of area
in the plane at (b) the instantaneous power flow across a sur-

face of area in the plane at and (c) the time-average
power flow across a surface of area in the plane.
Ans. (a) (b) 0 W; (c)

D3.20. Find the time-average values of the following: (a) (b)
and (c)

Ans. (a) 0; (b) 0.25A; (c) 0.3125A.

SUMMARY

We have in this chapter derived the differential forms of Maxwell’s equations
from their integral forms, which we introduced in Chapter 2. For the general
case of electric and magnetic fields having all three components, each of them
dependent on all coordinates and time, Maxwell’s equations in differential form
are given as follows in words and in mathematical form.

Faraday’s law. The curl of the electric field intensity is equal to the negative of
the time derivative of the magnetic flux density; that is,

(3.125)

Ampère’s circuital law. The curl of the magnetic field intensity is equal to the
sum of the current density due to flow of charges and the displacement current
density, which is the time derivative of the displacement flux density; that is,

(3.126)

Gauss’ law for the electric field. The divergence of the displacement flux den-
sity is equal to the charge density; that is,

(3.127)

Gauss’ law for the magnetic field. The divergence of the magnetic flux density
is equal to zero; that is,

(3.128)� # B = 0
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192 Chapter 3 Maxwell’s Equations in Differential Form . . .

Auxiliary to (3.125)–(3.128), the continuity equation is given by

(3.129)

This equation, which is the differential form of the law of conservation of
charge, states that the sum of the divergence of the current density due to flow
of charges and the time derivative of the charge density is equal to zero. Also,
we recall that

which relate D and H to E and B, respectively, for free space.
We have learned that the basic definitions of curl and divergence, which

have enabled us to discuss their physical interpretations with the aid of the curl
and divergence meters, are

Thus, the curl of a vector field at a point is a vector whose magnitude is the cir-
culation of that vector field per unit area, with the area oriented so as to maxi-
mize this quantity and in the limit that the area shrinks to the point. The
direction of the vector is normal to the area in the aforementioned limit and in
the right-hand sense. The divergence of a vector field at a point is a scalar quan-
tity equal to the net outward flux of that vector field per unit volume in the limit
that the volume shrinks to the point. In Cartesian coordinates, the expansions
for curl and divergence are

Thus, Maxwell’s equations in differential form relate the spatial variations of
the field vectors at a point to their temporal variations and to the charge and
current densities at that point.
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Summary 193

We have also learned two theorems associated with curl and divergence.
These are the Stokes’ theorem and the divergence theorem given, respectively, by

Stokes’ theorem enables us to replace the line integral of a vector around a
closed path by the surface integral of the curl of that vector over any surface
bounded by that closed path, and vice versa.The divergence theorem enables us
to replace the surface integral of a vector over a closed surface by the volume
integral of the divergence of that vector over the volume bounded by the closed
surface and vice versa.

Next, we studied the principles of uniform plane waves. Uniform plane
waves are a building block in the study of electromagnetic wave propagation.
They are the simplest type of solutions resulting from the coupling of the elec-
tric and magnetic fields in Maxwell’s curl equations. Their electric and magnetic
fields are perpendicular to each other and to the direction of propagation. The
fields are uniform in the planes perpendicular to the direction of propagation.

We first obtained the uniform plane wave solution to Maxwell’s equations
in time domain in free space by considering an infinite plane current sheet in
the xy-plane with uniform surface current density given by

and deriving the electromagnetic field due to the current sheet to be

(3.130a)

(3.130b)

where

and

are the velocity of propagation and intrinsic impedance, respectively. In (3.130a)
and (3.130b), the arguments and represent wave motion1t + z>vp21t - z>vp2
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194 Chapter 3 Maxwell’s Equations in Differential Form . . .

in the positive z-direction and the negative z-direction, respectively, with the ve-
locity Thus, (3.130a) and (3.130b) correspond to waves propagating away
from the current sheet to either side of it. Since the fields are uniform in con-
stant-z planes, they represent uniform plane waves. We discussed how to plot
the variations of the field components versus t for fixed values of z and versus z
for fixed values of t, for a given function 

We then extended the solution to sinusoidally time-varying uniform plane
waves by considering the current density on the infinite plane sheet to be

and obtaining the corresponding field to be

(3.131a)

(3.131b)

where

(3.132)

We discussed several important parameters and properties associated with
these waves, including polarization. The quantity is the phase constant, that
is, the magnitude of the rate of change of phase with distance along the direc-
tion of propagation, for a fixed time. The velocity which from (3.132) is
given by

(3.133)

is known as the phase velocity, because it is the velocity with which a particular
constant phase progresses along the direction of propagation. The wavelength

that is, the distance along the direction of propagation in which the phase
changes by radians, for a fixed time, is given by

(3.134)

The wavelength is related to the frequency f in a simple manner as given by

(3.135)

which follows from (3.133) and (3.135) and is a result of the fact that the time
and space variations of the fields are interdependent. We also discussed the
principle of antenna array.

vp = lf

l =
2p
b

2p
l,

vp =
v

b

vp,

b

b =
v

vp
= v1m0e0

 H = 

JS0

2
  cos 1vt � bz2 ay for z � 0

 E =
h0JS0

2
  cos 1vt � bz2 ax for z � 0

JS = -JS0 cos vt ax A>m

JS1t2.

vp.

RaoCh03v3.qxd  12/18/03  3:33 PM  Page 194



Review Questions 195

Polarization of sinusoidally time-varying vector fields was then considered.
In the general case, the polarization is elliptical, that is, the tip of the field vector
describes an ellipse with time. Linear and circular polarizations are special cases.

Finally, we learned that there is power flow and energy storage associated
with the wave propagation that accounts for the work done in maintaining the
current flow on the sheet.The power flow density is given by the Poynting vector

and the energy densities associated with the electric and magnetic fields are
given, respectively, by

The surface integral of the Poynting vector over a given closed surface gives the
total power flow out of the volume bounded by that surface.

REVIEW QUESTIONS

Q3.1. State Faraday’s law in differential form for the simple case of 
How is it derived from Faraday’s law in integral form?

Q3.2. State Faraday’s law in differential form for the general case of an arbitrary elec-
tric field. How is it derived from its integral form?

Q3.3. What is meant by the net right-lateral differential of the x- and y-components of
a vector normal to the z-direction? Give an example in which the net right-lat-
eral differential of and normal to the z-direction is zero, although the in-
dividual derivatives are nonzero.

Q3.4. What is the determinant expansion for the curl of a vector in Cartesian co-
ordinates?

Q3.5. State Ampère’s circuital law in differential form for the general case of an arbi-
trary magnetic field. How is it derived from its integral form?

Q3.6. State Ampère’s circuital law in differential form for the simple case of
How is it derived from Ampère’s circuital law in differential

form for the general case?
Q3.7. If a pair of E and B at a point satisfies Faraday’s law in differential form, does it

necessarily follow that it also satisfies Ampère’s circuital law in differential
form, and vice versa?

Q3.8. State Gauss’ law for the electric field in differential form. How is it derived from
its integral form?

Q3.9. What is meant by the net longitudinal differential of the components of a vec-
tor field? Give an example in which the net longitudinal differential of the
components of a vector field is zero, although the individual derivatives are
nonzero.

Q3.10. What is the expansion for the divergence of a vector in Cartesian coordinates?
Q3.11. State Gauss’ law for the magnetic field in differential form. How is it derived

from its integral form?

H = Hy1z, t2ay.

EyEx

E = Ex1z, t2ax.
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196 Chapter 3 Maxwell’s Equations in Differential Form . . .

Q3.12. How can you determine if a given vector can represent a magnetic field?
Q3.13. State the continuity equation and discuss its physical interpretation.
Q3.14. Summarize Maxwell’s equations in differential form.
Q3.15. State and briefly discuss the basic definition of the curl of a vector.
Q3.16. What is a curl meter? How does it help visualize the behavior of the curl of a

vector field?
Q3.17. Provide two examples of physical phenomena in which the curl of a vector field

is nonzero.
Q3.18. State and briefly discuss the basic definition of the divergence of a vector.
Q3.19. What is a divergence meter? How does it help visualize the behavior of the di-

vergence of a vector field?
Q3.20. Provide two examples of physical phenomena in which the divergence of a vec-

tor field is nonzero.
Q3.21. State Stokes’ theorem and discuss its application.
Q3.22. State the divergence theorem and discuss its application.
Q3.23. What is the divergence of the curl of a vector?
Q3.24. What is a uniform plane wave? Why is the study of uniform plane waves important?
Q3.25. Outline the procedure for obtaining from the two Maxwell’s curl equations the

particular differential equation for the special case of 
Q3.26. State the wave equation for the case of Describe the procedure

for its solution.
Q3.27. Discuss by means of an example how a function represents a

traveling wave propagating in the positive z-direction.
Q3.28. Discuss by means of an example how a function represents a

traveling wave propagating in the negative z-direction.
Q3.29. What is the significance of the intrinsic impedance of free space? What is its value?
Q3.30. Summarize the procedure for obtaining the solution for the electromagnetic

field due to the infinite plane sheet of uniform time-varying current density.
Q3.31. State and discuss the solution for the electromagnetic field due to the infinite

plane sheet of current density for 
Q3.32. Discuss the parameters and associated with sinusoidally time-varying

uniform plane waves.
Q3.33. Define wavelength. What is the relationship among wavelength, frequency, and

phase velocity?
Q3.34. Discuss the classification of waves according to frequency, giving examples of

their application in the different frequency ranges.
Q3.35. How is the direction of propagation of a uniform plane wave related to the di-

rections of its fields?
Q3.36. Discuss the principle of an antenna array with the aid of an example.
Q3.37. A sinusoidally time-varying vector is expressed in terms of its components

along the x-, y-, and z-axes. What is the polarization of each of the components?
Q3.38. What are the conditions for the sum of two linearly polarized sinusoidally time-

varying vectors to be circularly polarized?
Q3.39. What is the polarization for the general case of the sum of two sinusoidally

time-varying linearly polarized vectors having arbitrary amplitudes, phase an-
gles, and directions?

vpv, b,
z = 0.JS1t2 = -JS1t2ax

g1t + z1m0e02
f1t - z1m0e02

E = Ex1z, t2ax.
J = Jx1z2ax.
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Q3.40. Discuss the relevance of polarization in the reception of radio waves.
Q3.41. Discuss right-handed and left-handed circular polarizations associated with si-

nusoidally time-varying uniform plane waves.
Q3.42. What is the Poynting vector? What is the physical interpretation of the Poynting

vector over a closed surface?
Q3.43. Discuss how the fields far from a physical antenna vary inversely with the dis-

tance from the antenna.
Q3.44. Discuss the interpretation of energy storage in the electric and magnetic fields

of a uniform plane wave.What are the energy densities associated with the elec-
tric and magnetic fields?

Q3.45. State Poynting’s theorem. How is it derived from Maxwell’s curl equations?
Q3.46. What is the time-average Poynting vector? How is it expressed in terms of the

complex electric and magnetic fields?

PROBLEMS

Section 3.1

P3.1. Evaluating curls of vector fields. Find the curls of the following vector fields:

(a)
(b)
(c) in cylindrical coordinates
(d) in spherical coordinates

P3.2. Finding B for a given E from Faraday’s law in differential form. For each of the
following electric fields, find B that satisfies Faraday’s law in differential form:

(a)
(b)

P3.3. Simplified forms of Maxwell’s curl equations for special cases. Obtain the
simplified differential equations for the following cases: (a) Ampère’s circuital
law for and (b) Faraday’s law for in cylindrical
coordinates.

P3.4. Simultaneous satisfaction of Faraday’s and Ampere’s circuital laws by E and B.
For the electric field in free space find B that sat-
isfies Faraday’s law in differential form and then determine if the pair of E and
B satisfy Ampère’s circuital law in differential form.

P3.5. Satisfaction of Maxwell’s curl equations for a specified electric field. For the
electric field in free space find the nec-
essary condition relating and for the field to satisfy both of
Maxwell’s curl equations.

P3.6. Satisfaction of Maxwell’s curl equations for a specified electric field. For the
electric field in free space find the
value(s) of k for which the field satisfies both of Maxwell’s curl equations.

P3.7. Magnetic fields of current distributions from Ampere’s circuital law in differen-
tial form. For each of the following current distributions, find the corresponding
magnetic field intensity using Ampère’s circuital law in differential form without

1J = 02,E = E0e
-kx cos 12 * 108t - y2 az

e0a, b, v, m0,
1J = 02,E = E0 cos 1vt - ay - bz2 ax

1J = 02,E = E0e
-az cos vt ax

E = Ef1r, t2afH = Hx1z, t2ax

E = E0 ay cos [3p * 108t + 0.2p14x + 3z2]
E = E0 cos 3pz cos 9p * 108t ax

2r cos u ar + rau

1e-r2>r2af
cos yax - x sin y ay

zxax + xyay + yz az
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198 Chapter 3 Maxwell’s Equations in Differential Form . . .

the displacement current density term, and plot both the current density and the
magnetic field intensity components versus the appropriate coordinate:

(a)

(b)

in cylindrical coordinates

Section 3.2

P3.8. Evaluating divergences of vector fields. Find the divergences of the following
vector fields:

(a)
(b)
(c) in cylindrical coordinates
(d) in spherical coordinates

P3.9. Electric fields of charge distributions from Gauss’ law in differential form. For
each of the following charge distributions, find the corresponding displacement
flux density using Gauss’ law for the electric field in differential form, and plot
both the charge density and the displacement flux density component versus
the appropriate coordinate:

(a)

(b)

in cylindrical coordinates
P3.10. Realizability of vector fields as certain types of fields. For each of the following

vector fields, find the value of the constant k for which the vector field can be re-
alized as a magnetic field or as a current density in the absence of charge accu-
mulation (or depletion):

(a)

(b) in cylindrical coordinates

(c) in spherical coordinates

P3.11. Realizability of vector fields as certain types of fields. Determine which of the
following static fields can be realized both as an electric field in a charge-free re-
gion and a magnetic field in a current-free region:

(a)
(b) in cylindrical coordinates
(c) in spherical coordinatesr sin u au

[1 + 11>r22] cos f ar - [1 - 11>r22] sin f af

yax + xay

[1 + 12>r32]cos u ar + k[1 - 11>r32] sin u au

r1sin kf ar + cos kf af2
11>yk2 12xax + yay2

r = c r0 
r

a
for 0 6 r 6 a

0 otherwise

r = c r0 
x

a
for -a 6 x 6 a

0 otherwise

r cos u 1cos u ar - sin u au2
r sin f af

3ax + 1y - 32ay + 12 + z2az

zxax + xyay + yzaz

J = eJ0 af for a 6 r 6 2a

0 otherwise

J = c J0 
z

a
 ax for -a 6 z 6 a

0 otherwise
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Section 3.3

P3.12. Interpretation of curl with the aid of curl meter and by expansion. With the aid
of the curl meter and also by expansion in the Cartesian coordinate system, dis-
cuss the curl of the velocity vector field associated with the flow of water in the
stream of Fig. 3.8(a), except that the velocity varies in a nonlinear manner
from zero at the banks to a maximum of at the center given by

P3.13. Interpretation of curl with the aid of curl meter and by expansion. With the aid
of the curl meter and also by expansion in the cylindrical coordinate system, dis-
cuss the curl of the linear velocity vector field associated with points inside
Earth due to its spin motion.

P3.14. Interpretation of divergence with the aid of divergence meter and by expansion.
Discuss the divergences of the following vector fields with the aid of the divergence
meter and also by expansion in the appropriate coordinate system: (a) the position
vector field associated with points in three-dimensional space and (b) the linear
velocity vector field associated with points inside Earth due to its spin motion.

P3.15. Verification of Stokes’ theorem. Verify Stokes’ theorem for the following cases:
(a) the vector field and the closed path comprising
the straight lines from (0, 0, 0) to (0, 1, 0), from (0, 1, 0) to (0, 1, 1), and from (0,
1, 1) to (0, 0, 0) and (b) the vector field independent
of a closed path.

P3.16. Verification of the divergence theorem. Verify the divergence theorem for the
following cases: (a) the vector field and the cubical box
bounded by the planes and and
(b) the vector field and the closed surface bounded by the planes

and 

Section 3.4

P3.17. Simplified forms of Maxwell’s curl equations for special case of J. From
Maxwell’s curl equations, obtain the particular differential equations for the
case of 

P3.18. Plotting of functions of time and distance. For each of the following functions,
plot the value of the function versus z for the two specified values of time and
discuss the traveling-wave nature of the function.

(a)
(b)

P3.19. Writing traveling wave functions for specified time and distance variations.
Write expressions for traveling-wave functions corresponding to the following
cases: (a) time variation at in the manner 10u(t) and propagating in the

with velocity 0.5 m/s; (b) time variation at in the manner
and propagating in the with velocity 4 m/s; and (c) distance

variation at in the manner and propagating in the with
velocity 2 m/s.

-z-direction5z3e-z2
t = 0

+y-directiont sin 20t
y = 0-x-direction

x = 0

t = 0, t = 10-8 s

12 * 108t + z2[u12 * 108t + z2 - u12 * 108t + z - 32];
e-ƒt - z ƒ; t = 0, t = 1 s

J = Jz1y, t2az.

x + y = 1.x = 0, y = 0, z = 0, z = 1
y2ay - 2yzaz

z = 1y = 0, y = 1, z = 0,x = 0, x = 1,
xyax + yzay + zxaz

A = cos y ax - x sin y ay

+ xyay + yzazA = zxax

v =
4v0

a2  1ax - x22az

v0

vz
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�1

–100

[ f ]t � 0

z, m

1

100 200 3000 400

FIGURE 3.34

For Problems 3.20 and 3.21

P3.20. Plotting time and distance variations of a traveling wave. The variation with z
for of a function f(z, t) representing a traveling wave propagating in the

with velocity 100 m/s is shown in Fig. 3.34. Find and sketch: (a) f
versus z for (b) f versus t for and (c) f versus t for z = 200 m.z = 0;t = 1 s;
+z-direction

t = 0

10

0.4

t, �s

JS, A/m

2 3 4 5

1011 t2

FIGURE 3.35

For Problem 3.22

P3.21. Plotting time and distance variations of a traveling wave. Repeat Problem
P3.20 if the function f represents a traveling wave propagating in the

with velocity 100 m/s.
P3.22. Plotting field variations for a specified infinite plane-sheet current source. An

infinite plane sheet lying in the plane in free space carries a surface cur-
rent of density where is as shown in Fig. 3.35. Find and
sketch (a) versus t in the plane; (b) versus z for and
(c) versus z for t = 4 ms.Hy

t = 2 ms;Exz = 300 mEx

JS1t2JS = -JS1t2ax,
z = 0

-z-direction

0

0.1

t, �s

JS, A/m

0.2

21 3 4

FIGURE 3.36

For Problem P3.23

P3.23. Plotting field variations for a specified infinite plane-sheet current source. An
infinite plane sheet of current density A/m where is as
shown in Fig. 3.36, lies in the plane in free space. Find and sketch: (a)
versus t in the plane; (b) versus t in the plane; (c)
versus z for and (d) versus z for t = 4 ms.Hyt = 3 ms;

Exz = -600 mHyz = 300 m
Exz = 0

JS1t2JS = -JS1t2ax
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Section 3.5

P3.25. Finding parameters for a specified sinusoidal uniform plane-wave electric field.
The electric-field intensity of a uniform plane wave propagating in free space is
given by

Find: (a) the frequency; (b) the wavelength; (c) the direction of propagation of
the wave; and (d) the associated magnetic-field intensity vector H.

P3.26. Writing field expressions for an infinite plane current sheet source. Given
in the plane in free space, find

E and H for Use the following three steps, which are generalizations of
the solution to the electromagnetic field due to the infinite plane current sheet
in the plane:

1. Write the expression for H on the sheet and on either side of it, by noting
that where is the unit vector nor-
mal to the sheet and directed toward the side of interest.

2. Extend the result of step 1 to write the expression for H everywhere, that is,
for considering the traveling wave character of the fields.

3. Write the solution for E everywhere by noting that (a) the amplitude of
of H, and (b) the direction of E, the direction of

H, and the direction of propagation constitute a right-handed orthogonal
set, so that 

P3.27. Writing field expressions for an infinite plane current sheet source. Given
in the plane in free space, find E and H

for Use the three steps outlined in Problem P3.26, except that the cur-
rent sheet is in the plane.

P3.28. Electric field due to an array of two infinite plane current sheets. The current
densities of two infinite, plane, parallel current sheets are given by

 JS2 = -kJS0 cos vt ax in the z = l>2 plane
 JS1 = -JS0 cos vt ax    in the z = 0 plane

x = 0
x � 0.

x = 0JS = 0.2 sin 15p * 107t ay A>m
E = h0 H : an.

E = h0 * the amplitude

z � 0,

an[H]z = 0 ; = 1
2 JS : 1;az2 = 1

2 Js : an,

z = 0

z � 0.
z = 0JS = 0.2113ax + ay2 cos 6p * 109t A>m

E = 37.7 cos 19p * 107t + 0.3py2 ax V>m

P3.24. Source and more field variations from a given field variation of a uniform plane
wave. The time variation of the electric-field intensity in the 
plane of a uniform plane wave propagating away from an infinite plane current
sheet of current density lying in the plane in free space
is given by the periodic function shown in Fig. 3.37. Find and sketch (a) ver-
sus t; (b) versus t in plane; (c) versus z for and (d)

versus z for t = 3 ms.Hy

t = 2 ms;Exz = -600 mEx

JS

z = 0JS1t2 = -JS1t2ax

z = 300 mEx

t, �s

37.7

3210�1�2

[Ex]z � 300 m, V/m

FIGURE 3.37

For Problem P3.24
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Find the electric-field intensities in the three regions: (a) (b)
and (c)

P3.29. An array of three infinite plane current sheets. The current densities of three in-
finite plane, parallel, current sheets are given by

Obtain the expression for the ratio of the amplitude of the electric field in the
region to the amplitude of the electric field in the region Then
find the ratio for each of the following values of k: (a) (b)
and (c) Find the value(s) of k for each of the following values of the
ratio: (a) 1/3 and (b) 3.

Section 3.6

P3.30. Determination of polarization for combinations of linearly polarized vectors.
Three sinusoidally time-varying linearly polarized vector fields are given at a
point by

Determine the polarizations of the following: (a) (b)
and (c)

P3.31. Polarization of sum of two linearly polarized vector fields. Two sinusoidally
time-varying, linearly polarized vector fields are given at a point by

where C is a constant. (a) Determine the polarization of the vector for
(b) Find the value(s) of C for which the tip of the vector traces a

circle with time.
P3.32. Unit vectors along the hour and minute hands of an analog watch. Consider an

analog watch that keeps accurate time and assume the origin to be at the center
of the dial, the x-axis passing through the 12 mark, and the y-axis passing
through the 3 mark. (a) Write the expression for the time-varying unit vector di-
rected along the hour hand of the watch. (b) Write the expression for the time-
varying unit vector directed along the minute hand of the watch. (c) Obtain the
specific expression for these unit vectors when the hour hand and the minute
hand are aligned exactly and between the 5 and 6 marks.

P3.33. Field expressions for sinusoidal uniform plane wave for specified characteris-
tics. Write the expressions for the electric- and magnetic-field intensities of a si-
nusoidally time-varying uniform plane wave propagating in free space and

F1 + F2C = 2.
F1 + F2

 F2 = 1Cax + ay - 2az2 sin 2p * 106t

 F1 = 1Cax + Cay + az2 cos 2p * 106t

F1 - F2 + F3.
F1 + F2 + F3;F1 + F2;

 F3 = a1
2

 ax + 13 ay +
13
2

 azb  cos 12p * 106t - 60°2
 F2 = az cos 12p * 106t + 30°2
 F1 = 13 ax cos 12p * 106t + 30°2

k = 1.
k = 1>2,k = -1,

z 6 0.z 7 l>2

 JS3 = -2kJs0 cos vt ax in the z = l>2 plane
 JS2 = -kJS0 sin vt ax    in the z = l>4 plane
 JS1 = -JS0 cos vt ax      in the z = 0 plane

z 7 l>2.l>2;
0 6 z 6  z 6 0;
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having the following characteristies: (a) (b) direction of propa-
gation is the and (c) polarization is right circular with the electric
field in the plane at having an x-component equal to and a y-
component equal to 

P3.34. Determination of sense of polarization for several cases of sinusoidal traveling
waves. For each of the following fields, determine if the polarization is right- or
left-circular or elliptical.

(a)

(b)

(c)

(d)

P3.35. Uniform plane-wave field in terms of right and left circularly polarized compo-
nents. Express each of the following uniform plane wave electric fields as a su-
perposition of right- and left-circularly polarized fields:

(a)

(b)

Section 3.7.

P3.36. Instantaneous and time-average Poynting vectors for specified electric fields.
For each of the following electric-field intensities for a uniform plane wave in
free space, find the instantaneous and time-average Poynting vectors:

(a)

(b)

(c)

P3.37. Poynting vector and power flow for a coaxial cable. The electric and magnetic
fields in a coaxial cable, an arrangement of two coaxial perfectly conducting
cylinders of radii a and are given by

where and are constants and the axis of the cylinders is the z-axis. (a) Find
the instantaneous and time-average Poynting vectors associated with the fields.
(b) Find the time-average power flow along the coaxial cable.

P3.38. Power radiated for specified radiation fields of an antenna. The electric- and
magnetic-field intensities in the radiation field of an antenna located at the ori-
gin are given in spherical coordinates by

 H =
E01m0>e0

   
sin u

r
  cos v1t - r1m0e02 au A>m

 E = E0  
sin u

r
  cos v1t - r1m0e02 au V>m

I0V0

 H =
I0

2pr
  cos v1t - z1m0e02 au for a 6 r 6 b

 E =
V0

r ln 1b>a2  cos v1t - z1m0e02 ar for a 6 r 6 b

b 17a2,

E = E0 cos 1vt - bz2 ax + 2E0 sin 1vt - bz2 ay

E = E0 cos 1vt - bz2 ax - E0 sin 1vt - bz2 ay

E = E0 cos 1vt - bz2 ax + 2E0 cos 1vt - bz2 ay

E0 ax cos 1vt - bz + p>32 - E0 ay cos 1vt - bz + p>62
E0 ax cos 1vt + bz2

E0 cos 1vt - bx2 az - E0 sin 1vt - bx + p>42 ay

E0 cos 1vt + by2 ax - 2E0 sin 1vt + by2 az

E0 cos 1vt + bx2 ay + E0 sin 1vt + bx2 az

E0 cos 1vt - by2 az + E0 sin 1vt - by2 ax

0.75E0.
E0t = 0z = 0

+z-direction;
f = 100 MHz;
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Find: (a) the instantaneous Poynting vector; (b) the instantaneous power radiated
by the antenna by evaluating the surface integral of the instantaneous Poynting
vector over a spherical surface of radius r centered at the antenna and enclosing
the antenna; and (c) the time-average power radiated by the antenna.

P3.39. Energy storage associated with a charge distribution. A volume charge distrib-
ution is given in spherical coordinates by

(a) Find the energy stored in the electric field of the charge distribution. (b) Find
the work required to rearrange the charge distribution with uniform density in
the region 

P3.40. Energy storage associated with a current distribution. A current distribution is
given in cylindrical coordinates by

Find the energy stored in the magnetic field of the current distribution per unit
length in the z-direction.

REVIEW PROBLEMS

R3.1. Satisfaction of Maxwell’s curl equations for a specified electric field. Find the
numerical value(s) of k, if any, such that the electric field in free space 
given by

satisfies both of Maxwell’s curl equations.
R3.2. Satisfaction of Maxwell’s curl equations for fields in a rectangular cavity res-

onator. The rectangular cavity resonator is a box comprising the region
and and bounded by metallic walls on all of

its six sides. The time-varying electric and magnetic fields inside the resonator
are given by

where and are constants and is the radian frequency of oscilla-
tion. Find the value of that satisfies both of Maxwell’s curl equations. The
medium inside the resonator is free space.

R3.3. Electric field of a charge distribution from Gauss’ law in differential form. The
x-variation of charge density independent of y and z is shown in Fig. 3.38. Find
and sketch the resulting versus x.Dx

v

vH02E0, H01,

 H = H01 sin  
px

a
  cos  
pz

d
  sin vt ax - H02 cos  

px

a
  sin  
pz

d
  sin vt az

 E = E0 sin  
px

a
  sin 
pz

d
  cos vt ay

0 6 z 6 d,0 6 y 6 b,0 6 x 6 a,

E = E0 sin 6x sin 13 * 109t - kz2 ay

1J = 02

J = eJ0 az for r 6 30a

-J0 az for 4a 6 r 6 5a

r 6 a.

r = er01r>a22 for r 6 a

0 for r 7 a
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R3.4. Classification of static vector fields. With respect to the properties of physical
realizability as electric and magnetic fields, static vector fields can be classified
into four groups: (i) electric field only; (ii) magnetic field only; (iii) electric field
in a charge-free region or a magnetic field in a current-free region; and (iv) none
of the preceding three. For each of the following fields, determine the group to
which it belongs:

(a)
(b)

(c) in cylindrical coordinates

(d) in cylindrical coordinates

R3.5. Finding traveling-wave functions from specified sums of the functions. Figures
3.39(a) and (b) show the distance variations at and respectively, of
the sum of two functions f(z, t) and g(z, t), each of duration not exceeding 3 s,
and representing traveling waves propagating in the and re-
spectively, with velocity 100 m/s. Find and sketch f and g versus t for z = 0.

-z-directions,+z-

t = 1 s,t = 0

1
r

 1cos f ar + sin f af2

e-r

r
 af

1x2 - y22ax - 2xyay + 4az

xax + yay

z, m0

1

2
[ f � g]t � 0

100 200

(a)

300 400 z, m0

1

2
[ f � g]t � 1s

100 200

(b)

300 400

FIGURE 3.39

For Problem R3.5

r

3r0

�r0

x
a

�a

FIGURE 3.38

For Problem R3.3
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R3.7. An array of two infinite plane current sheets. For the array of two infinite plane
current sheets of Example 3.12, assume that

Obtain the expression for the ratio of the amplitude of the electric field in the
region to the amplitude of the electric field in the region Then
find the following: (a) the value of the ratio for and (b) the value of 
for for the ratio to be equal to 2.

R3.8. A superposition of two infinite plane current sheets. Given 
A/m in the plane and A/m in the

plane, find E and H in the two regions and Dis-
cuss the polarizations of the fields and the time-average power flow in both
regions. Note that the two current densities are directed perpendicular to each
other.

R3.9. Elliptical polarization. The components of a sinusoidally time-varying vector
field are given at a point by

Show that the field is elliptically polarized in the xy-plane with the equation of
the ellipse given by Further show that the axial ratio
(ratio of the major axis to the minor axis) of the ellipse is and the tilt angle
(angle made by the major axis with the x-axis) is 45°.

R3.10. Work associated with rearranging a charge distribution. Find the amount of
work required for rearranging a uniformly distributed surface charge Q of ra-
dius a into a uniformly distributed volume charge of radius a.

13
x2 - xy + y2 = 3>4.

 Fy = 1 cos 1vt + 60°2
 Fx = 1 cos vt

y 7 0.25 m.y 6 0y = 0.25 m
cos 6p * 108t azJS2 = 0.2 y = 0108t ax

JS1 = 0.2 cos 6p *  

0 6 a 6 p>2,
aa = p>4;

z 6 0.z 7 l>4

JS2 = -JS0 sin 1vt + a2 ax for z = l>4

206 Chapter 3 Maxwell’s Equations in Differential Form . . .

R3.6. Plotting more field variations from a given field variation of a uniform plane
wave. The time-variation of the electric field in the plane of a
uniform plane wave propagating away from an infinite plane current sheet lying
in the plane is given by the periodic function shown in Fig. 3.40. Find and
sketch the following: (a) versus t in the plane; (b) versus z for

and (c) versus z for t = 1>3 ms.Hyt = 0;
Exz = 200 mEx

z = 0

z = 600 mEx

Ex, V/m

75.4

�37.7

t, �s
�2 �1 0 1 25

3
�

2
3

�
1
3

4
3

7
3

FIGURE 3.40

For Problem R3.6.
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C H A P T E R  4

Fields and Waves In Material
Media
Thus far in our study of fields and waves, we have considered the medium to be
free space. In this chapter, we extend our study to material media. Materials
contain charged particles that respond to applied electric and magnetic fields to
produce secondary fields. We will learn that there are three basic phenomena
resulting from the interaction of the charged particles with the electric and mag-
netic fields. These are conduction, polarization, and magnetization. Although a
given material may exhibit all three properties, it is classified as a conductor (in-
cluding semiconductor), a dielectric, or a magnetic material, depending on
whether conduction, polarization, or magnetization is the predominant phe-
nomenon. Thus, we introduce these materials one at a time and develop a set of
constitutive relations for the material media that enable us to avoid the necessity
of explicitly taking into account the interaction of the charged particles with the
fields.

We shall then use the constitutive relations together with Maxwell’s equa-
tions to extend our study of uniform plane waves to material media, first for the
general case and then for several special cases. To study problems involving two
or more different media, we shall then derive boundary conditions, which are a
set of conditions for the fields to satisfy at the boundaries between the different
media. Finally, we shall use the boundary conditions to study the reflection and
transmission of uniform plane waves at plane boundaries.

4.1 CONDUCTORS AND SEMICONDUCTORS

Depending on their response to an applied electric field, materials may be clas-
sified as conductors, semiconductors, or dielectrics. According to the classical
model, an atom consists of a tightly bound, positively charged nucleus sur-
rounded by a diffuse electron could having an equal and opposite charge to the
nucleus. While the electrons for the most part are less tightly bound, the major-
ity of them are associated with the nucleus and are known as bound electrons.
These bound electrons can be displaced, but not removed from the influence of

207

Conduction
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FIGURE 4.1

Energy band diagrams for different cases: (a) and (d) conductor; (b) dielectric; and
(c) semiconductor.

the nucleus upon the application of an electric field. Not taking part in this
bonding mechanism are the free, or conduction, electrons. These electrons are
constantly under thermal agitation, being released from the parent atom at one
point and recaptured at another point. In the absence of an applied electric
field, their motion is completely random; that is, the average thermal velocity on
a macroscopic scale is zero, so that there is no net current and the electron cloud
maintains a fixed position.When an electric field is applied, an additional veloc-
ity is superimposed on the random velocities, thereby causing a drift of the av-
erage position of the electrons along the direction opposite to that of the
electric field. This process is known as conduction. In certain materials, a large
number of electrons may take part in this process.These materials are known as
conductors. In certain other materials, only very few or a negligible number of
electrons may participate in conduction. These materials are known as
dielectrics, or insulators. A class of materials for which conduction occurs not
only by electrons but also by another type of carriers known as holes—vacan-
cies created by detachment of electrons due to breaking of covalent bonds with
other atoms—is intermediate to that of conductors and dielectrics. These mate-
rials are called semiconductors.

The quantum theory describes the motion of the current carriers in terms
of energy levels. According to this theory, the electrons in an atom can have as-
sociated with them only certain discrete values of energy. When a large number
of atoms are packed together, as in a crystalline solid, each energy level in the in-
dividual atom splits into a number of levels with slightly different energies, with
the degree of splitting governed by the interatomic spacing, thereby giving rise
to allowed bands of energy levels that may be widely separated, may be close to-
gether, or may even overlap. Four possible energy band diagrams are shown in
Fig. 4.1, in which a forbidden band consists of energy levels that no electron in
any atom of the solid can occupy. For case (a), the lower allowed band is only
partially filled at the temperature of absolute zero. At higher temperatures, the
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4.1 Conductors and Semiconductors 209

electron population in the band spreads out somewhat, but only very few elec-
trons reach higher energy levels.Thus, since there are many unfilled levels in the
same band, it is possible to increase the energy of the system by moving the elec-
trons to these unoccupied levels very easily by the application of an electric
field, thereby resulting in drift of the electrons. The material is then classified as
a conductor. For cases (b) and (c), the lower band is completely filled, whereas
the next-higher band is completely empty at the temperature of absolute zero. If
the width of the forbidden band is very large as in (b), the situation at normal
temperatures is essentially the same as at absolute zero, and, hence, there are no
neighboring empty energy levels for the electrons to move. The only way for
conduction to take place is for the electrons in the filled band to get excited and
move to the next higher band. But this is very difficult to achieve with reason-
able electric fields, and the material is then classified as a dielectric. Only by sup-
plying a very large amount of energy can an electron be excited to move from
the lower band to the higher band, where it has neighboring empty levels avail-
able for causing conduction.The dielectric is said to break down under such con-
ditions. If, on the other hand, the width of the forbidden band in which the Fermi
level lies is not too large, as in (c), some of the electrons in the lower band move
into the upper band at normal temperatures, so that conduction can take place
under the influence of an electric field, not only in the upper band, but also in
the lower band because of the vacancies (holes) left by the electrons that moved
into the upper band. The material is then classified as a semiconductor. A semi-
conductor crystal in pure form is known as an intrinsic semiconductor.The prop-
erties of an intrinsic crystal can be altered by introducing impurities into it. The
crystal is then said to be an extrinsic semiconductor. For case (d), two allowed
bands overlap; one or both of the bands is only partially filled and the situation
corresponds to a conductor.

In the foregoing discussion, we classified materials on the basis of their
ability to permit conduction of electrons under the application of an external
electric field. For conductors, we are interested in knowing about the relation-
ship between the drift velocity of the electrons and the applied electric field,
since the predominant process is conduction. But for collisions with the atomic
lattice, the electric field continuously accelerates the electrons in the direction
opposite to it as they move about at random. Collisions with the atomic lattice,
however, provide the frictional mechanism by means of which the electrons lose
some of the momentum gained between collisions. The net effect is as though
the electrons drift with an average drift velocity under the influence of the
force exerted by the applied electric field and an opposing force due to the fric-
tional mechanism. This opposing force is proportional to the momentum of the
electron and inversely proportional to the average time between collisions.
Thus, the equation of motion of an electron is given by

(4.1)

where e and m are the charge and mass of an electron.

m 

dvd

dt
= eE -

mvd

t

t

vd,
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210 Chapter 4 Fields and Waves In Material Media

Rearranging (4.1), we have

(4.2)

For the sudden application of a constant electric field at the solution
for (4.2) is given by

(4.3)

where we have evaluated the arbitrary constant of integration by using the ini-
tial condition that at The values of for typical conductors such as
copper are of the order of so that the exponential term on the right side
of (4.3) decays to a negligible value in a time much shorter than that of practical
interest. Thus, neglecting this term, we have

(4.4)

and the drift velocity is proportional in magnitude and opposite in direction to
the applied electric field, since the value of e is negative.

In fact, since we can represent a time-varying field as a superposition of
step functions starting at appropriate times, the exponential term in (4.3) may
be neglected as long as the electric field varies slowly compared to For fields
varying sinusoidally with time, this means that as long as the period T of the si-
nusoidal variation is several times the value of or the radian frequency

the drift velocity follows the variations in the electric field. Since
this condition is satisfied even at frequencies up to several hundred

gigahertz (a gigahertz is ). Thus, for all practical purposes, we can assume
that

(4.5)

Now, we define the mobility, of the electron as the ratio of the magni-
tudes of the drift velocity and the applied electric field. Then we have

(4.6)

and

(4.7a)

For values of typically of the order of we note by substituting for 
and m on the right side of (4.6) that the electron mobilities are of the order of

Alternative units for the mobility are square meters per volt-sec-
ond. In semiconductors, conduction is due not only to the movement of elec-
trons, but also to the movement of holes.We can define the mobility of a holemh

10-3 C-s>kg.

ƒe ƒ10-14 s,t

vd = -me E for electrons

me =
ƒvd ƒ
ƒE ƒ

=
ƒe ƒt
m

me,

vd =
et
m

 E

109 Hz
1>t L 1014,
v � 2p>t, t,

t.

vd =
et
m

 E0

10-14 s,
tt = 0.vd = 0

vd =
et
m

 E0 -
et
m

 E0 e-t>t

t = 0,E0

m 

dvd

dt
+

m
t

 vd = eE

Mobility
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Conduction
current

similarly to as the ratio of the drift velocity of the hole to the applied electric
field. Thus, we have

(4.7b)

Note from (4.7b) that conduction of a hole takes place along the direction of
the applied electric field, since a hole is a vacancy created by the removal of
an electron and, hence, a hole movement is equivalent to the movement of a
positive charge of value equal to the magnitude of the charge of an electron.
In general, the mobility of holes is lower than the mobility of electrons for
a particular semiconductor. For example, for silicon, the values of and 
are and respectively. Semiconductors are denoted
n-type or p-type, depending on whether the conduction is predominantly due to
the movement of electrons or holes.

The drift of electrons in a conductor and that of electrons and holes in a
semiconductor is equivalent to a current flow. This current is known as the
conduction current. The conduction current density may be obtained in the fol-
lowing manner. If there are free electrons per cubic meter of the material,
then the amount of charge passing through an infinitesimal area normal
to the drift velocity at a point in the material in a time is given by

(4.8)

The current flowing across is given by

(4.9)

The magnitude of the current density at the point is the ratio of to in the
limit tends to zero, and the direction is opposite to that of Thus, the con-
duction current density resulting from the drift of electrons in the conductor
is given by

(4.10)

Substituting for from (4.7a), we have

(4.11)

Defining a quantity as

(4.12)

we obtain the simple and important relationship between and E:

(4.13)

The quantity is known as the electrical conductivity of the material, and (4.13)
is known as Ohm’s law valid at a point. We shall show later that the well-known

s

Jc = sE

Jc

s = me Ne ƒe ƒ

s

Jc = me Ne ƒe ƒE

vd

Jc = -Ne ƒe ƒvd

Jc

vd.¢S
¢S¢I

¢I =
ƒ ¢Q ƒ
¢t

= Ne ƒe ƒvd ¢S

¢S¢I

¢Q = Ne e1¢S21vd ¢t2
¢t

¢S¢Q
Ne

0.048 m2>V-s,0.135 m2>V-s
mhme

vd = mh E for holes

me

Conductivity
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Solid Dielectrics

Semiconductors
Extrinsic

Intrinsic

Metallic Conductors

0 5 10�5�10�15�20
log10 s, S/m

FIGURE 4.2

Ranges of conductivities for conductors, semiconductors, and dielectrics.

Ohm’s law in circuit theory follows from it. In a semiconductor, the current den-
sity is the sum of the contributions due to the drifts of electrons and holes. If the
densities of holes and electrons are and respectively, the conduction cur-
rent density is given by

(4.14)

Thus, the conductivity of a semiconducting material is given by

(4.15a)

For an intrinsic semiconductor, so that (4.15a) reduces to

(4.15b)

The units of conductivity are or
ampere/volt-meter, also commonly known as siemens per meter (S/m), where a
siemen is an ampere per volt. The ranges of conductivities for conductors, semi-
conductors, and dielectrics are shown in Fig. 4.2. Values of conductivities for a
few materials are listed in Table 4.1.The constant values of conductivities do not
imply that the conduction current density is proportional to the applied electric
field intensity for all values of current density and field intensity. However, the
range of current densities for which the material is linear, that is, for which the
conductivity is a constant, is very large for conductors.

In considering electromagnetic wave propagation in conducting media,
the conduction current density given by (4.13) must be employed for the cur-
rent density term on the right side of Ampere’s circuital law. Thus, Maxwell’s
curl equation for H for a conducting medium is given by

(4.16)� � H = Jc +
0D
0t

= sE +
0D
0t

1meter2>volt-second21coulomb>meter32
s = 1mh + me2Ne ƒe ƒ

Nh = Ne,

s = mh Nh ƒe ƒ + me Ne ƒe ƒ

Jc = 1mh Nh ƒe ƒ + me Ne ƒe ƒ2E

Ne,Nh
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Table 4.1 Conductivities of Some Materials

Conductivity Conductivity
Material (S/m) Material (S/m)

Silver Seawater 4
Copper Intrinsic germanium 2.2
Gold Intrinsic silicon
Aluminum Fresh water
Tungsten Distilled water
Brass Dry earth
Solder Bakelite
Lead Glass
Constantin Mica
Mercury Fused quartz 0.4 * 10-171.0 * 106

10-11 - 10-152.0 * 106
10-10 - 10-144.8 * 106
10-97.0 * 106
10-51.5 * 107

2 * 10-41.8 * 107
10-33.5 * 107

1.6 * 10-34.1 * 107
5.8 * 107
6.1 * 107

(b)(a)

� � � �
�
�
�

�
�

�
�
� �

�
�

��
�������

�
�
�

EE

FIGURE 4.3

For illustrating the surface charge formation at the boundary of a conductor placed
in a static electric field.

We shall use this equation in Sec. 4.4 to obtain the solution for sinusoidally
time-varying uniform plane waves in a material medium.

Let us now consider a conductor placed in a static electric field, as shown
in Fig. 4.3(a).The free electrons in the conductor move opposite to the direction
lines of the electric field. If there is a way in which the flow of electrons can be
continued to form a closed circuit, then a continuous flow of current takes place.
Since the conductor is bounded by free space, the electrons are held at the
boundary from moving further. Thus, a negative surface charge forms on the
boundary, accompanied by an equal amount of positive surface charge, as
shown in Fig. 4.3(b), since the conductor as a whole is neutral. The surface
charge distribution formed in this manner produces a secondary electric field
which, together with the applied electric field, makes the field inside the con-
ductor zero. We shall illustrate the computation of the surface charge densities
by means of a simple example.

Conductor in
a static
electric field
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azE � �

FIGURE 4.4

(a) Infinite plane slab conductor in a uniform applied field. (b) Induced surface charge at the
boundaries of the conductor and the secondary field. (c) Sum of the applied and the secondary fields.

Example 4.1 Plane conducting slab in a uniform static electric field

Let us consider an infinite plane conducting slab of thickness d occupying the region be-
tween and and in a uniform electric field produced by two infinite
plane sheets of equal and opposite uniform charge densities on either side of the slab, as
shown in Fig. 4.4(a).We wish to find the charge densities induced on the surfaces of the slab.

Since the applied electric field is uniform and is directed along the z-direction, a
negative charge of uniform density forms on the surface due to the accumulation
of free electrons at that surface. A positive charge of equal and opposite uniform density
forms on the surface due to a deficiency of electrons at that surface. Let these sur-
face charge densities be and respectively. To satisfy the property that the field
in the interior of the conductor is zero, the secondary field produced by the surface
charges must be equal and opposite to the applied field; that is, it must be equal to

Now, each surface charge produces a field intensity directed normally from it and
having a magnitude times the charge density so that the field due to the two sur-
face charges together is equal to inside the conductor and zero outside the
conductor, as shown in Fig. 4.4(b). Thus, for zero field inside the conductor,

or

The field outside the conductor remains the same as the applied field since the sec-
ondary field in that region due to the surface charges is zero.The induced surface charge

rS0 = e0 E0

-  

rS0

e0
 az = -E0 az

-1rS0>e02az

1>2e0

-E0 az.

rS0,-rS0

z = d

z = 0

E = E0 azz = dz = 0
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l
A

I

V

E

FIGURE 4.5

For the derivation of Ohm’s law in circuit
theory.

distribution and the fields inside and outside the conductor are shown in Fig. 4.4(c). In
the general case, the induced surface charge produces a secondary field outside the con-
ductor also, thereby changing the applied field.

Returning now to (4.13), we shall show that the well-known Ohm’s law in
circuit theory follows from it. To do this, let us consider a bar of conducting ma-
terial of conductivity length l, and uniform cross-sectional area A, between
the ends of which a voltage V is applied, as shown in Fig. 4.5.The voltage sets up
an electric field directed along the length of the conductor, thereby giving rise
to conduction current. Assuming, for simplicity, uniformity of the electric field,
the voltage between the two ends of the conductor is given by the electric field
intensity times the length of the conductor, that is,

(4.17)

Then from (4.13) and (4.17), the conduction current density magnitude is given by

(4.18)

Assuming uniformity of the field and hence of the conduction current density in
the cross-sectional area of the conductor, we then obtain the conduction current
to be

(4.19)

Upon rearrangement, we get

(4.20)

which is in the form of the familiar Ohm’s law,

(4.21)

From (4.20), the resistance R of the conducting bar can now be identified as

(4.22)

the units of R being ohms.

R =
l

sA

V = IR

V = I 
l

sA

I = Jc A =
sA

l
 V

Jc = sE =
sV

l

V = El

s,

Ohm’s law,
resistance
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FIGURE 4.6

For illustrating the Hall effect
phenomenon.

We shall conclude this section with a discussion of the Hall effect, an im-
portant phenomenon employed in the determination of charge densities in con-
ducting and semiconducting materials, as well as in other techniques such as the
measurement of fluid flow using electromagnetic flow meters. Let us consider
the p-type semiconducting material in the form of a rectangular bar shown in
Fig. 4.6, in which holes drift in the x-direction with a velocity due to an
applied voltage between the two ends of the bar. If a magnetic field is
applied in a perpendicular direction, then the drifting holes will experience a
magnetic force that deflects them in the or This de-
flection of holes toward the establishes an electric field

in the material, resulting in the development of a voltage between
the two sides of the bar. This phenomenon is known as the Hall effect, and the
voltage developed is known as the Hall voltage. Were it not for the establish-
ment of the Hall electric field, the holes would continually deflect toward the

as they drift in the x-direction. The Hall electric field exerts force
on the holes in the which in the steady-state balances exactly

the magnetic force in the so that the net y-directed force is
zero. According to the Lorentz force equation (1.89), the Hall electric field that
achieves this balance is given by

(4.23)

or By using this result, the hole density can be computed from a
measurement of the Hall voltage for known values of the magnetic field 
the current I, and the cross-sectional dimensions of the bar. If the material is
n-type instead of p-type, then the charge carriers are electrons, and v would be
in the The deflection of the charge carriers will still be toward the

since the charge is negative. This results in an electric field in the-y-direction
-x-direction.

Bz,
Ey = vx Bz.

 = q1Ey - vx Bz2ay = 0

 q1EH + v � B2 = q1Ey ay + vx ax � Bz az2

-y-directionFm

+y-direction,FH

-y-direction

EH = Ey ay

-y-direction
-ay-direction.ax � azFm

B = Bz az

v = vx ax

Hall effect
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rSA

rSB

1

2
FIGURE 4.7

For Problem D4.2.

and hence in a Hall voltage of opposite polarity to that in the case
of the p-type material. Thus, the polarity of the Hall voltage can be used to de-
termine if the charge carriers are holes or electrons.

K4.1. Conduction; Conduction current density; Conductivity; Ohm’s law; Conductor
in a static electric field; Resistance; Hall effect.

D4.1. Find the magnitude of the electric field intensity required to establish the flow
of a conduction current of 0.1 A across an area of normal to the field for
each of the following cases: (a) in copper; (b) in an intrinsic semiconductor ma-
terial with electron and hole mobilities of and re-
spectively, and electron and hole densities of and (c) in a
metallic wire of circular cross section of radius 1 mm, length 1 m, and resistance
1 ohm.
Ans. (a) (b) 471.1 V/m; (c) 3.14 mV/m.

D4.2. An infinite plane conducting slab lies between, and parallel to, two infinite
plane sheets of charge of uniform surface charge densities and as
shown by the cross-sectional view in Fig. 4.7. Find the surface charge densities
on the two surfaces of the slab: (a) and (b)
Ans. (a) (b)

4.2 DIELECTRICS

In the preceding section, we learned that conductors are characterized by an
abundance of conduction, or free, electrons that give rise to conduction current
under the influence of an applied electric field. In this section, we turn our at-
tention to dielectric materials in which the bound electrons are predominant.
Under the application of an external electric field, the bound electrons of an
atom are displaced such that the centroid of the electron cloud is separated
from the centroid of the nucleus. The atom is then said to be polarized, thereby
creating an electric dipole, as shown in Fig. 4.8(a). This kind of polarization is
called electronic polarization.The schematic representation of an electric dipole
is shown in Fig. 4.8(b). The strength of the dipole is defined by the electric di-
pole moment p given by

(4.24)

where d is the vector displacement between the centroids of the positive and
negative charges, each of magnitude Q coulombs.

p = Qd

1
21rSA - rSB2.1

21rSB - rSA2;
rS2.rS1

rSB,rSA

17.24 mV>m;

2.5 * 1013 cm-3;
1700 cm2>V-s,3600 cm2>V-s

1 cm2

-y-direction

Polarization,
electric dipole
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(a) (b)

�

�

�

�

E d

Q

�QFIGURE 4.8

(a) Electric dipole. (b) Schematic representation of an
electric dipole.
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FIGURE 4.9

Torque acting on an electric dipole in an external
electric field.

In certain dielectric materials, polarization may exist in the molecular
structure of the material even under the application of no external electric field.
The polarization of individual atoms and molecules, however, is randomly ori-
ented, and hence the net polarization on a macroscopic scale is zero. The appli-
cation of an external field results in torques acting on the microscopic dipoles,
as shown in Fig. 4.9, to convert the initially random polarization into a partially
coherent one along the field, on a macroscopic scale.This kind of polarization is
known as orientational polarization.A third kind of polarization, known as ionic
polarization, results from the separation of positive and negative ions in mole-
cules formed by the transfer of electrons from one atom to another in the mole-
cule. Certain materials exhibit permanent polarization, that is, polarization even
in the absence of an applied electric field. Electrets, when allowed to solidify in
the applied electric field, become permanently polarized, and ferroelectric ma-
terials exhibit spontaneous, permanent polarization.

On a macroscopic scale, we define a vector P, called the polarization vec-
tor, as the electric dipole moment per unit volume.Thus, if N denotes the number
of molecules per unit volume of the material, then there are molecules in
a volume and

(4.25)P =
1

¢v a
N ¢v

j = 1
pj = Np

¢v
N ¢v
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where p is the average dipole moment per molecule. The units of P are
or coulombs per square meter. It is found that for many

dielectric materials, the polarization vector is related to the electric field E in
the dielectric in the simple manner given by

(4.26)

where a dimensionless parameter, is known as the electric susceptibility. The
quantity is a measure of the ability of the material to become polarized and
differs from one dielectric to another.

When a dielectric material is placed in an electric field, the induced dipoles
produce a secondary electric field such that the resultant field, that is, the sum of
the originally applied field and the secondary field, and the polarization vector
satisfy (4.26). We shall illustrate this by means of a simple example.

Example 4.2 Plane dielectric slab in a uniform static electric field

Let us consider an infinite plane dielectric slab of thickness d sandwiched between two
infinite plane sheets of equal and opposite uniform charge densities and in the

and planes, respectively, as shown in Fig. 4.10(a). We wish to investigate the
effect of polarization in the dielectric.

In the absence of the dielectric, the electric field between the sheets of charge is
given by

In the presence of the dielectric, this field acts as the applied electric field, inducing di-
pole moments in the dielectric with the negative charges separated from the positive
charges and pulled away from the direction of the field. Since the electric field and the
electric susceptibility are uniform, the density of the induced dipole moments, that is, the
polarization vector P, is uniform, as shown in Fig. 4.10(b). Such a distribution results in
exact neutralization of all the charges except at the boundaries of the dielectric since, for
each positive (or negative) charge not on the surface, there is the same amount of nega-
tive (or positive) charge associated with the dipole adjacent to it, thereby canceling its ef-
fect. Thus, the net result is the formation of a positive surface charge at the boundary

and a negative surface charge at the boundary as shown in Fig. 4.10(c).
These surface charges are known as polarization surface charges since they are due to
the polarization in the dielectric. In view of the uniform density of the dipole moments,
the surface charge densities are uniform. Also, in the absence of a net charge in the inte-
rior of the dielectric, the surface charge densities must be equal in magnitude to preserve
the charge neutrality of the dielectric.

Let us therefore denote the surface charge densities as

where the subscript p in addition to the other subscripts stands for polarization. If we
now consider a vertical column of infinitesimal rectangular cross-sectional area cut¢S

rpS = erpS0 for z = d

-rpS0 for z = 0

z = 0,z = d

Ea =
rS0

e0
 az

z = dz = 0
-rS0rS0

xe

xe,

P = e0xe E

coulomb-meter>meter3

Dielectric in
an electric
field
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FIGURE 4.10

For investigating the effect of polarization induced in a dielectric material sandwiched between two
infinite plane sheets of charge.

out from the dielectric, as shown in Fig. 4.10(d), the equal and opposite surface charges
make the column appear as a dipole of moment On the other hand, writing

(4.27)

where is a constant in view of the uniformity of the induced polarization, the dipole
moment of the column is equal to P times the volume of the column, or 
Equating the dipole moments computed in the two different ways, we have

rpS0 = P0

P01d ¢S2az.
P0

P = P0 az

1rpS0 ¢S2daz.

RaoCh04v3.qxd  12/18/03  3:49 PM  Page 220



4.2 Dielectrics 221

Thus, we have related the surface charge density to the magnitude of the polariza-
tion vector. Now, the surface charge distribution produces a secondary field given by

Denoting the total field in the dielectric to be we have

(4.28)

But from (4.26),

(4.29)

Substituting (4.27) and (4.28) into (4.29), we obtain

or

(4.30)

Thus, the polarization surface charge densities are given by

(4.31)

and the electric field intensity in the dielectric is

(4.32)

as shown in Fig. 4.10(e).

Let us now consider the case of the infinite plane current sheet of Fig. 3.14,
radiating uniform plane waves, except that now the space on either side of the
current sheet is a dielectric material instead of free space. The electric field in
the medium induces polarization. The polarization in turn acts together with
other factors to govern the behavior of the electromagnetic field. For the case
under consideration, the electric field is entirely in the x-direction and uniform
in x and y. Thus the induced dipoles are all oriented in the x-direction, on a
macroscopic scale, with the dipole moment per unit volume given by

(4.33)

where is understood to be a function of z and t.Ex

P = Px ax = e0xe Ex ax

Et =
rS0

e011 + xe02  az

rpS = d xe0rS0

1 + xe0
for z = d

-  

xe0rS0

1 + xe0
for z = 0

P0 =
xe0rS0

1 + xe0

P0 = xe01rS0 - P02

P = e0xe0 Et

Et = Ea + Es =
rS0

e0
 az -

P0

e0
 az

Et,

Es = c -  

rpS0

e0
 az = -  

P0

e0
 az for 0 6 z 6 d

0 otherwise

Es
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If we now consider an infinitesimal surface of area parallel to the
yz plane, we can write associated with that infinitesimal area to be equal to

where is a constant.The time history of the induced dipoles associ-
ated with that area can be sketched for one complete period of the current
source, as shown in Fig. 4.11. In view of the cosinusoidal variation of the elec-
tric field with time, the dipole moment of the individual dipoles varies in a cos-
inusoidal manner with maximum strength in the positive x direction at 
decreasing sinusoidally to zero strength at and then reversing to the
negative x direction, increasing to maximum strength in that direction at 
and so on.

t = p>v,
t = p>2v t = 0,

E0E0 cos vt,
Ex
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FIGURE 4.11

Time history of induced electric dipoles in a dielectric material under the influence of a
sinusoidally time-varying electric field.
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FIGURE 4.12

Two plane sheets of equal and opposite time-
varying charges equivalent to the phenomenon
depicted in Fig. 4.11.

The arrangement can be considered as two plane sheets of equal and op-
posite time-varying charges displaced by the amount in the x direction, as
shown in Fig. 4.12. To find the magnitude of either charge, we note that the di-
pole moment per unit volume is

(4.34)

Since the total volume occupied by the dipoles is the total dipole mo-
ment associated with the dipoles is The dipole moment
associated with two equal and opposite sheet charges is equal to the magnitude of
either sheet charge multiplied by the displacement between the two sheets. Hence
we obtain the magnitude of either sheet charge to be Thus
we have a situation in which a sheet charge is above
the surface and a sheet charge is below the
surface.This is equivalent to a current flowing across the surface, since the charges
are varying with time.

We call this current the “polarization current” since it results from the
time variation of the electric dipole moments induced in the dielectric due to
polarization. The polarization current crossing the surface in the positive x di-
rection, that is, from below to above, is

(4.35)

where the subscript p denotes polarization. By dividing by and letting
the area tend to zero, we obtain the polarization current density associated with
the points on the surface as

 =
0
0t

 1e0xe E0 cos vt2 =
0Px

0t

 Jpx = Lim
¢y:0
¢z:0

 

Ipx

¢y ¢z
= -e0xe E0v sin vt

¢y ¢zIpx

Ipx =
dQ1

dt
= -e0xe E0v sin vt ¢y ¢z

Q2 = -Q1 = -e0xe E0 cos vt ¢y ¢z
Q1 = e0xe E0 cos vt ¢y ¢z

e0xe E0 cos vt ¢y ¢z.

e0xe E0 cos vt1d ¢y ¢z2.d ¢y ¢z,

Px = e0xe E0 cos vt

d
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or

(4.36)

Although we have deduced this result by considering the special case of the in-
finite plane current sheet, it is valid in general.

In considering electromagnetic wave propagation in a dielectric medium,
the polarization current density given by (4.36) must be included with the cur-
rent density term on the right side of Ampere’s circuital law. Thus considering
Ampere’s circuital law in differential form for the general case given by (3.21),
we have

(4.37)

In order to make (4.37) consistent with the corresponding equation for free
space given by (3.21), we now revise the definition of the displacement vector D
to read as

(4.38)

Substituting for P by using (4.26), we obtain

(4.39)

or

(4.40)

where we define

(4.41)

and

(4.42)

The quantity is known as the relative permittivity or dielectric constant of the
dielectric, and is the permittivity of the dielectric. The permittivity takes into
account the effects of polarization, and there is no need to consider them when
we use for for The relative permittivity is an experimentally measurable
parameter. Its values for several dielectric materials are listed in Table 4.2.

e0!e

ee

er

e = e0er

er = 1 + xe

D = eE

 = e0er E
= e011 + xe2E

 D = e0 E + e0xe E

D = e0 E + P

 = J +
0
0t

 1e0 E + P2
 = J +

0P
0t

+
0
0t

 1e0 E2
 � � H = J + Jp +

0
0t

 1e0 E2

Jp =
0P
0t
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Table 4.2 Relative Permittivities of Some Materials

Relative Relative
Material Permittivity Material Permittivity

Air 1.0006 Dry earth 5
Paper 2.0-3.0 Mica 6
Teflon 2.1 Neoprene 6.7
Polystyrene 2.56 Wet earth 10
Plexiglass 2.6-3.5 Ethyl alcohol 24.3
Nylon 3.5 Glycerol 42.5
Fused quartz 3.8 Distilled water 81
Bakelite 4.9 Titanium dioxide 100

Returning now to Example 4.2, we observe that in the absence of the di-
electric between the sheets of charge,

(4.43a)

(4.43b)

since P is equal to zero. In the presence of the dielectric between the sheets of
charge,

(4.44a)

(4.44b)

Thus, the D fields are the same in both cases, independent of the permittivity of
the medium, whereas the expressions for the E fields differ in the permittivities,
that is, with replaced by The situation in general is, however, not so simple
because the dielectric alters the original field distribution. In the case of Exam-
ple 4.2, the geometry is such that the original field distribution is not altered by
the dielectric.Also in the general case, the situation is equivalent to having a po-
larization volume charge inside the dielectric in addition to polarization surface
charges on its boundaries.

The nature of (4.13), which is characteristic of conductors, and of (4.40),
which is characteristic of dielectrics, implies that in the case of conductors and
D in the case of dielectrics are in the same direction as that of E. Such materials
are said to be isotropic materials. For anisotropic materials, this is not necessari-
ly the case. To explain, we shall consider anisotropic dielectric materials. Then D
is not in general in the same direction as that of E. This arises because the in-
duced polarization is such that the polarization vector P is not necessarily in the
same direction as that of E. In fact, the angle between the directions of the ap-
plied E and the resulting P depends on the direction of E. The relationship be-
tween D and E is then expressed in the form of a matrix equation as

(4.45)CDx

Dy

Dz

S = C exx exy exz

eyx eyy eyz

ezx ezy ezz

S CEx

Ey

Ez

S

Jc

e.e0

D = eE = rS0 az

E = Et =
rS0

e011 + xe02  az =
rS0

e
 az

D = e0 Ea = rS0 az

E = Ea =
rS0

e0
 az

Anisotropic
dielectric
materials
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226 Chapter 4 Fields and Waves In Material Media

Thus, each component of D is in general dependent on each component of E.
The square matrix in (4.45) is known as the permittivity tensor of the anisotrop-
ic dielectric.

Although D is not in general parallel to E for anisotropic dielectrics, there
are certain polarizations of E for which D is parallel to E. These are said to cor-
respond to the characteristic polarizations, where the word polarization here
refers to the direction of the field, not to the creation of electric dipoles. We
shall consider an example to investigate the characteristic polarizations.

Example 4.3 Characteristics of an anisotropic dielectric material

An anisotropic dielectric material is characterized by the permittivity tensor

Let us find D for several cases of E.
Substituting the given permittivity matrix into (4.45), we obtain

For D is parallel to E.
For D is not parallel to E.
For D is not parallel to E.
For D is not parallel to E.
For D
is parallel of E.

When D is parallel to E, that is, for the characteristic polarizations of E, one can
define an effective permittivity as the ratio of D to E. Thus, for the case of the
effective permittivity is and for the case of the effective permit-
tivity is For the characteristic polarizations, the anisotropic material behaves effec-
tively as an isotropic dielectric having the permittivity equal to the corresponding
effective permittivity.

K4.2. Polarization; Electric dipole; Polarization vector; Polarization charge; Polariza-
tion current; Permittivity; Relative permittivity; Anisotropic dielectric; Charac-
teristic polarizations; Effective permittivity.

D4.3. Infinite plane sheets of uniform charge densities and occupy
the planes and respectively.The region is a dielectric of
permittivity Find the values of (a) D, (b) E, and (c) P in the region

Ans. (a) (b) (c) 0.75 * 10-6 az C>m2.9000paz V>m;10-6 az C>m2;
0 6 z 6 d.

4e0.
0 6 z 6 dz = d,z = 0

-1 mC>m21 mC>m2

8e0.
E = E012ax + ay2,3e0,

E = E0 az,

E = E012ax + ay2, D = 16e0 E0 ax + 8e0 E0  ay = 8e0 E012ax + ay2 = 8e0 E;

E = E01ax + 2ay2, D = 11e0 E0 ax + 10e0 E0 ay;
E = E0 ay, D = 2e0 E0 ax + 4e0 E0 ay;
E = E0 ax, D = 7e0 E0 ax + 2e0 E0 ay;
E = E0 az, D = 3e0 E0 az = 3e0 E;

 Dz = 3e0 Ez

 Dy = 2e0 Ex + 4e0 Ey

 Dx = 7e0 Ex + 2e0 Ey

[e] = e0C7 2 0
2 4 0
0 0 3

S
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(a)

an I

(b)

Iin Iout

FIGURE 4.13

Schematic representation of a magnetic
dipole as seen from (a) along its axis and
(b) a point in its plane.

D4.4. For an anisotropic dielectric material characterized by the D to E relationship

find the value of the effective relative permittivity for each of the following
electric field intensities corresponding to the characteristic polarizations:

(b) and (c)
Ans. (a) 9; (b) 4; (c) 9.

4.3 MAGNETIC MATERIALS

In the preceding two sections, we have been concerned with the response of ma-
terials to electric fields. We now turn our attention to materials known as mag-
netic materials, which, as the name implies, are classified according to their
magnetic behavior. According to a simplified atomic model, the electrons asso-
ciated with a particular nucleus orbit around the nucleus in circular paths while
spinning about themselves. In addition, the nucleus itself has a spin motion as-
sociated with it. Since the movement of charge constitutes a current, these or-
bital and spin motions are equivalent to current loops of atomic dimensions. A
current loop is the magnetic analog of the electric dipole. Thus, each atom can
be characterized by a superposition of magnetic dipole moments corresponding
to the electron orbital motions, electron spin motions, and the nuclear spin.
However, owing to the heavy mass of the nucleus, the angular velocity of the nu-
clear spin is much smaller than that of an electron spin, and hence the equiva-
lent current associated with the nuclear spin is much smaller than the
equivalent current associated with an electron spin. The dipole moment due to
the nuclear spin can therefore be neglected in comparison with the other two
effects. The schematic representations of a magnetic dipole as seen from along
its axis and from a point in its plane are shown in Figs. 4.13(a) and (b), respec-
tively. The strength of the dipole is defined by the magnetic dipole moment m
given by

(4.46)

where A is the area enclosed by the current loop, and is the unit vector nor-
mal to the plane of the loop and directed in the right-hand sense.

an

m = IAan

E = E012ax + ay2.E = E01ax - 2ay2;(a) E = E0 az;

CDx

Dy

Dz

S = e0C8 2 0
2 5 0
0 0 9

S CEx

Ey

Ez

S

Magnetiza-
tion, magnetic
dipole
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I
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I d l � B

B

I d l � B

FIGURE 4.14

Torque acting on a magnetic dipole
in an external magnetic field.

In many materials, the net magnetic moment of each atom is zero; that is,
on the average, the magnetic dipole moments corresponding to the various elec-
tronic orbital and spin motions add up to zero. An external magnetic field has
the effect of inducing a net dipole moment by changing the angular velocities of
the electronic orbits, thereby magnetizing the material. This kind of magnetiza-
tion, known as diamagnetism, is in fact prevalent in all materials. In certain ma-
terials known as paramagnetic materials, the individual atoms possess net
nonzero magnetic moments even in the absence of an external magnetic field.
These permanent magnetic moments of the individual atoms are, however, ran-
domly oriented so that the net magnetization on a macroscopic scale is zero.An
applied magnetic field has the effect of exerting torques on the individual per-
manent dipoles, as shown in Fig. 4.14, that convert, on a macroscopic scale, the
initially random alignment into a partially coherent one along the magnetic
field, that is, with the normal to the current loop directed along the magnetic
field. This kind of magnetization is known as paramagnetism. Certain materials
known as ferromagnetic, antiferromagnetic, and ferrimagnetic materials exhibit
permanent magnetization, that is, magnetization even in the absence of an ap-
plied magnetic field.

On a macroscopic scale, we define a vector M, called the magnetization
vector, as the magnetic dipole moment per unit volume. Thus, if N denotes the
number of molecules per unit volume of the material, then there are mol-
ecules in a volume and

(4.47)

where m is the average dipole moment per molecule. The units of M are
or amperes per meter. It is found that for many magnet-

ic materials, the magnetization vector is related to the magnetic field B in the
material in the simple manner given by

(4.48)

where a dimensionless parameter, is known as the magnetic susceptibility.
The quantity is a measure of the ability of the material to become magne-
tized and differs from one magnetic material to another.

xm

xm,

M =
xm

1 + xm
  
B
m0

ampere-meter2>meter3

M =
1

¢v a
N ¢v

j = 1
mj = Nm

¢v
N ¢v

RaoCh04v3.qxd  12/18/03  3:49 PM  Page 228



4.3 Magnetic Materials 229

(c)

z � d

z � 0

JmS � �JmS0ay

JmS � JmS0ay

(e)

Bt

(b)(a)

z � d

z � 0

xm � xm0

Ba

�JS0ay

JS0ay

(d)

d

�x

�y

FIGURE 4.15

For investigating the effect of magnetization induced in a magnetic material sandwiched between two
infinite plane sheets of current.

Magnetic
material in a
magnetic field

When a magnetic material is placed in a magnetic field, the induced dipoles
produce a secondary magnetic field such that the resultant field, that is, the sum
of the originally applied field and the secondary field, and the magnetization vec-
tor satisfy (4.48). We shall illustrate this by means of an example.

Example 4.4 Plane magnetic material slab in a uniform static 
magnetic field

Let us consider an infinite plane magnetic material slab of thickness d sandwiched be-
tween two infinite plane sheets of equal and opposite uniform current densities and

in the and planes, respectively, as shown in Fig. 4.15(a). We wish to
investigate the effect of magnetization in the magnetic material.

In the absence of the magnetic material, the magnetic field between the sheets of
current is given by

 = m0 JS0 ax

 Ba = m0 JS0 ay � az

z = dz = 0-JS0 ay

JS0 ay
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In the presence of the magnetic material, this field acts as the applied magnetic field re-
sulting in magnetic dipole moments in the material that are oriented along the field.
Since the magnetic field and the magnetic susceptibility are uniform, the density of the
dipole moments, that is, the magnetization vector M, is uniform as shown in Fig. 4.15(b).
Such a distribution results in exact cancelation of currents everywhere except at the
boundaries of the material since, for each current segment not on the surface, there is a
current segment associated with the dipole adjacent to it and carrying the same amount
of current in the opposite direction, thereby canceling its effect.Thus, the net result is the
formation of a negative y-directed surface current at the boundary and a positive
y-directed surface current at the boundary as shown in Fig. 4.15(c). These surface
currents are known as magnetization surface currents, since they are due to the magneti-
zation in the material. In view of the uniform density of the dipole moments, the surface
current densities are uniform. Also, in the absence of a net current in the interior of the
magnetic material, the surface current densities must be equal in magnitude so that
whatever current flows on one surface returns via the other surface.

Let us therefore denote the surface current densities as

where the subscript m in addition to the other subscripts stands for magnetization. If we
now consider a vertical column of infinitesimal rectangular cross-sectional area 

cut out from the magnetic material, as shown in Fig. 4.15(d), the rectangular
current loop of width makes the column appear as a dipole of moment 

On the other hand, writing

(4.49)

where is a constant in view of the uniformity of the magnetization, the dipole mo-
ment of the column is equal to M times the volume of the column, or 
Equating the dipole moments computed in the two different ways, we have

Thus, we have related the surface current density to the magnitude of the magneti-
zation vector. Now, the surface current distribution produces a secondary field given by

Denoting the total field inside the magnetic material to be we have

(4.50)

But, from (4.48),

(4.51)

Substituting (4.49) and (4.50) into (4.51), we have

M0 =
xm0

1 + xm0
 1JS0 + M02

M =
xm0

1 + xm0
  

Bt

m0

 = m01JS0 + M02 ax

 Bt = Ba + Bs = m0 JS0 ax + m0 M0 ax

Bt,

Bs = em0 JmS0 ax = m0 M0 ax for 0 6 z 6 d

0 otherwise

Bs

JmS0 = M0

M01d ¢x ¢y2ax.
M0

M = M0 ax

1d ¢y2ax.
1JmS0 ¢x2¢x

1¢x21¢y2
¢S =

JmS = eJmS0 ay for z = 0
-JmS0 ay for z = d

z = 0,
z = d
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or

(4.52)

Thus, the magnetization surface current densities are given by

(4.53)

and the magnetic flux density in the magnetic material is

(4.54)

as shown in Fig. 4.15(e).

Let us now consider the case of the infinite plane current sheet of Fig. 3.14,
radiating uniform plane waves, except that now the space on either side of the
current sheet possesses magnetic material properties in addition to dielectric
properties. The magnetic field in the medium induces magnetization. The mag-
netization in turn acts together with other factors to govern the behavior of the
electromagnetic field. For the case under consideration, the magnetic field is en-
tirely in the y-direction and uniform in x and y. Thus the induced dipoles are all
oriented with their axes in the y-direction, on a macroscopic scale, with the di-
pole moment per unit volume given by

(4.55)

where is understood to be a function of z and t.
Let us now consider an infinitesimal surface of area parallel to the

yz plane and the magnetic dipoles associated with the two areas to the
left and to the right of the center of this area as shown in Fig. 4.16(a). Since is
a function of z, we can assume the dipoles in the left area to have a different mo-
ment than the dipoles in the right area for any given time. If the dimension of an
individual dipole is in the x direction, then the total dipole moment associated
with the dipoles in the left area is and the total dipole mo-
ment associated with the dipoles in the right area is 

The arrangement of dipoles can be considered to be equivalent to two rec-
tangular surface current loops as shown in Fig. 4.16 (b) with the left side current
loop having a dipole moment and the right side current loop
having a dipole moment Since the magnetic dipole moment
of a rectangular surface current loop is simply equal to the product of the sur-
face current and the cross-sectional area of the loop, the surface current associ-
ated with the left loop is and the surface current associated with
the right loop is Thus we have a situation in which a current
equal to is crossing the area in the positive x direction, and
a current equal to is crossing the same area in the negative x di-
rection. This is equivalent to a net current flowing across the surface.

[My]z + ¢z>2 ¢y
¢y ¢z[My]z - ¢z>2 ¢y

[My]z + ¢z>2 ¢y.
[My]z - ¢z>2 ¢y

[My]z + ¢z>2 d ¢y ¢z.
[My]z - ¢z>2 d ¢y ¢z

[My]z + ¢z>2 d ¢y ¢z.
[My]z - ¢z>2 d ¢y ¢z

d
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¢y ¢z
¢y ¢z

By

M = Mx ay =
xm

1 + xm
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Bt = m011 + xm02JS0 ax
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FIGURE 4.16

(a) Induced magnetic dipoles in a magnetic material. (b) Equivalent surface current loops.

We call this current the “magnetization current,” since it results from the
space variation of the magnetic dipole moments induced in the magnetic mate-
rial due to magnetization. The net magnetization current crossing the surface in
the positive x direction is

(4.56)

where the subscript m denotes magnetization. By dividing by and let-
ting the area tend to zero, we obtain the magnetization current density associated

¢y ¢zImx

Imx = [My]z - ¢z>2 ¢y - [My]z + ¢z>2 ¢y
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with the points on the surface as

or

or

(4.57)

Although we have deduced this result by considering the special case of the in-
finite plane current sheet, it is valid in general.

In considering electromagnetic wave propagation in a magnetic material
medium, the magnetization current density given by (4.57) must be included
with the current density term on the right side of Ampere’s circuital law. Thus
considering Ampere’s circuital law in differential form for the general case
given by (3.21), we have

(4.58)

or

(4.59)

In order to make (4.59) consistent with the corresponding equation for free
space given by (3.21), we now revise the definition of the magnetic field intensi-
ty vector H to read as

(4.60)H =
B
m0

- M

� � a B
m0

- Mb = J +
0D
0t

 = J + � � M +
0D
0t

 � �
B
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0D
0t

Jm = � � M

Jmx ax = 4 ax ay az

0
0x

0
0y

0
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0 My 0
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0My

0z
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Imx
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Substituting for M by using (4.48), we obtain

(4.61)

or

(4.62)

where we define

(4.63)

and

(4.64)

The quantity is known as the relative permeability of the magnetic material
and is the permeability of the magnetic material. The permeability takes
into account the effects of magnetization, and there is no need to consider them
when we use for 

Returning now to Example 4.4, we observe that in the absence of the mag-
netic material between the sheets of current,

(4.65a)

(4.65b)

since M is equal to zero. In the presence of the magnetic material between the
sheets of current,

(4.66a)

(4.66b)

Thus, the H fields are the same in both cases, independent of the permeability of
the medium, whereas the expressions for the B fields differ in the permeabili-
ties, that is, with replaced by The situation in general is, however, not so
simple because the magnetic material alters the original field distribution. In the
case of Example 4.4, the geometry is such that the original field distribution is
not altered by the magnetic material. Also, in the general case, the situation is

m.m0

 H =
B
m

= JS0 ax

 B = Bt = m011 + xm2JS0 ax = mJS0 ax

 H =
B
m0

= JS0 ax

 B = Ba = m0 JS0 ax

m0!m

mm

mr

m = m0mr
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m

 =
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m0mr

 =
B

m011 + xm2
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(c)(b)(a)

Domain Wall
Domain

Applied
Field

FIGURE 4.17

For illustrating the different steps in the magnetization of a ferromagnetic
specimen: (a) unmagnetized state; (b) domain wall motion; and (c) domain
rotation.

equivalent to having a magnetization volume current inside the material in ad-
dition to the surface current at the boundaries. For anisotropic magnetic materi-
als, H is not in general parallel to B and the relationship between the two
quantities is expressed in the form of a matrix equation, as given by

(4.67)

just as in the case of the relationship between D and E for anistropic dielectric
materials.

For many materials for which the relationship between H and B is linear,
the relative permeability does not differ appreciably from unity, unlike the case of
linear dielectric materials, for which the relative permittivity can be very large, as
shown in Table 4.2. In fact, for diamagnetic materials, the magnetic susceptibility

is a small negative number of the order to whereas for para-
magnetic materials, is a small positive number of the order to Fer-
romagnetic materials, however, possess large values of relative permeability on
the order of several hundreds, thousands, or more. The relationship between B
and H for these materials is nonlinear, resulting in a non-unique value of for a
given material. In fact, these materials are characterized by hysteresis, that is, the
relationship between B and H dependent on the past history of the material.

Ferromagnetic materials possess strong dipole moments, owing to the pre-
dominance of the electron spin moments over the electron orbital moments. The
theory of ferromagnetism is based on the concept of magnetic domains, as formu-
lated by Weiss in 1907. A magnetic domain is a small region in the material in
which the atomic dipole moments are all aligned in one direction, due to strong
interaction fields arising from the neighboring dipoles. In the absence of an exter-
nal magnetic field, although each domain is magnetized to saturation, the magne-
tizations in various domains are randomly oriented, as shown in Fig. 4.17(a) for a
single crystal specimen. The random orientation results from minimization of the

mr,
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FIGURE 4.18

Hysteresis curve for a ferromagnetic
material.

associated energy.The net magnetization is therefore zero on a macroscopic scale.
With the application of a weak external magnetic field, the volumes of the do-
mains in which the original magnetizations are favorably oriented relative to the
applied field grow at the expense of the volumes of the other domains, as shown
in Fig. 4.17(b).This feature is known as domain wall motion. Upon removal of the
applied field, the domain wall motion reverses, bringing the material close to its
original state of magnetization. With the application of stronger external fields,
the domain wall motion continues to such an extent that it becomes irreversible;
that is, the material does not return to its original unmagnetized state on a macro-
scopic scale upon removal of the field.With the application of still stronger fields,
the domain wall motion is accompanied by domain rotation, that is, alignment of
the magnetizations in the individual domains with the applied field, as shown in
Fig. 4.17(c), thereby magnetizing the material to saturation. The material retains
some magnetization along the direction of the applied field even after removal of
the field. In fact, an external field opposite to the original direction has to be ap-
plied to bring the net magnetization back to zero.

We may now discuss the relationship between B and H for a ferromag-
netic material, which is depicted graphically as shown by a typical curve in Fig.
4.17. This curve is known as the hysteresis curve, or the B–H curve. To trace the
development of the hysteresis effect, we start with an unmagnetized sample of
ferromagnetic material in which both B and H are initially zero, corresponding
to point a on the curve. As H is increased, the magnetization builds up, thereby
increasing B gradually along the curve ab and finally to saturation at b, accord-
ing to the following sequence of events as discussed earlier: (1) reversible mo-
tion of domain walls, (2) irreversible motion of domain walls, and (3) domain
rotation. The regions corresponding to these events along the curve ab as well
as other portions of the hysteresis curve are shown marked 1, 2, and 3, respec-
tively, in Fig. 4.18. If the value of H is now decreased to zero, the value of B

Hysteresis
curve
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4.3 Magnetic Materials 237

Floppy disk

1See, for example, Robert M. White, “Disk-Storage Technology,” Scientific American, August 1980,
pp. 138–148.

does not retrace the curve ab backward, but instead follows the curve bc, which
indicates that a certain amount of magnetization remains in the material even
after the magnetizing field is completely removed. In fact, it requires a magnet-
ic field intensity in the opposite direction to bring B back to zero, as shown by
the portion cd of the curve. The value of B at the point c is known as the
remanence, or retentivity, whereas the value of H at d is known as the coercivity
of the material. Further increase in H in this direction results in the saturation
of B in the direction opposite to that corresponding to b, as shown by the por-
tion de of the curve. If H is now decreased to zero, reversed in direction, and in-
creased, the resulting variation of B occurs in accordance with the curve efgb,
thereby completing the hysteresis loop.

The nature of the hysteresis curve suggests that the hysteresis phenomenon
can be used to distinguish between two states, for example,“1” and “0” in a bina-
ry number magnetic memory system. There are several kinds of magnetic mem-
ories.Although differing in details, all these are based on the principles of storing
and retrieving information in regions on a magnetic medium. In disk, drum, and
tape memories, the magnetic medium moves, whereas in bubble and core memo-
ries, the medium is stationary. We shall briefly discuss here only the floppy disk,
or diskette, used as secondary memory in personal computers.1

The floppy disk consists of a coating of ferrite material applied over a thin
flexible nonmagnetic substrate for physical support. Ferrites are a class of mag-
netic materials characterized by almost rectangular-shaped hysteresis loops so
that the two remanent states are well-defined.The disk is divided into many cir-
cular tracks, and each track is subdivided into regions called sectors, as shown in
Fig. 4.19. To access a sector, an electromagnetic read/write head moves across
the spinning disk to the appropriate track and waits for the correct sector to ro-
tate beneath it. The head consists of a ferrite core around which a coil is wound
and with a gap at the bottom, as shown in Fig. 4.20. Writing data on the disk is
done by passing current through the coil.The current generates a magnetic field
that in the core confines essentially to the material, but in the air gap spreads
out into the magnetic medium below it, thereby magnetizing the region to rep-
resent the 0 state. To store the 1 state in a region, the current in the coil is re-
versed to magnetize the medium in the reverse direction. Reading of data from
the disk is accomplished by the changing magnetic field from the magnetized

Track

Sector

FIGURE 4.19

Arrangement of sectors on a floppy disk.
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Substrate

Magnetic Coating

Direction of

Rotation
Gap

Ferrite
Core

Current

FIGURE 4.20

Writing of data on a floppy disk.

regions on the disk inducing a voltage in the coil of the head as the disk rotates
under the head. The voltage is induced in accordance with Faraday’s law (which
we covered in Section 2.3) whenever there is a change in magnetic flux linked
by the coil.We have here only discussed the basic principles behind storing data
on the disk and retrieving data from it.There are a number of ways in which bits
can be encoded on the disk. We shall, however, not pursue the topic here.

K4.3. Magnetization; Magnetic dipole; Magnetization vector; Magnetization current;
Permeability; Relative permeability; Ferromagnetic materials; Hysteresis.

D4.5. Find the magnetic dipole moment for each of the following cases: (a) of
charge in a circular orbit of radius in the xy-plane around the z-axis
in the sense of increasing with angular velocity of 1 revolution per millisec-
ond; (b) a square current loop having the vertices at the points 

and with current 0.1 A flowing in
the sense ABCDA; and (c) an equilateral triangular current loop having vertices
at the points and with current 0.1 A
flowing in the sense ABCA.
Ans. (a) (b) (c)

D4.6. Infinite plane sheets of current densities and occupy the
planes and respectively.The region is a magnetic mate-
rial of permeability Find (a) H, (b) B, and (c) M in the region 
Ans. (a) (b) (c) 9.9ax A>m.4p * 10-6 ax Wb>m2;0.1ax A>m;

0 6 z 6 d.100m0.
0 6 z 6 dz = d,z = 0

-0.1ay A>m0.1ay A>m
5 * 10-81ax + ay + az2 A-m2.2 * 10-7 az A-m2;10-9 az A-m2;

C10, 0, 10-32B10, 10-3, 02,A110-3, 0, 02,
D10, -10-3, 02C1-10-3, 0, 02,B10, 10-3, 02,

A110-3, 0, 02,
f

1>1p mm
1 mC

RaoCh04v3.qxd  12/19/03  12:32 PM  Page 238



4.4 WAVE EQUATION AND SOLUTION FOR MATERIAL MEDIUM

In the previous three sections, we introduced conductors, dielectrics, and mag-
netic materials, and developed the relationships (4.13), (4.40) and (4.62), which
take into account the phenomena of conduction, polarization, and magnetiza-
tion, respectively. In this section, we make use of these relationships, in conjunc-
tion with Maxwell’s curl equations, to extend our discussion of uniform plane
wave propagation in free space in Sections 3.4 and 3.5 to a material medium.
These relationships, known as the constitutive relations, are given by

(4.68a)
(4.68b)

(4.68c)

so that the Maxwell’s equations for the material medium are

(4.69a)

(4.69b)

To discuss electromagnetic wave propagation in the material medium, let us con-
sider the infinite plane current sheet of Fig. 3.14, except that now the medium on
either side of the sheet is a material instead of free space, as shown in Fig. 4.21.

The electric and magnetic fields for the simple case of the infinite plane
current sheet in the plane and carrying uniformly distributed current in
the negative x-direction as given by

(4.70)

are of the form

(4.71a)
(4.71b) H = Hy1z, t2ay

 E = Ex1z, t2ax

JS = -JS0 cos vt ax

z = 0

 � � H = J +
0D
0t

= Jc +
0D
0t

= sE + e 
0E
0t

 � � E = -  
0B
0t

= -m 
0H
0t

 H =
B
m

 D = eE
 Jc = sE
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z

y

x

JS

s, e, m s, e, m

FIGURE 4.21

Infinite plane current sheet embedded in a material
medium.
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The corresponding simplified forms of the Maxwell’s curl equations are

(4.72a)

(4.72b)

Without the term on the right side of (4.72b), these two equations would be
the same as (3.72a) and (3.72b) with replaced by and replaced by The
addition of the term complicates the solution in time domain. Hence, it is
convenient to consider the solution for the sinusoidally time-varying case by
using the phasor technique. See Appendix A for phasor technique.

Thus, letting

(4.73a)

(4.73b)

and replacing and in (4.72a) and (4.72b) by their phasors and re-
spectively, and by we obtain the corresponding differential equations
for the phasors and as

(4.74a)

(4.74b)

Differentiating (4.74a) with respect to z and using (4.74b), we obtain

(4.75)

Defining

(4.76)

and substituting in (4.75), we have

(4.77)

which is the wave equation for in the material medium.
The solution to the wave equation (4.77) is given by

(4.78)E
 –

x1z2 = A
 –

e-gqz + B
 –

egqz

E
 –

x

02E
 –

x

0z2 = g2E
 –

x

g = 1jvm1s + jve2

02E
 –

x

0z2 = -jvm 

0H
 –

y

0z
= jvm1s + jve2E –x

0H
 –

y

0z
= -sE

 –
x - jveE

 –
x = -1s + jve2E –x

0E
 –

x

0z
= -jvmH

 –
y

H
 –

yE
 –

x

jv,0>0t
H
 –

y,E
 –

xHyEx

 Hy1z, t2 = Re[H
 –

y1z2ejvt]

 Ex1z, t2 = Re[E
 –

x1z2ejvt]

sEx

e.e0mm0

sEx

 
0Hy

0z
= -sEx - e 

0Ex

0t

 
0Ex

0z
= -m 

0Hy

0t

Wave
equation
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where and are arbitrary constants. Noting that is a complex number and,
hence, can be written as

(4.79)

and also writing and in exponential form as and respectively, we
have

or

(4.80)

We now recognize the two terms on the right side of (4.80) as representing uni-
form plane waves propagating in the positive z- and negative z-directions, re-
spectively, with phase constant in view of the factors and

respectively. They are, however, multiplied by the factors
and respectively. Hence, the amplitude of the field differs from one

constant phase surface to another. Since there cannot be a wave in the re-
gion that is, to the left of the current sheet, and since there cannot be a

wave in the region that is, to the right of the current sheet, the solu-
tion for the electric field is given by

(4.81)

To discuss how the amplitude of varies with z on either side of the cur-
rent sheet, we note that since and are all positive, the phase angle of

lies between 90° and 180°, and hence the phase angle of lies
between 45° and 90°, making and positive quantities. This means that 
decreases with increasing value of z, that is, in the positive z-direction, and 
decreases with decreasing value of z, that is, in the negative z-direction. Thus,
the exponential factors and associated with the solutions for in
(4.81) have the effect of decreasing the amplitude of the field, that is, attenu-
ating it as it propagates away from the sheet to either side of it. For this rea-
son, the quantity is known as the attenuation constant. The attenuation per
unit length is equal to In terms of decibels, this is equal to or

The units of are nepers per meter. The quantity is known as the
propagation constant, since its real and imaginary parts, and together de-
termine the propagation characteristics, that is, attenuation and phase shift of
the wave.

Having found the solution for the electric field of the wave and dis-
cussed its general properties, we now turn to the solution for the corresponding

b,a

ga8.686a dB.
20 log10 e

a,ea.
a

Exeaze-az

eaz
e-azba

gjvm1s + jve2 ms, e,
Ex

E1z, t2 = eAe-az cos 1vt - bz + u2 ax for z 7 0
Beaz cos 1vt + bz + f2 ax for z 6 0

z 7 0,1-2 z 6 0,
1+2eaz,e-az

 cos 1vt + bz + f2,  cos 1vt - bz + u2b,

 = Ae-az cos 1vt - bz + u2 + Beaz cos 1vt + bz + f2
 = Re[Aejue-aze-jbzejvt + Bejfeazejbzejvt]

 Ex1z, t2 = Re[E
 –

x1z2ejvt]

E
 –

x1z2 = Aejue-aze-jbz + Bejfeazejbz

Bejf,AejuB
 –

A
 –

g = a + jb

gB
 –

A
 –

Attenuation
constant
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242 Chapter 4 Fields and Waves In Material Media

magnetic field by substituting for in (4.74a). Thus,

(4.82)

where

(4.83)

is the intrinsic impedance of the medium, which is now complex. Writing

(4.84)

we obtain the solution for as

(4.85)

Remembering that the first and second terms on the right side of (4.85) corre-
spond to and waves, respectively, and, hence, represent the solutions
for the magnetic field in the regions and respectively, we write

(4.86a)

(4.86b)

To complete the solution for the electromagnetic field due to the current
sheet embedded in the material medium, we need to find the values of the con-
stants A, B, and To do this, we proceed in the same manner as in Sec. 3.4,
using Fig. 3.17, except with a material medium on either side of the current
sheet. Thus, applying Faraday’s law in integral form to the rectangular closed
path abcda in the limit that the sides bc and with the sides ab and dc re-
maining on either side of the current sheet, we have

(4.87)1ab2[Ex]z = 0 + - 1dc2[Ex]z = 0 - = 0

da : 0,

f.u,

H1z, t2 = d A

ƒh ƒ
 e-az cos 1vt - bz + u - t2 ay for z 7 0

-  
B

ƒh ƒ
 eaz cos 1vt + bz + f - t2 ay for z 6 0

z 6 0,z 7 0
1-21+2

 =
A

ƒh ƒ
 e-az cos 1vt - bz + u - t2 -

B

ƒh ƒ
 eaz cos 1vt + bz + f - t2

 = Re c 1

ƒh ƒejt  Aejue-aze-jbzejvt -
1

ƒh ƒejt  Bejfeazejbzejvt d
 Hy1z, t2 = Re[H

 –
y1z2ejvt]

Hy1z, t2
h = ƒh ƒ  ejt

h = A jvm

s + jve

 =
1
h

 1A –e-g
q

z - B
 –

egqz2
 = As + jve

jvm
 1A –e-g

q
z - B

 –
egqz2

 H
 –

y = -  
1

jvm
  

0E
 –

x

0z
=
g

jvm
 1A –e-g

q
z - B

 –
egqz2

E
 –

x

Electro-
magnetic field
due to the
current sheet
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4.4 Wave Equation and Solution for Material Medium 243

or giving us and The so-
lutions for E and H reduce to

(4.88a)

(4.88b)

Now, applying Ampere’s circuital law in integral form to the rectangular closed
path efghe in Fig. 3.17, but with a material medium on either side of the current
sheet, in the limit that the sides fg and with the sides ef and hg remain-
ing on either side of the current sheet, we have

(4.89)

or

Thus, the electromagnetic field due to the infinite plane current sheet of surface
current density

(4.90)

and with a material medium characterized by and on either side of it is
given by

(4.91a)

(4.91b)

As we have already discussed, (4.91a) and (4.91b) represent sinusoidally
time-varying uniform plane waves, getting attenuated as they propagate away
from the current sheet. The phenomenon is illustrated in Fig. 4.22, which shows
sketches of current density on the sheet and the distance variation of the elec-
tric and magnetic fields on either side of the current sheet for three values of t.
As in Fig. 3.22, it should be understood that in these sketches, the field varia-
tions depicted along the z-axis hold also for any other line parallel to the z-axis.
We shall now discuss further the propagation characteristics associated with
these waves:

1. From (4.76) and (4.79), we have

g2 = 1a + jb22 = jvm1s + jve2

 H1z, t2 = ;  

JS0

2
 e <az cos 1vt < bz2 ay for z � 0

 E1z, t2 =
ƒh ƒJS0

2
 e <az cos 1vt < bz + t2 ax for z � 0

ms, e,

JS = -JS0 cos vt ax for z = 0

A =
ƒh ƒJS0

2
 and u = t

2A

ƒh ƒ
 cos 1vt + u - t2 = JS0 cos vt

1ef2[Hy]z = 0 + - 1hg2[Hy]z = 0 - = 1ef2JS0 cos vt

he : 0,

 H1z, t2 = ;  
A

ƒh ƒ
e <az cos 1vt < bz + u - t2 ay for z � 0

 E1z, t2 = Ae <az cos 1vt < bz + u2 ax for z � 0

u = f.A = BA cos 1vt + u2 - B cos 1vt + f2 = 0,

Propagation
characteristics
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z

y

x

JS

H
E E

H

JS � � JS0 cos vt ax t � 0, JS � � JS0ax

y

x

JS

H
E

H

E

JS = – ax
JS0t =       ,p

4v 2

x

y

H

H

E E

JS = 0t =       ,p
2v

FIGURE 4.22

Time history of uniform plane electromagnetic wave radiating away from an infinite plane
current sheet embedded in a material medium.

RaoCh04v3.qxd  12/18/03  3:49 PM  Page 244
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or

(4.92a)
(4.92b)

Squaring (4.92a) and (4.92b) and adding and then taking the square root, we
obtain

(4.93)

From (4.92a) and (4.93), we then have

Since and are both positive, we finally get

(4.94)

(4.95)

We note from (4.94) and (4.95) that and are both dependent on through
the factor This factor, known as the loss tangent, is the ratio of the magni-
tude of the conduction current density to the magnitude of the displace-
ment current density in the material medium. In practice, the loss tangent
is, however, not simply inversely proportional to since both and are gen-
erally functions of frequency. In fact, for many materials, the dependence of

on is more toward constant over wide frequency ranges.
2. The phase velocity of the wave along the direction of propagation is

given by

(4.96)

We note that the phase velocity is dependent on the frequency of the wave. Thus,
waves of different frequencies travel with different phase velocities. Consequent-
ly, for a signal comprising a band of frequencies, the different frequency compo-
nents do not maintain the same phase relationships as they propagate in the
medium. This phenomenon is known as dispersion. We shall discuss dispersion in
detail in Chapter 8.

vp =
v

b
=
121me  cB1 + a s

ve
b2

+ 1 d-1>2

vs>ve
esv,

jveE
 –

x

sE
 –

x

s>ve. sba

 b =
v1me12

 cB1 + a s
ve
b2

+ 1 d1>2
 a =

v1me12
 cB1 + a s

ve
b2

- 1 d1>2
ba

 b2 =
1
2

 cv2me + v2meB1 + a s
ve
b2 d

 a2 =
1
2

 c -v2me + v2meB1 + a s
ve
b2 d

a2 + b2 = v2meB1 + a s
ve
b2

 2ab = vms
 a2 - b2 = -v2me
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246 Chapter 4 Fields and Waves In Material Media

3. The wavelength in the medium is given by

(4.97)

In view of the attenuation of the wave with distance, the field variation with dis-
tance is not sinusoidal. Hence, the wavelength is not exactly equal to the dis-
tance between two consecutive positive maxima as in Fig. 3.23. It is, however,
still exactly equal to the distance between two alternate zero crossings.

4. The ratio of the amplitude of the electric field to the amplitude of the
magnetic field is equal to the magnitude of the complex intrinsic impedance
of the medium. The electric and magnetic fields are out of phase by the phase
angle of the intrinsic impedance. In terms of the phasor or complex field com-
ponents, we have

(4.98)

5. From (4.76) and (4.83), we note that

(4.99a)

(4.99b)

so that

(4.100a)

(4.100b)

(4.100c)

Using (4.100a)–(4.100c), we can compute the material parameters and 
from a knowledge of the propagation parameters and at the frequency of
interest.

6. To obtain the electromagnetic field due to a nonsinusoidal source, it is
necessary to consider its frequency components and apply superposition, since
waves of different frequencies are attenuated by different amounts and travel
with different phase velocities. The nonsinusoidal signal changes shape as it
propagates in the material medium, unlike in the case of free space.

We shall now consider an example of the computation of and given
and f.s, e, m,

hg

hg

ms, e,

 m =
1

jv g h

 e =
1
v

 Imag
h
b

 s = Reag
h
b

 
g

h
= s + jve

 g h = jvm

E
 –

x

H
 –

y
= eh for the 1+2 wave

-h for the 1-2 wave

t,
ƒh ƒ ,

l =
2p
b

=
12

f1me  cB1 + a s
ve
b2

+ 1 d-1>2
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4.4 Wave Equation and Solution for Material Medium 247

Example 4.5 Finding propagation parameters of a material medium
from its material parameters

The material parameters of a certain food item are given by and
at the operating frequency of a microwave oven. We wish to find

the propagation parameters and 
Although explicit expressions for and in terms of and are given by

(4.94) and (4.95), it is instructive to compute their values by using complex algrebra in
conjunction with the expression for given by (4.76). Thus, we have

so that

Proceeding in a similar manner with (4.83), we obtain

 = 53.51l9.37°Æ

 =
54.9898

1.0276l -9.3685°

 =
120p147

  
111 - j0.3392

 =
h01er

  
111 - j1s>ve2

 = A jvm

jve[1 - j1s>ve2]

 h = A jvm

s + jve

 vp =
v

b
= 0.4316 * 108 m>s

 l =
2p
b

= 0.0176 m

 b = 356.67 rad>m
 a = 58.85 Np>m

 = 58.85 + j356.67

 = 361.4912l80.6315°

 = 351.782l90° * 1.0276l -9.3685°

 = j351.78211.0560l -18.7369°

 = j351.78211 - j0.3392

 = j 
2p * 2.45 * 109 * 147

3 * 108 A1 - j 
2.17 * 36p

2p * 2.45 * 109 * 47 * 10-9

 = j 

v1er

c A1 - j 
s

vere0

 = Bjvm – jvea1 - j 
s

ve
b

 g = 1jvm1s + jve2
g

mv, s, e,ba

h.a, b, l, vp,
f = 2.45 GHzm = m0

s = 2.17 S>m, e = 47e0,
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248 Chapter 4 Fields and Waves In Material Media

We shall conclude this section by generalizing the Poynting’s theorem
(3.118), derived in Sec. 3.7, to a material medium.Thus, substituting 
so that and replacing by and by in (3.118), we
obtain

(4.101)

where P is the instantaneous Poynting vector given by

(4.102)

We also recall that the time-average Poynting vector, is given by

(4.103)

In (4.101), the quantity is the power density associated with the work done
by the field, having to do with the conduction current in the material. Since
power is dissipated in causing the conduction current to flow, it is the power dis-
sipation density. Thus, it follows that the power dissipation density, the electric
stored energy density, and the magnetic stored energy density, associated with
electric and magnetic fields in a material medium are given, respectively, by

(4.104a)

(4.104b)

(4.104c)

Example 4.6 Power flow for a uniform plane wave in seawater

Let us consider the electric field of a uniform plane wave propagating in seawater
( and ) in the positive z-direction and having the electric field

at We wish to find the instantaneous power flow per unit area normal to the z-di-
rection as a function of z and the time-average power flow per unit area normal to the z-
direction as a function of z.

From the expression for E, we note that the frequency of the wave is 25 kHz. At
this frequency in seawater, the propagation parameters can be computed to be

and The expressions for the instantaneous electric and
magnetic fields are therefore given by

 H = 4.502e-0.628z cos 15 * 104pt - 0.628z - p>42 ay A>m
 E = 1e-0.628z cos 15 * 104pt - 0.628z2 ax V>m

h = 0.222l45°.a = b L 0.628

z = 0.

E = 1 cos 5 * 104 pt ax V>m
m = m0s = 4 S>m, e = 80e0,

 wm =
1
2

 mH2

 we =
1
2

 eE2

 pd = sE2

sE2

8P9 =
1
2

 Re [E � H*]

8P9,
P = E � H

CS
P # dS = -LV

1sE22 dv -
0
0tLV

a1
2

 eE2b  

dv -
0
0tLV

a1
2

 mH2b  

dv

m,m0ee0E # J = E # sE = sE2,
J = Jc = sE

Poynting’s
theorem for a
material
medium
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4.4 Wave Equation and Solution for Material Medium 249

The instantaneous Poynting vector is then given by

Thus, the instantaneous power flow per unit area normal to the z-direction, which is sim-
ply the z-component of the instantaneous Poynting vector, is

Finally, the time-average power flow per unit area normal to the z-direction is

K4.4. Material medium; Sinusoidal waves; Material parameters; Propagation parame-
ters;Attenuation and phase constants; Complex propagation constant; Complex
intrinsic impedance; Poynting’s theorem for material medium; Power dissipa-
tion density; Electric stored energy density; Magnetic stored energy density.

D4.7. Compute the propagation constant and intrinsic impedance for the following
cases: (a) and and (b)

and 
Ans. (a) (b)

D4.8. For a uniform plane wave of frequency propagating in a nonmagnetic
material medium, the propagation constant is known to be 
Find the following: (a) the distance in which the fields are attenuated

by (b) the distance in which the fields undergo a change of phase by 1 rad;
(c) the distance that a constant phase of the wave travels in (d) the ratio of
the amplitudes of the electric and magnetic fields; and (e) the phase difference
between the electric and magnetic fields.
Ans. (a) 20 m; (b) 10 m; (c) 62.83 m; (d) (e)

D4.9. The magnetic field associated with a uniform plane wave propagating in the
in a nonmagnetic material medium is given by

Find the following: (a) the instantaneous power flow across a surface of area
in the plane at (b) the time-average power flow across a sur-

face of area in the plane; and (c) the time-average power flow across
a surface of area in the plane.
Ans. (a) (b) (c) 6.94H0

2 W.51.28H0
2 W;102.57H0

2 W;
z = 1 m1 m2

z = 01 m2
t = 0;z = 01 m2

H = H0 e-z cos 16p * 107t - 13z2 ay A>m
1m = m02+z-direction

0.1476p.70.62 Æ;

1 ms;
e-1;

j0.12 m-1.
10.05 +1m = m02

106 Hz

36.34l20.99°Æ.
177.84 + j202.862 m-1,10.00083 + j0.004762 m-1, 163.54l9.9°Æ;

f = 109 Hz.e = 80e0, m = m0,
s = 4 S>m,f = 105 Hz;s = 10-5 S>m, e = 5e0, m = m0,

 = 1.592e-1.256z W>m2

 8Pz9 = 2.251e-1.256z cos p>4

Pz = 2.251e-1.256z [cos p>4 +  cos 1105pt - 1.256z - p>42] W>m2

 –  cos 15 * 104pt - 0.628z - p>42 az W>m2

 = 4.502e-1.256z cos 15 * 104pt - 0.628z2
 P = E � H
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250 Chapter 4 Fields and Waves In Material Media

4.5 UNIFORM PLANE WAVES IN DIELECTRICS AND CONDUCTORS

In the preceding section, we discussed uniform plane electromagnetic wave
propagation in a material medium for the general case. In this section, we con-
sider special cases as follows:

Case 1: Perfect dielectrics. Perfect dielectrics are characterized by 
Then

(4.105)

is purely imaginary, so that

(4.106a)
(4.106b)

(4.106c)

(4.106d)

Further,

(4.107)

is purely real. Thus, the waves propagate without attenuation and with the elec-
tric and magnetic fields in phase, as in free space but with replaced by and

replaced by In terms of the relative permittivity and the relative perme-
ability of the perfect dielectric medium, the propagation parameters are

(4.108a)

(4.108b)

(4.108c)

(4.108d)

where the quantities with subscripts “0” refer to free space.

Case 2: Imperfect dielectrics. Imperfect dielectrics are characterized by
but Recalling that is the conduction current density and

is the displacement current density, we note that this condition is equiva-
lent to stating that the magnitude of the conduction current density is small
compared to the magnitude of the displacement current density. Using the bi-
nomial expansion

11 + x2n = 1 + nx +
n1n - 12

2!
 x2 + Á

veE
 –

x

sE
 –

xs>ve � 1.s Z 0,

 h = h0Amr

er

 l =
l01mrer

 vp =
c1mrer

 b = b01mrer

mr

erm.m0

ee0

h = A jvm

jve
= Ame

 l =
2p
b

=
1

f1me vp =
v

b
=

11me b = v1me a = 0

g = 1jvm –jve = jv1me s = 0.
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4.5 Uniform Plane Waves in Dielectrics and Conductors 251

we can then write

(4.109)

so that

(4.110a)

(4.110b)

(4.110c)

(4.110d)

Further,

so that

(4.111)

In (4.109)–(4.111), we have retained all terms up to and including the second
power in and have neglected all higher-order terms, since For
a value of equal to 0.1, the quantities and are different from those
for the corresponding perfect dielectric case by a factor of only 1/800, whereas
the intrinsic impedance has a real part differing from the intrinsic impedance of
the perfect dielectric medium by a factor of 3/800 and an imaginary part, which
is 1/20 of the intrinsic impedance of the perfect dielectric medium. Thus, for all
practical purposes, the only significant feature different from the perfect dielec-
tric case is the attenuation.

Case 3: Good conductors. Good conductors are characterized by
just the opposite of imperfect dielectrics.This condition is equivalents>ve � 1,

lb, vp,s>ve s>ve � 1.s>ve

h L Ame  c a1 -
3
8

  
s3

v2e2 b + j 
s

2ve
d

 = A jvm

jve
 a1 - j 

s

ve
b-1>2

 h = A jvm

s + jve

 l =
2p
b

L
1

f1me a1 -
s2

8v2e2 b

 vp =
v

b
L

11me  a1 -
s2

8v2e2 b

 b L v1me a1 +
s2

8v2e2 b

 a L
s

2Ame   a1 -
s2

8v2e2 b

 L
s

2Ame  a1 -
s2

8v2e2 b + jv1me a1 +
s2

8v2e2 b

 = Bjvm # jvea1 - j 
s

ve
b = jv1me a1 - j 

s

ve
b1>2

 g = 1jvm1s + jve2
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252 Chapter 4 Fields and Waves In Material Media

to stating that the magnitude of the conduction current density is large com-
pared to the magnitude of the displacement current density. Then

(4.112)

so that

(4.113a)
(4.113b)

(4.113c)

(4.113d)

Further,

or

(4.114)

We note that and are proportional to provided that and are
constants. This behavior is much different from the imperfect dielectric case.

To discuss the propagation characteristics of a wave inside a good conduc-
tor, let us consider the case of copper. The constants for copper are 

and Hence, the frequency at which is equal to for
copper is equal to or Thus, at frequencies of even
several gigahertz, copper behaves like an excellent conductor. To obtain an idea
of the attenuation of the wave inside the conductor, we note that the attenuation
undergone in a distance of one wavelength is equal to or In terms of
decibels, this is equal to In fact, the field is attenuated by
a factor or 0.368, in a distance equal to This distance is known as the skin
depth and is denoted by the symbol From (4.113a), we obtain

(4.115)d =
11pfms

d.
1>a.e-1,

20 log10 e
2p = 54.58 dB.

e-2p.e-al

1.04 * 1018 Hz.5.8 * 107/2pe0,
vesm = m0.107 S>m, e = e0,

s = 5.80 *

ms1f,ha, b, vp,

 = Apfm
s

 11 + j2
 h L Avms  ejp>4

 L A jvm
s

 h = A jvm

s + jve

 l =
2p
b

L A 4p
fms

 vp =
v

b
L A4pf

ms

 b L 1pfms

 a L 1pfms

 = 1pfms11 + j2
 = 1vms ejp>4
 L 1jvms

 g = 1jvm1s + jve2

Skin effect
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4.5 Uniform Plane Waves in Dielectrics and Conductors 253

Underwater
communica-
tion

2F. Sterzer et al., “RF Therapy for Malignancy,” IEEE Spectrum, December 1980, pp. 32–37.

The skin depth for copper is equal to

Thus, in copper, the fields are attenuated by a factor in a distance of 0.066
mm even at the low frequency of 1 MHz, thereby resulting in the concentration
of the fields near to the skin of the conductor.This phenomenon is known as the
skin effect. It also explains shielding by conductors.

To discuss further the characteristics of wave propagation in a good con-
ductor, we note that the ratio of the wavelength in the conducting medium to
the wavelength in a dielectric medium having the same and as those of the
conductor is given by

(4.116)

Since For example, for seawater,
and so that the ratio of the two wavelengths for 

is equal to 0.00745. Thus, for the wavelength in
seawater is 1/134 of the wavelength in a dielectric having the same and as
those of seawater and a still smaller fraction of the wavelength in free space.
Furthermore, the lower the frequency, the smaller is this fraction. Since it is the
electrical length (i.e., the length in terms of the wavelength) instead of the physi-
cal length that determines the radiation characteristics of an antenna, this means
that antennas of much shorter length can be used in seawater than in free space.
Together with the property that this illustrates that the lower the fre-
quency, the more suitable it is for underwater communication.

For a given frequency, the higher the value of the greater is the value of
the attenuation constant, the smaller is the value of the skin depth, and hence the
less deep the waves can penetrate. For example, in the heating of malignant tis-
sues (hyperthermia) by RF (radio-frequency) radiation, the waves penetrate
much deeper into fat (low water content) than into muscle (high water content).2

Equation (4.114) tells us that the intrinsic impedance of a good conductor
has a phase angle of 45°. Hence, the electric and magnetic fields in the medium
are out of phase by 45°. The magnitude of the intrinsic impedance is given by

(4.117)

As a numerical example, for copper, this quantity is equal toB2pf * 4p * 10-7

5.8 * 107 = 3.69 * 10-71f Æ

ƒh ƒ = ` 11 + j2Apfm
s
` = A2pfm

s

s,

a r 1f,

me

f = 25 kHz,1s>ve = 36,0002 f = 25 kHzm = m0,e = 80e0,
s = 4 S>m,s>ve � 1, lconductor � ldielectric.

lconductor

ldielectric
L
14p>fms
1>f1me = A4pfe

s
= A2ve

s

me

e-1

14pf * 4p * 10-7 * 5.8 * 107
=

0.0661f
 m
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254 Chapter 4 Fields and Waves In Material Media

Thus, the intrinsic impedance of copper has as low a magnitude as even
at a frequency of In fact, by recognizing that

(4.118)

we note that the magnitude of the intrinsic impedance of a good conductor
medium is a small fraction of the intrinsic impedance of a dielectric medium
having the same and It follows that for the same electric field, the magnetic
field inside a good conductor is much larger than the magnetic field inside a di-
electric having the same and as those of the conductor.

Case 4: Perfect conductors. Perfect conductors are idealizations of good
conductors in the limit that From (4.115), we note that the skin depth is
equal to zero, and, hence, there is no penetration of fields into the material.
Thus, no time-varying fields can exist inside a perfect conductor.

Summarizing the discussion of the special cases, we observe that as 
varies from 0 to a material is classified as a perfect dielectric for an
imperfect dielectric for but a good conductor for and fi-
nally a perfect conductor in the limit that This implies that a material of
nonzero behaves as an imperfect dielectric for but as a good conduc-
tor for where the transition frequency, is equal to In practice,
however, the situation is not so simple because, as was already mentioned in
Section 4.4, and are in general functions of frequency.

K4.5. Perfect dielectric; Imperfect dielectric; Good conductor; Conduction current
versus displacement current; Skin effect; Perfect conductor.

D4.10. For a nonmagnetic perfect dielectric material, find the relative per-
mittivity for each of the following cases: (a) the phase velocity in the dielectric is
one-third of its value in free space; (b) the rate of change of phase with distance
at a fixed time in the dielectric for a wave of frequency is the same as the rate
of change of phase with distance at a fixed time in free space for a wave of fre-
quency (c) for the same frequency, the wavelength in the dielectric is two-
thirds of its value in free space; and (d) for the same electric-field amplitude, the
magnetic-field amplitude in the dielectric is four times its value in free space.
Ans. (a) 9; (b) 4; (c) 2.25; (d) 16.

D4.11. For a uniform plane wave of frequency propagating in a good con-
ductor medium, the fields undergo attenuation by the factor in a distance of
2.5 m. Find the following: (a) the distance in which the fields undergo a change
of phase by rad for (b) the distance by which a constant phase
travels in for and (c) the distance by which a constant phase
travels in for assuming the material parameters to be the same
as at 
Ans. (a) 5 m; (b) 0.5 m; (c) 0.1581 m.

D4.12. The electric fields of uniform plane waves of the same frequency propagating in
three different materials 1, 2, and 3 are given, respectively, by

(a) E1 = E0 e-0.4pz cos 12p * 105t - 0.4pz2 ax

f = 105 Hz.
f = 104 Hz,1 ms
f = 105 Hz;1 ms

f = 105 Hz;2p

e-p
f = 105 Hz

2f0;

f0

1m = m02

es

s>2pe.fq,f � fq,
f � fqs

s: q .
s � ve,� ve,s Z 0

s = 0,q ,
s

s: q .

me

m.e

ƒh ƒ = A2pfm
s

= Aves Ame1012 Hz.
0.369 Æ

RaoCh04v3.qxd  12/18/03  3:49 PM  Page 254



4.6 Boundary Conditions 255

(b)
(c)

For each material, determine if at the frequency of operation, it can be classified
as an imperfect dielectric or a good conductor or neither of the two.
Ans. (a) Good conductor; (b) Imperfect dielectric; (c) Neither.

4.6 BOUNDARY CONDITIONS

In our study of electromagnetics, we will be considering many problems involv-
ing more than one medium. Examples are reflections of waves at an air–dielec-
tric interface, determination of capacitance for a multiple-dielectric capacitor,
and guiding of waves in a metallic waveguide. To solve a problem involving a
boundary surface between different media, we need to know the conditions sat-
isfied by the field components at the boundary.These are known as the boundary
conditions. They are a set of relationships relating the field components at a
point adjacent to and on one side of the boundary, to the field components at a
corresponding point adjacent to and on the other side of the boundary.These re-
lationships arise from the fact that Maxwell’s equations in integral form involve
closed paths and surfaces and they must be satisfied for all possible closed paths
and surfaces, whether they lie entirely in one medium or encompass a portion of
the boundary between two different media. In the latter case, Maxwell’s equa-
tions in integral form must be satisfied collectively by the fields on either side of
the boundary, thereby resulting in the boundary conditions.

We shall derive the boundary conditions by considering the Maxwell’s
equations

(4.119a)

(4.119b)

(4.119c)

(4.119d)

and applying them one at a time to a closed path or a closed surface encom-
passing the boundary, and in the limit that the area enclosed by the closed path
or the volume bounded by the closed surface goes to zero. Thus, let us consider
two semi-infinite media separated by a plane boundary, as shown in Fig. 4.23.
Let us denote the quantities pertinent to medium 1 by subscript 1 and the quan-
tities pertinent to medium 2 by subscript 2. Let be the unit normal vector to
the surface and directed into medium 1, as shown in Fig. 4.23, and let all normal
components of fields at the boundary in both media denoted by an additional
subscript n be directed along Let the surface charge density and the1C>m22an.

an

 CS
B # dS = 0

 CS
D # dS = LV

  r dv

 CC
H # dl = LS

J # dS +
d

dtLS
D # dS

 CC
E # dl = -  

d

dtLS
B # dS

E3 = E0 e-0.004z cos 12p * 105t - 0.01z2 ax

E2 = E0 e-2p* 10-5z cos 12p * 105t - 2p * 10-3z2 ax

Boundary
condition
explained
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256 Chapter 4 Fields and Waves In Material Media

a

d c

b

an
as

Medium 1

Medium 2

FIGURE 4.23

For deriving the boundary
conditions resulting from Faraday’s
law and Ampère’s circuital law.

surface current density (A/m) on the boundary be and respectively. Note
that, in general, the fields at the boundary in both media and the surface charge
and current densities are functions of position on the boundary.

First, we consider a rectangular closed path abcda of infinitesimal area in
the plane normal to the boundary and with its sides ab and cd parallel to and on
either side of the boundary, as shown in Fig. 4.23. Applying Faraday’s law
(4.119a) to this path in the limit that ad and by making the area abcd tend
to zero, but with ab and cd remaining on either side of the boundary, we have

(4.120)

In this limit, the contributions from ad and bc to the integral on the left side of
(4.120) approach zero. Since ab and cd are infinitesimal, the sum of the contri-
butions from ab and cd becomes where and are
the components of and along ab and cd, respectively. The right side of
(4.120) is equal to zero, since the magnetic flux crossing the area abcd ap-
proaches zero as the area abcd tends to zero. Thus, (4.120) gives

or, since ab and cd are equal and 

(4.121)

Let us now define to be the unit vector normal to the area abcd and in the di-
rection of advance of a right-hand screw as it is turned in the sense of the closed
path abcda. Noting then that is the unit vector along ab, we can write
(4.121) as

Rearranging the order of the scalar triple product, we obtain

(4.122)as
# an � 1E1 - E22 = 0

as � an
# 1E1 - E22 = 0

as � an

as

Eab - Edc = 0

Edc = -Ecd,

Eab1ab2 + Ecd1cd2 = 0

E2E1

EcdEab[Eab1ab2 + Ecd1cd2],

lim
ad : 0
bc : 0Cabcda

E # dl = - lim
ad : 0
bc : 0

 
d

dt 3
area

abcd 

B # dS

bc : 0

JS,rS

Boundary
condition for
Etangential
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4.6 Boundary Conditions 257

Since we can choose the rectangle abcd to be in any plane normal to the bound-
ary, (4.122) must be true for all orientations of It then follows that

(4.123a)

or, in scalar form,

(4.123b)

where and are the components of and respectively, tangential to
the boundary. In words, (4.123a) and (4.123b) state that at any point on the
boundary, the components of and tangential to the boundary are equal.

Similarly, applying Ampère’s circuital law (4.119b) to the closed path in
the limit that ad and we have

(4.124)

Using the same argument as for the left side of (4.120), we obtain the quantity
on the left side of (4.124) to be equal to where and

are the components of and along ab and cd, respectively. The second
integral on the right side of (4.124) is zero since the displacement flux crossing
the area abcd approaches zero as the area abcd tends to zero. The first integral
on the right side of (4.124) would also be equal to zero but for a contribution
from the surface current on the boundary, because letting the area abcd tend to
zero with ab and cd on either side of the boundary reduces only the volume cur-
rent, if any, enclosed by it to zero, keeping the surface current still enclosed by it.
This contribution is the surface current flowing normal to the line that abcd ap-
proaches as it tends to zero, that is, Thus, (4.124) gives

or, since ab and cd are equal and 

(4.125)

In terms of and we have

or

(4.126)

Since (4.126) must be true for all orientations of that is, for a rectangle abcd
in any plane normal to the boundary, it follows that

(4.127a)an � 1H1 - H22 = JS

as,

as
# an � 1H1 - H22 = as

# JS

as � an
# 1H1 - H22 = JS

# as

H2,H1

Hab - Hdc = JS
# as

Hdc = -Hcd,

Hab1ab2 + Hcd1cd2 = 1JS
# as21ab2

[JS
# as]1ab2.

H2H1Hcd

Hab[Hab1ab2 + Hcd1cd2],

lim
ad : 0
bc : 0Cabcda

H # dl = lim
ad : 0
bc : 0 3area

abcd 

J # dS + lim
ad : 0
bc : 0

 
d

dt 3
area

abcd 

D # dS

bc : 0,

E2E1

E2,E1Et2Et1

Et1 - Et2 = 0

an � 1E1 - E22 = 0

as.

Boundary
condition for
Htangential
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258 Chapter 4 Fields and Waves In Material Media

or, in scalar form,

(4.127b)

where and are the components of and respectively, tangential to
the boundary. In words, (4.127a) and (4.127b) state that at any point on the
boundary, the components of and tangential to the boundary are discon-
tinuous by the amount equal to the surface current density at that point. It should
be noted that the information concerning the direction of relative to that of

which is contained in (4.127a), is not present in (4.127b). Thus, in
general, (4.127b) is not sufficient, and it is necessary to use (4.127a).

Now, we consider a rectangular box abcdefgh of infinitesimal volume en-
closing an infinitesimal area of the boundary and parallel to it, as shown in
Fig. 4.24. Applying Gauss’ law for the electric field (4.119c) to this box in the
limit that the side surfaces (abbreviated ss) tend to zero by making the vol-
ume of the box tend to zero but with the sides abcd and efgh remaining on ei-
ther side of the boundary, we have

(4.128)

In this limit, the contributions from the side surfaces to the integral on the left
side of (4.128) approach zero. The sum of the contributions from the top and
bottom surfaces becomes since abcd and efgh are in-
finitesimal. The quantity on the right side of (4.128) would be zero but for the
surface charge on the boundary, since letting the volume of the box tend to zero
with the sides abcd and efgh on either side of it reduces only the volume charge,
if any, enclosed by it to zero, keeping the surface charge still enclosed by it. This
surface charge is equal to Thus, (4.128) gives

or, since abcd and efgh are equal,

(4.129a)Dn1 - Dn2 = rS

Dn11abcd2 - Dn21efgh2 = rS1abcd2
rS1abcd2.

[Dn11abcd2 - Dn21efgh2]

lim
ss:0 C

surface
of the box 

D # dS = lim
ss:0 3

volume
of the box

  
r dv

1H1 - H22,
JS

H2H1

H2,H1Ht2Ht1

Ht1 - Ht2 = JS

Boundary
condition for
Dnormal

a

d c

g
b

an

Medium 1

Medium 2

h

e f
FIGURE 4.24

For deriving the boundary
conditions resulting from the
two Gauss’ laws.
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4.6 Boundary Conditions 259

In terms of and (4.129a) is given by

(4.129b)

In words, (4.129a) and (4.129b) state that at any point on the boundary, the com-
ponents of and normal to the boundary are discontinuous by the amount
of the surface charge density at that point.

Similarly, applying Gauss’ law for the magnetic field (4.119d) to the box
abcdefgh in the limit that the side surfaces tend to zero, we have

(4.130)

Using the same argument as for the left side of (4.128), we obtain the quantity on
the left side of (4.130) to be equal to Thus, (4.130) gives

or, since abcd and efgh are equal

(4.131a)

In terms of and (4.131a) is given by

(4.131b)

In words, (4.131a) and (4.131b) state that at any point on the boundary, the com-
ponents of and normal to the boundary are equal.

Summarizing the boundary conditions, we have

(4.132a)

(4.132b)

(4.132c)

(4.132d)

or, in scalar form,

(4.133a)

(4.133b)

(4.133c)

(4.133d)

as illustrated in Fig. 4.25. Although we have derived these boundary conditions
by considering a plane interface between the two media, it should be obvious
that we can consider any arbitrary-shaped boundary and obtain the same results
by letting the sides ab and cd of the rectangle and the top and bottom surfaces of

 Bn1 - Bn2 = 0

 Dn1 - Dn2 = rS

 Ht1 - Ht2 = JS

 Et1 - Et2 = 0

 an
# 1B1 - B22 = 0

 an
# 1D1 - D22 = rS

 an � 1H1 - H22 = JS

 an � 1E1 - E22 = 0

B2B1

an
# 1B1 - B22 = 0

B2,B1

Bn1 - Bn2 = 0

Bn11abcd2 - Bn21efgh2 = 0

[Bn11abcd2 - Bn21efgh2].

lim
ss:0 C

surface
of the box

B # dS = 0

D2D1

an
# 1D1 - D22 = rS

D2,D1

Boundary
condition for
Bnormal
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an
Medium 1

Medium 2

�
Et1

Et2

Ht1

Dn1

Bn1

Bn2Dn2

Ht2

rSJS

FIGURE 4.25

For illustrating the boundary conditions at an interface between two different media.

Boundary
conditions at
interface
between
perfect
dielectrics

the box tend to zero, in addition to the limits that the sides ad and bc of the rec-
tangle and the side surfaces of the box tend to zero.

The boundary conditions given by (4.132a) – (4.132d) are general. When
they are applied to particular cases, the special properties of the pertinent
media come into play. Two such cases are important to be considered. They are
as follows.

Interface between two perfect dielectric media: Since for a perfect di-
electric, Thus, there cannot be any conduction current in a
perfect dielectric, which in turn rules out any accumulation of free charge on the
surface of a perfect dielectric. Hence, in applying the boundary conditions
(4.132a)–(4.132d) to an interface between two perfect dielectric media, we set

and equal to zero, thereby obtaining

(4.134a)
(4.134b)
(4.134c)
(4.134d)

These boundary conditions tell us that the tangential components of E and H
and the normal components of D and B are continuous at the boundary.

Surface of a perfect conductor: No time-varying fields can exist in a per-
fect conductor. In view of this, the boundary conditions on a perfect conductor
surface are obtained by setting the fields with subscript 2 in (4.132a) – (4.132d)
equal to zero. Thus, we obtain

(4.135a)
(4.135b)
(4.135c)
(4.135d) an

# B = 0
 an

# D = rS

 an � H = JS

 an � E = 0

 an
# 1B1 - B22 = 0

 an
# 1D1 - D22 = 0

 an � 1H1 - H22 = 0
 an � 1E1 - E22 = 0

JSrS

s = 0, Jc = sE = 0.

Boundary
conditions on
a perfect
conductor
surface
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4.6 Boundary Conditions 261

where we have also omitted subscripts 1, so that E, H, D, and B are the fields on
the perfect conductor surface. The boundary conditions (4.135a) and (4.135d)
tell us that on a perfect conductor surface, the tangential component of the elec-
tric field intensity and the normal component of the magnetic field intensity are
zero. Hence, the electric field must be completely normal, and the magnetic
field must be completely tangential to the surface. The remaining two boundary
conditions (4.135c) and (4.135b) tell us that the (normal) displacement flux den-
sity is equal to the surface charge density and the (tangential) magnetic field in-
tensity is equal in magnitude to the surface current density.

Example 4.7 Application of boundary conditions

In Fig. 4.26, the region is a perfect conductor, the region is a perfect di-
electric of and and the region is free space. The electric and mag-
netic fields in the region are given at a particular instant of time by

We wish to find (a) and on the surface and (b) E and H for that is, im-
mediately adjacent to the and on the free-space side, at that instant of time.

(a) Denoting the perfect dielectric medium to be medium 1 and the per-
fect conductor medium to be medium 2, we have and all fields
with subscript 2 are equal to zero. Then from (4.132c) and (4.132b), we obtain

Note that the remaining two boundary conditions (4.132a) and (4.132d) are al-
ready satisfied by the given fields, since and do not exist and for 

Also note that what we have done here is equivalent to using (4.135a) –
(4.135d), since the boundary is the surface of a perfect conductor.
Ez = 0.

x = 0,BxEy

 = H1 sin 2pz az

 [JS]x = 0 = an � [H1]x = 0 = ax � H1 sin 2pz ay

 = 2e0 E1 sin 2pz

 [rS]x = 0 = an
# [D1]x = 0 = ax

# 2e0 E1 sin 2pz ax

an = ax,1x 6 02
10 6 x 6 d2

x = d plane
x = d+ ,x = 0JSrS

 H = H1 cos px sin 2pz ay

 E = E1 cos px sin 2pz ax + E2 sin px cos 2pz az

0 6 x 6 d
x 7 dm = m0,e = 2e0

0 6 x 6 dx 6 0

zy

x � d

x � 0

x

Free Space
e0, m0

Perfect Dielectric
2e0, m0

Perfect Conductor

FIGURE 4.26

For illustrating the application of boundary conditions.
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262 Chapter 4 Fields and Waves In Material Media

(b) Denoting the perfect dielectric medium to be medium 1 and the
free-space medium to be medium 2 and setting we obtain from
(4.133a) and (4.133c)

Thus

Setting and using (4.133b) and (4.133d), we obtain

Thus,

Note that what we have done here is equivalent to using (4.134a) – (4.134d), since
the boundary is the interface between two perfect dielectrics.

K4.6. Boundary conditions; Tangential component of E; Tangential component of H;
Normal component of D; Normal component of B.

D4.13. For each of the following values of the displacement flux density at a point on the
surface of a perfect conductor (no electric field inside and hence on the sur-
face), find the surface charge density at that point: (a)
and pointing away from the surface; (b) and pointing toward
the surface; and (c) and pointing away from the surface.
Assume to be positive for all cases.
Ans. (a) (b) (c)

D4.14. The region is a perfect dielectric of permittivity and the region 
is a perfect dielectric of permittivity Consider the field components at point
1 on the of the boundary to be denoted by subscript 1 and the field
components at the adjacent point 2 on the of the boundary to be de-
noted by subscript 2. If find the following: (a) (b)

and (c)
Ans. (a) 1.5; (b) (c)

D4.15. The plane forms the boundary between free space and another
medium. Find the following: (a) at if is a perfect conductor
and (b) if is a magneticz 6 0H10, 0, 0+2H10, 0, 0+2 = H013ax - 4ay2 cos vt;

z 6 0t = 0JS10, 0, 02
1z 7 02z = 0

2>15.3>15;
D1>D2.E1>E2;

Ex1>Ex2;E1 = E012ax + ay2,
-x-side

+x-side
3e0.

x 6 02e0x 7 0
D0.-2D0;3D0;

D0

D = D010.8ax + 0.6ay2
D = D01ax + 13az2

D = D01ax - 2ay + 2az2
Et = 0

[H]x = d + = H1 cos pd sin 2pz ay

 [Bx]x = d + = [Bx]x = d - = 0

 [Hz]x = d + = [Hz]x = d - = 0

 [Hy]x = d + = [Hy]x = d - = H1 cos pd sin 2pz

JS = 0

[E]x = d + = 2E1 cos pd sin 2pz ax + E2 sin pd cos 2pz az

 = 2E1 cos pd sin 2pz

 [Ex]x = d + =
1
e0

 [Dx]x = d +

 = 2e0 E1 cos pd sin 2pz

 [Dx]x = d + = [Dx]x = d - = 2e0[Ex]x = d -

 [Ez]x = d + = [Ez]x = d - = E2 sin pd cos 2pz

 [Ey]x = d + = [Ey]x = d - = 0

rS = 0,1x 7 d2
10 6 x 6 d2
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material of and and (c) the ratio of
to for the case of (b).

Ans. (a) (b) (c) 8.989.

4.7 REFLECTION AND TRANSMISSION OF UNIFORM PLANE WAVES

Thus far, we have considered uniform plane wave propagation in unbounded
media. Practical situations are characterized by propagation involving several dif-
ferent media. When a wave is incident on a boundary between two different
media, a reflected wave is produced. In addition, if the second medium is not a per-
fect conductor, a transmitted wave is set up. Together, these waves satisfy the
boundary conditions at the interface between the two media. In this section, we
shall consider these phenomena for waves incident normally on plane boundaries.

To do this, let us consider the situation shown in Fig. 4.27 in which steady-
state conditions are established by uniform plane waves of radian frequency 
propagating normal to the plane interface between two media character-
ized by two different sets of values of and where We shall as-
sume that a wave is incident from medium onto the interface,
thereby setting up a reflected wave in that medium, and a transmitted 
wave in medium For convenience, we shall work with the phasor or
complex field components. Thus, considering the electric fields to be in the x-di-
rection and the magnetic fields to be in the y-direction, we can write the solu-
tion for the complex field components in medium 1 to be

(4.136a)

(4.136b)

where and are the incident and reflected wave electric and
magnetic field components, respectively, at in medium 1 and

(4.137a)

(4.137b) h1 = A jvm1

s1 + jve1

 g1 = 1jvm11s1 + jve12
z = 0-

H
 –

1
-E

 –
1
+, E

 –
1
-, H

 –
1
+,

 =
1
h1

 1E –1
+e-g

q1 z - E
 –

1
-egq1 z2

 H
 –

1y1z2 = H
 –

1
+e-g

q1 z + H
 –

1
-egq1 z

 E
 –

1x1z2 = E
 –

1
+e-g

q1 z + E
 –

1
-egq1 z

2 1z 7 02. 1+21-2 1 1z 6 021+2 s Z q .m,s, e,
z = 0

v

10H01ax + 2az2;H014ax + 3ay2;
B10, 0, 0+2B10, 0, 0-2

H10, 0, 0-2 = H0110ax + az2;m = 20m0

Normal
incidence on
a plane
interface

z

x

y

Medium 1

(�)
(�)

(�)

z 	 0 z 
 0
z � 0

s1, e1, m1

Medium 2

s2, e2, m2

FIGURE 4.27

Normal incidence of uniform plane
waves on a plane interface between
two different media.
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264 Chapter 4 Fields and Waves In Material Media

Recall that the real field corresponding to a complex field component is ob-
tained by multiplying the complex field component by and taking the real
part of the product. The complex field components in medium 2 are given by

(4.138a)

(4.138b)

where and are the transmitted wave electric- and magnetic-field compo-
nents at in medium 2 and

(4.139a)

(4.139b)

To satisfy the boundary conditions at we note that (1) the compo-
nents of both electric and magnetic fields are entirely tangential to the interface
and (2) in view of the finite conductivities of the media, no surface current exists
on the interface (currents flow in the volumes of the media). Hence, from the
phasor forms of the boundary conditions (4.133a) and (4.133b), we have

(4.140a)

(4.140b)

Applying these to the solution pairs given by (4.136a, b) and (4.138a, b), we have

(4.141a)

(4.141b)

We now define the reflection coefficient at the boundary, denoted by the symbol
to be the ratio of the reflected wave electric field at the boundary to the inci-

dent wave electric field at the boundary. From (4.141a) and (4.141b), we obtain

(4.142)

Note that the ratio of the reflected wave magnetic field at the boundary to the
incident wave magnetic field at the boundary is given by

(4.143)

The ratio of the transmitted wave electric field at the boundary to the incident
wave electric field at the boundary, known as the transmission coefficient and
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4.7 Reflection and Transmission of Uniform Plane Waves 265

denoted by the symbol is given by

(4.144)

where we have used (4.141a). The ratio of the transmitted wave magnetic field
at the boundary to the incident wave magnetic field at the boundary is given by

(4.145)

The reflection and transmission coefficients given by (4.142) and (4.144),
respectively, enable us to find the reflected and transmitted wave fields for a
given incident wave field. We observe the following properties of and 

1. For and The incident wave is entirely transmitted.
The situation then corresponds to a “matched” condition.A trivial case oc-
curs when the two media have identical values of the material parameters.

2. For that is, when both media are perfect dielectrics, and
are real. Hence, and are real. In particular, if the two media have the

same permeability but different permittivities and then

(4.146)

(4.147)

3. For and Thus, if medium 2 is a perfect
conductor, the incident wave is entirely reflected, as it should be since there
cannot be any time-varying fields inside a perfect conductor.The superposi-
tion of the reflected and incident waves would then give rise to the so-called
complete standing waves in medium 1. We shall discuss complete standing
waves as well as partial standing waves when we study the topic of sinu-
soidal steady-state analysis of waves on transmission lines in Chapter 7.

Example 4.8 Normal incidence of a uniform plane wave onto a material
medium

Region is free space, whereas region is a material medium charac-
terized by and For a uniform plane wave having the
electric field

Ei = E0 cos 13p * 105t - 10-3pz2 ax V>m

m = m0.s = 10-4 S>m, e = 5e0,
2 1z 7 021 1z 6 02

t: 0.s2 : q , h2 : 0, ≠ : -1,

 t =
2

1 + 1e2>e1

 =
1 - 1e2>e1

1 + 1e2>e1

 ≠ =
1m>e2 - 1m>e11m>e2 + 1m>e1

e2,e1m

t≠h2

h1s1 = s2 = 0,

t = 1.h2 = h1, ≠ = 0

t:≠
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 –
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+
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 –

1
+ =
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 –

1
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 –
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 –

1
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 –
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 –
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t,
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266 Chapter 4 Fields and Waves In Material Media

incident on the interface from region 1, we wish to obtain the expressions for the
reflected and transmitted wave electric and magnetic fields.

From computation as in Example 4.5 for and

Then

Thus, the reflected and transmitted wave electric and magnetic fields are given by

Note that at the boundary conditions of and are sat-
isfied, since

and

K4.7. Plane interface between two material media; Normal incidence of uniform
plane waves; Reflection; Transmission; Reflection and transmission coefficients.

D4.16. For each of the following cases of uniform plane waves of frequency 
incident normally from medium onto the interface with
medium find the values of and (a) Medium 1 is free space and
the parameters of medium 2 are and and (b) them = m0;s = 10-3 S>m, e = 6e0,

t:≠2 1z 7 02,
1z = 021 1z 6 02

f = 1 MHz

E0

377
- 1.678 * 103E0 cos 0.8976p = 4.277 * 103E0 cos 1-   0.0396p2

E0 + 0.6325E0 cos 0.8976p = 0.4472E0 cos 0.1476p

Hi + Hr = HtEi + Er = Etz = 0,

  – cos 13p * 105t - 9.425 * 10-3z - 0.0396p2 ay A>m
 = 4.277 * 10-3E0 e-

  

6.283 * 10-3z

  – cos 13p * 105t - 9.425 * 10-3z + 0.1476p - 0.1872p2 ay A>m
 Ht =

0.4472E0

104.559
 e-

  

6.283 * 10-3z

  – cos 13p * 105t - 9.425 * 10-3z + 0.1476p2 ax V>m
 Et = 0.4472E0 e-

  

6.283 * 10-3z

 = -1.678 * 10-3E0 cos 13p * 105t + 10-3pz + 0.8976p2 ay  A>m
 Hr = -  

0.6325E0

377
 cos 13p * 105t + 10-3pz + 0.8976p2 ay  A>m

 Er = 0.6325E0 cos 13p * 105t + 10-3pz + 0.8976p2 ax  V>m

 = 0.4472l26.565° = 0.4472l0.1476p

 t = 1 + ≠ = 1 + 0.6325l161.565°

 = 0.6325l161.565° = 0.6325l0.8976p

 ≠ =
h - h0

h + h0
=

104.559l33.69° - 377

104.559l33.69° + 377

 h = 104.559l33.69° = 104.559l0.1872p

 g = 16.283 + j9.4252 * 10-3

f = 13p * 1052>2p = 1.5 * 105 Hz,
s = 10-4 S>m, e = 5e0, m = m0,

z = 0
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parameters of medium 1 are and and the parame-
ters of medium 2 are and 
Ans. (a) (b)

D4.17. The regions and are nonmagnetic perfect dielectrics of
permittivities and respectively. For a uniform plane wave incident from the
region normally onto the boundary find for each of the fol-
lowing to hold at (a) the electric field of the reflected wave is times
the electric field of the incident wave; (b) the electric field of the transmitted
wave is 0.4 times the electric field of the incident wave; and (c) the electric field
of the transmitted wave is six times the electric field of the reflected wave.
Ans. (a) 4; (b) 16; (c) 4/9.

SUMMARY

In this Chapter, we introduced materials. We learned that materials can be clas-
sified as (1) conductors, (2) semiconductors, (3) dielectrics, and (4) magnetic
materials, depending on the nature of the response of the charged particles in
the materials to applied fields. Conductors are characterized by conduction,
which is the phenomenon of steady drift of free electrons under the influence of
an applied electric field, thereby resulting in a conduction current. In semicon-
ductors, also characterized by conduction, the charge carriers are not only elec-
trons, but also holes.We learned that the conduction current density is related to
the electric field intensity in the manner

(4.148)

where is the conductivity of the material. We discussed (1) the formation of
surface charge at the boundaries of a conductor placed in a static electric field,
(2) the derivation of Ohm’s law in circuit theory, and (3) the Hall effect.

Dielectrics are characterized by polarization, which is the phenomenon
of the creation and net alignment of electric dipoles, formed by the displace-
ment of the centroids of the electron clouds from the centroids of the nucleii of
the atoms, along the direction of an applied electric field. Magnetic materials
are characterized by magnetization, which is the phenomenon of net alignment
of the axes of the magnetic dipoles, formed by the electron orbital and spin mo-
tion around the nucleii of the atoms, along the direction of an applied magnet-
ic field. To eliminate the need for explicitly taking into account the effects of
polarization and magnetization, we revised the definitions of the displacement
flux density vector and the magnetic field intensity vector, introduced in Sec.
2.3 for free space, to be applicable for a material medium. The revised defini-
tions are

 H =
B
m0

- M

 D = e0 E + P

s

Jc = sE

-1>3z = 0:
e2>e1z = 0,z 6 0

e2,e1

1m = m02z 7 0z 6 0

1.948l -1.177°.0.9486l-2.4155°,0.6909l64.177°, 0.3846l29.331°;
m = m0.s = 10-3 S>m, e = 80e0,
m = m0,s = 4 S>m, e = 80e0,
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268 Chapter 4 Fields and Waves In Material Media

respectively, where P is the polarization vector, and M is the magnetization vec-
tor. We learned that for isotropic materials, these expressions simplify to

(4.149)

(4.150)

where

are the permittivity and the permeability, respectively, of the material and the
quantities and are the relative permittivity and the relative permeability,
respectively, which take into account implicitly the effects of polarization and
magnetization, respectively. Equations (4.148), (4.149), and (4.150) are known
as the constitutive relations.We also discussed the hysteresis phenomenon asso-
ciated with ferromagnetic materials and discussed an application based on the
use of the hysteresis curve.

Next, we extended the treatment of uniform plane waves to a material
medium. Starting with Maxwell’s equations for a material medium given by

and using the phasor technique, we considered the infinite plane current sheet
of uniform surface current density

in the xy-plane and embedded in the material medium, and obtained the elec-
tromagnetic field due to it to be

(4.151a)

(4.151b)

In (4.151a, b), and are the attenuation and phase constants given, respec-
tively, by the real and imaginary parts of the propagation constant, Thus,

The quantities and are the magnitude and phase angle, respectively, of the
intrinsic impedance, of the medium. Thus,

h = ƒh ƒ  ejt = A jvm

s + jve

h,
tƒh ƒ

g = a + jb = 1jvm1s + jve2
g.

ba

 H = ;  

JS0

2
 e < az cos 1vt < bz2 ay  for z � 0

 E =
ƒh ƒJS0

2
 e < az cos 1vt < bz + t2 ax for z � 0

JS = -JS0 cos vt ax A>m

 � � H = Jc +
0D
0t

= sE + e 
0E
0t

 � � E = -  
0B
0t

= -m 
0H
0t

mrer

 m = m0mr

 e = e0er

 H =
B
m

 D = eE
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The solution given by (4.151a) and (4.151b) tells us that the wave propagation
in the material medium is characterized by attenuation, as indicated by and
a phase difference between E and H in the amount We also learned that these
properties as well as the phase velocity are frequency-dependent.

We also generalized the Poynting’s theorem, introduced in Sec. 3.7 for free
space, to a material medium and learned that the power dissipation density as-
sociated with the phenomenon of conduction, and the electric and magnetic
stored energy densities are given, respectively, by

The power flow out of a closed surface S, as given by the surface integral of the
Poynting vector, P, over S, plus the power dissipated in the volume V bounded
by S, is always equal to the sum of the time rates of decrease of the electric and
magnetic stored energies in the volume V, as given by the Poynting’s theorem

Having discussed uniform plane wave propagation for the general case of
a medium characterized by and we then considered several special
cases. These are summarized in the following:

Perfect dielectrics. For these materials, Wave propagation occurs with-
out attenuation as in free space but with the propagation parameters governed
by and instead of and respectively.

Imperfect dielectrics. A material is classified as an imperfect dielectric for
that is, conduction current density small in magnitude compared to

the displacement current density. The only significant feature of wave propaga-
tion in an imperfect dielectric as compared to that in a perfect dielectric is the
attenuation undergone by the wave.

Good conductors. A material is classified as a good conductor for 
that is, conduction current density large in magnitude compared to the displace-
ment current density. Wave propagation in a good conductor medium is charac-
terized by attenuation and phase constants both equal to Thus for large
values of f and/or the fields do not penetrate very deep into the conductor.
This phenomenon is known as the skin effect. From considerations of the fre-
quency dependence of the attenuation and wavelength for a fixed we learned
that low frequencies are more suitable for communication with underwater ob-
jects. We also learned that the intrinsic impedance of a good conductor medium
is very low in magnitude compared to that of a dielectric medium having the
same and m.e

s,

s,
1pfms.

s W ve,

s V ve,

m0,e0me

s = 0.

m,s, e,

CS
P # dS = -LV

 sE2 dv -
0
0tLv

 
1
2

 eE2 dv -
0
0tLv

 
1
2

 mH2 dv

 wm = 1
2 mH2

 we = 1
2 eE2

 pd = sE2

t.
e <az
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270 Chapter 4 Fields and Waves In Material Media

Perfect conductors. These are idealizations of good conductors in the limit
For the skin depth, that is, the distance in which the fields in-

side a conductor are attenuated by a factor is zero. Hence, there can be no
penetration of fields into a perfect conductor.

As a prelude to the consideration of problems involving more than one
medium, we derived the boundary conditions resulting from the application of
Maxwell’s equations in integral form to closed paths and closed surfaces en-
compassing the boundary between two media, and in the limits that the areas
enclosed by the closed paths and the volumes bounded by the closed surfaces
go to zero. These boundary conditions are given by

where the subscripts 1 and 2 refer to media 1 and 2, respectively, and is unit
vector normal to the boundary at the point under consideration and directed
into medium 1. In words, the boundary conditions state that at a point on the
boundary, the tangential components of E and the normal components of B are
continuous, whereas the tangential components of H are discontinuous by the
amount equal to at that point, and the normal components of D are discon-
tinuous by the amount equal to at that point.

Two important special cases of boundary conditions are as follows: (a) At
the boundary between two perfect dielectrics, the tangential components of E
and H and the normal components of D and B are continuous. (b) On the sur-
face of a perfect conductor, the tangential component of E and the normal com-
ponent of B are zero, whereas the normal component of D is equal to the
surface charge density, and the tangential component of H is equal in magni-
tude to the surface current density.

Finally, we considered uniform plane waves incident normally onto a
plane boundary between two media, and we learned how to compute the re-
flected and transmitted wave fields for a given incident wave field.

REVIEW QUESTIONS

Q4.1. Distinguish between bound electrons and free electrons in an atom and briefly
describe the phenomenon of conduction.

Q4.2. Discuss the classification of a material as a conductor, semiconductor, or dielec-
tric with the aid of energy band diagrams.

Q4.3. What is mobility? Give typical values of mobilities for electrons and holes.
Q4.4. State Ohm’s law valid at a point, defining the conductivities for conductors and

semiconductors.
Q4.5. Explain how conduction current in a material is taken into consideration in

Maxwell’s equations.
Q4.6. Discuss the formation of surface charge at the boundaries of a conductor placed

in a static electric field.

rS

JS

an

 an
# 1B1 - B22 = 0

 an
# 1D1 - D22 = rS

 an � 1H1 - H22 = JS

 an � 1E1 - E22 = 0

e-1,
s = q ,s: q .
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Q4.7. Discuss the derivation of Ohm’s law in circuit theory from the Ohm’s law valid
at a point.

Q4.8. Discuss the Hall effect.

Q4.9. Briefly describe the phenomenon of polarization in a dielectric material. What
are the different kinds of polarization?

Q4.10. What is an electric dipole? How is its strength defined?

Q4.11. What is a polarization vector? How is it related to the electric field intensity?

Q4.12. Discuss the effect of polarization in a dielectric material using the example of
polarization surface charge.

Q4.13. Discuss how polarization current arises in a dielectric material. How is it taken
into account in Maxwell’s equations?

Q4.14. Discuss the revised definition of displacement flux density and the permittivity
concept.

Q4.15. What is an anisotropic dielectric material? When can an effective permittivity
be defined for an anisotropic dielectric material?

Q4.16. Briefly describe the phenomenon of magnetization in a magnetic material.
What are the different kinds of magnetic materials?

Q4.17. What is a magnetic dipole? How is its strength defined?

Q4.18. What is a magnetization vector? How is it related to the magnetic flux density?

Q4.19. Discuss the effect of magnetization in a magnetic material using the example of
magnetization surface current.

Q4.20. Discuss how magnetization current arises in a magnetic material. How is it
taken into account in Maxwell’s equations?

Q4.21. Discuss the revised definition of magnetic field intensity and the permeability
concept.

Q4.22. Discuss the phenomenon of hysteresis associated with ferromagnetic materials.

Q4.23. Discuss the principles behind storing data on a floppy disk and retrieving the
data from it.

Q4.24. State the constitutive relations for a material medium.

Q4.25. Discuss the determination of the electromagnetic field due to an infinite plane
current sheet of sinusoidally time-varying current density embedded in a material
medium, explaining how it is made convenient by using the phasor technique.

Q4.26. What is the propagation constant for a material medium? Discuss the signifi-
cance of its real and imaginary parts.

Q4.27. What is the intrinsic impedance for a material medium? What is the conse-
quence of its complex nature?

Q4.28. What is loss tangent? Discuss its significance.

Q4.29. Discuss the consequence of the frequency dependence of the phase velocity of a
wave in a material medium.

Q4.30. How would you obtain the electromagnetic field due to a current sheet of non-
sinusoidally time-varying current density embedded in a material medium?

Q4.31. State Poynting’s theorem for a material medium.

Q4.32. What are the power dissipation density, the electric stored energy density, and
the magnetic stored energy density associated with an electromagnetic field in a
material medium?
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Q4.33. What is the condition for a medium to be a perfect dielectric? How do the char-
acteristics of wave propagation in a perfect dielectric medium differ from those
of wave propagation in free space?

Q4.34. What is the criterion for a material to be an imperfect dielectric? What is the
significant feature of wave propagation in an imperfect dielectric as compared
to that in a perfect dielectric?

Q4.35. What is the criterion for a material to be a good conductor? Give two exam-
ples of materials that behave as good conductors for frequencies of up to sev-
eral gigahertz.

Q4.36. What is skin effect? Discuss skin depth, giving some numerical values.
Q4.37. Why are low-frequency waves more suitable than high-frequency waves for

communication with underwater objects?
Q4.38. Discuss the consequence of the low intrinsic impedance of a good conductor as

compared to that of a dielectric medium having the same and 
Q4.39. Why can there be no fields inside a perfect conductor?
Q4.40. What is a boundary condition? How do boundary conditions arise and how are

they derived?
Q4.41. Summarize the boundary conditions for the general case of a boundary between

two arbitrary media, indicating correspondingly the Maxwell’s equations in in-
tegral form from which they are derived.

Q4.42. Discuss the boundary conditions on the surface of a perfect conductor.
Q4.43. Discuss the boundary conditions at the interface between two perfect dielectric

media.
Q4.44. Discuss the determination of the reflected and transitted wave fields from the

fields of a wave incident normally onto a plane boundary between two material
media.

Q4.45. What is the consequence of a wave incident on a perfect conductor?

PROBLEMS

Section 4.1

P4.1. Kinetic energy of electron motion under thermal agitation. Consider two elec-
trons moving under thermal agitation with velocities equal in magnitude and
opposite in direction. A uniform electric field is applied along the direction of
motion of one of the electrons. Show that the gain in kinetic energy by the ac-
celerating electron is greater than the loss in kinetic energy by the decelerating
electron.

P4.2. Drift velocity of electron motion in a conductor for a sinusoidal electric field.
(a) For a sinusoidally time-varying electric field where is a
constant, show that the steady-state solution to (4.2) is given by

(b) Based on the assumption of one free electron per atom, the free electron
density in silver is Using the conductivity for silver given in
Table 4.1, find the frequency at which the drift velocity lags the applied field by

5.86 * 1028 m-3.Ne

vd =
te

m41 + v2t2
 E0 cos 1vt - tan-1 vt2

E0E = E0 cos vt,

m.e
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What is the ratio of the mobility at this frequency to the mobility at zero
frequency?

P4.3. Surface charge densities for plane conducting slabs with net surface charge den-
sities. (a) An infinite plane conducting slab carries uniformly distributed surface
charges on both of its surfaces. If the net surface charge density, that is, the sum of
the surface charge densities on the two surfaces, is find the surface
charge densities on the two surfaces. (b) Two infinite plane parallel conducting
slabs 1 and 2 carry uniformly distributed surface charges on all four of their sur-
faces. If the net surface charge densities are and respectively, for the
slabs 1 and 2, find the surface charge densities on all four surfaces.

P4.4. Line charge in the presence of a plane conductor. The region is occupied
by a conductor. An infinitely long line charge of uniform density is situated
along the line passing through (d, 0, 0) and parallel to the z-axis, where 
From the secondary field required to make the total electric field inside the con-
ductor equal to zero and from symmetry considerations, as shown by the cross-
sectional view in Fig. 4.28, show that the field outside the conductor is the same
as the field due to the line charge passing through (d, 0, 0) and a parallel
“image” line charge of uniform density along the line passing through

Find the expression for the electric field outside the conductor. Hint:
Use the expression for the electric field intensity due to an infinitely long line
charge of uniform density along the z-axis given by 1rL0>2pe0 r2ar.rL0

1-d, 0, 02.
-rL0

d 7 0.
rL0

x 6 0

rS2 C>m2,rS1

rS0 C>m2,

p>4.

Charge

� � � � � � � � � x � 0

Induced
Charge

Applied Field

Secondary Field

FIGURE 4.28

For Problem P4.4.

Section 4.2

P4.5. Torque on an electric dipole in an applied electric field. Show that the torque
acting on an electric dipole of moment p due to an applied electric field E is

Compute the torque for a dipole consisting of of charge at
and of charge at in an electric field 

103 12ax - ay + 2az2 V/m.
E =10, 0, -10-32-1 mC10, 0, 10-32

1 mCp � E.
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P4.6. Point charge surrounded by a spherical dielectric shell. A point charge Q is sit-
uated at the origin surrounded by a spherical dielectric shell of uniform permit-
tivity and having inner and outer radii a and b, respectively. Find the
following: (a) the D and E fields in the three regions and

and (b) the polarization vector inside the dielectric shell.
P4.7. Characteristics of an anisotropic dielectric material. An anisotropic dielectric

material is characterized by the D to E relationship

(a) Find D for (b) Find D for (c) Find E for
Comment on your result for each case.

P4.8. Characteristic polarizations and effective permittivities for an anisotropic dielec-
tric. An anisotropic dielectric material is characterized by the D to E relationship

For find the value(s) of for which D is parallel to E.
Find the effective permittivity for each case.

Section 4.3

P4.9. Magnetic dipole moment of a charged rotating disk of uniform charge density.
Charge Q is distributed with uniform density on a circular disk of radius a lying
in the xy-plane and rotating around the z-axis with angular velocity in the
sense of increasing Find the magnetic dipole moment of the rotating charge.

P4.10. Torque on a magnetic dipole in an applied magnetic field. Considering for sim-
plicity a rectangular current loop in the xy-plane, show that the torque acting on
a magnetic dipole of moment m due to an applied magnetic field B is 
Then find the torque acting on a circular current loop of radius 1 mm, in the xy-
plane, centered at the origin and with current 0.1 A flowing in the sense of in-
creasing in a magnetic field 

P4.11. Finding the parameters of a ferromagnetic material. A portion of the B–H curve
for a ferromagnetic material can be approximated by the analytical expression

where k is a constant having units of meter per ampere. Find and M.
P4.12. Finding effective permeability for an anisotropic magnetic material. An

anisotropic magnetic material is characterized by the B to H relationship

where k is a constant. Find the effective permeability for H = H013ax - 2ay2.

CBx

By

Bz

S = km0 C7 6 0
6 12 0
0 0 3

S CHx

Hy

Hz

S

m, mr, xm,

B = m0 kHH

B = 10-512ax - 2ay + az2 Wb>m2.f

m � B.

f.
v

Ey>ExE = Ex ax + Ey ay,

CDx

Dy

Dz

S = C exx exy 0
eyx eyy 0
0 0 ezz

S CEx

Ey

Ez

S

D = D01ax + ay - 2az2.
E = E01ax - ay2.E = E01ax + ay2.

CDx

Dy

Dz

S = e0 C3 1 1
1 3 1
1 1 3

S CEx

Ey

Ez

S

r 7 b
a 6 r 6 b,0 6 r 6 a, 

4e0
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Section 4.4

P4.13. Finding fields for a plane-sheet sinusoidal current source in a material medium.
An infinite plane sheet in the plane carries a surface current of density

The medium on either side of the sheet is characterized by 
and Find E and H on either side of the current sheet.

P4.14. An array of two infinite plane current sheets in a material medium. Consider an
array of two infinite plane, parallel, current sheets of uniform densities given by

situated in a medium characterized by and 
(a) Find the minimum value of and the corresponding value of k for
which the fields in the region are zero. (b) For the values of d and k
found in (a), obtain the electric-field intensity in the region 

P4.15. Finding material parameters of a medium from propagation characteristics. A
uniform plane wave of frequency propagating in a material medium
has the following characteristics. (i) The fields are attenuated by the factor in
a distance of 28.65 m. (ii) The fields undergo a change in phase by in a dis-
tance of 111.2 m. (iii) The ratio of the amplitudes of the electric- and magnetic-
field intensities at a point in the medium is 59.4. (a) What is the value of 
(b) What is the value of (c) Find and of the medium.

P4.16. Finding fields for a plane-sheet nonsinusoidal current source in a material
medium. Repeat Problem P4.13 for the surface current of density

P4.17. Power flow and dissipation in a material medium. The magnetic field of a uniform
plane wave propagating in a nonmagnetic material medium is given by

Find: (a) the time-average power flow per unit area normal to the z-direction
and (b) the time-average power dissipated in the volume bounded by the planes

and 

Section 4.5

P4.18. Finding parameters for a uniform plane-wave electric field in a perfect dielec-
tric. The electric field of a uniform plane wave propagating in a perfect dielec-
tric medium having is given by

Find: (a) the frequency; (b) the wavelength; (c) the phase velocity; (d) the rela-
tive permittivity of the medium; and (e) the associated magnetic-field vector H.

P4.19. Plotting field variations for a nonsinusoidal current source in a perfect dielectric.
An infinite plane sheet lying in the plane carries a surface current of den-
sity where is as shown in Fig. 4.29. The medium on ei-
ther side of the current sheet is a perfect dielectric of and m = m0.e = 2.25e0

JS1t2JS = -JS1t2ax A>m,
z = 0

E = 10 cos 13p * 107t - 0.2px2 az

m = m0

z = 1.x = 0, x = 1, y = 0, y = 1, z = 0,

H = H0 e-z cos 12p * 106t - 2z2 ax A>m
1m = m02

Js = -0.2 cos 2p * 106t cos 4p * 106t ax A>m

ms, e,h?
g?

2p
e-1

5 * 105 Hz

z 7 d.
z 6 0

d17  02
m = m0.s = 10-3 S>m, e = 6e0,

 JS2 = -kJS0 sin 2p * 106t ax in the z = d plane

 JS1 = -JS0 cos 2p * 106t ax  in the z = 0 plane

m = m0.
s = 10-3 S>m, e = 6e0,

Js = -0.2 cos 2p * 106t ax A>m
z = 0
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Find and sketch (a) versus t for (b) versus t for 
(c) versus z for and (d) versus z for 

P4.20. Finding the parameters of a perfect dielectric from propagation characteristics.
For a uniform plane wave having and and prop-
agating in the in a perfect dielectric medium, the time variation of

in a constant z-plane and the distance variation of for a fixed time are ob-
served to be periodic, as shown in Figs. 4.30(a) and (b), respectively, for two
complete cycles. Find the relative permittivity and the relative permeability of
the medium.

HyEx

+z-direction
H = Hy1z, t2ayE = Ex1z, t2ax

t = 3 ms.Hyt = 2 ms;Ex

z = -300 m;Hyz = 200 m;Ex

(a)

t

9p V/m

10 ns

Ex(t)

(b)

z

0.2 A/m

50 cm

Hy(t)

FIGURE 4.30

For Problem P4.20.

P4.21. Computing propagation parameters for a uniform plane wave in ice. For uni-
form plane wave propagation in ice com-
pute and for What is the distance in which the fields
are attenuated by the factor 

P4.22. Computing propagation parameters for a uniform plane wave in seawater.
For uniform plane wave propagation in seawater 

compute and for two frequencies: (a)
and (b)

P4.23. Finding the electric field for a nonsinusoidal-wave magnetic field in a material
medium. For a uniform plane wave propagating in the in a materi-
al medium, the magnetic field intensity in the plane is given by

Find E(z, t) for each of the following cases: (a) the medium is characterized by
and (b) the medium is characterized by 

and and (c) the medium is characterized by 
and m = m0.e = 9e0,

s = 10 S>m,m = m0;e = 9e0,
s = 10-3 S>m,m = m0;s = 0, e = 9e0,

[H]z = 0 = 0.1 cos3 2p * 108t ay A>m
z = 0

+z-direction

f = 100 kHz.
f = 10 GHzha, d, b, l, vp,m = m02,

1s = 4 S>m, e = 80e0,  and

e-1?
f = 1 MHz.ha, b, np, l,

m02,1s L 10-6 S>m, e = 3e0, and m =

t, �s0

JS, A/m

0.2

21 3
FIGURE 4.29

For Problem P4.19
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Section 4.6

P4.24. Verifying consistency of results with boundary conditions. Show that the results
obtained for the electric field due to the sheet of charge in Example 1.9 and for
the magnetic field due to the sheet of current in Example 1.12 are consistent
with the boundary conditions.

P4.25. Applying boundary conditions at interface between dielectric and free space.
Medium 1, consisting of the region in spherical coordinates, is a perfect
dielectric of permittivity whereas medium 2, consisting of the region in
spherical coordinates, is free space.The electric field intensities in the two media
are given by

respectively. Find 
P4.26. Applying boundary conditions at interface between dielectric and free space.

A boundary separates free space from a perfect dielectric medium. At a point
on the boundary, the electric field intensity on the free space side is 

whereas on the dielectric side, it is 
where is a constant. Find the permittivity of the dielectric medium.

P4.27. Applying boundary conditions at interface between magnetic material and free
space. Medium 1, consisting of the region in spherical coordinates, is a
magnetic material of permeability whereas medium 2, consisting of the re-
gion in spherical coordinates, is free space. The magnetic flux densities in
the two media are given by

respectively. Find 
P4.28. Verification and application of boundary conditions on a perfect conductor sur-

face. In Problem P4.4, show that the applied and secondary fields together sat-
isfy the boundary condition of zero tangential component of electric field on the
conductor surface. From the boundary condition for the normal component of
D, find the charge density on the conductor surface and show that the total in-
duced surface charge per unit width in the z-direction is 

P4.29. Applying boundary conditions for a rectangular cavity resonator. The rectan-
gular cavity resonator is a box consisting of the region 
and and bounded by perfectly conducting walls on all of its six sides.
The time-varying electric and magnetic fields inside the resonator are given by

where and are constants. Find and on all six walls, assuming
the medium inside the box to be a perfect dielectric of e = 4e0.

JSrSH02E0, H01,

 H = H01 sin  
px

a
  cos  
pz

d
  sin vt ax - H02 cos  

px

a
  sin  
pz

d
  sin vt az

 E = E0 sin  
px

a
  sin  
pz

d
  cos vt ay

0 6 z 6 d,
0 6 x 6 a, 0 6 y 6 b,

-rL0.

m1.

 B2 = B02 c a1 + 1.94 
a3

r3 b  cos u ar - a1 - 0.97 
a3

r3 b  sin u au d
 B1 = B011cos u ar -  sin u au2

r 7 a
m1,

r 6 a

E0

E2 = 3E01ax + az2,E014ax + 2ay + 5az2,
E1 =

e1.

 E2 = E02 c a1 +
a3

2r3 b  cos u ar - a1 -
a3

4r3 b  sin u au d
 E1 = E011cos u ar - sin u au2

r 7 ae1,
r 6 a
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P4.30. Finding fields for a plane-sheet current source with different media on either
side. In Problem P4.13, assume that the region is free space, whereas the
region is a material medium characterized by and

Find E and H on either side of the current sheet. (Hint: Make use of the
complex electric and magnetic fields to satisfy the boundary conditions at )

P4.31. Finding fields for a plane-sheet current source with different dielectrics on ei-
ther side. An infinite plane sheet lying in the plane carries a surface current
of density

The region is a perfect dielectric of and whereas the
region is a perfect dielectric of and Find E and H on
both sides of the sheet.

Section 4.7

P4.32. Normal incidence of a sinusoidal uniform plane wave onto a material medium.
Region is free space, whereas region is a material medium
characterized by and For a uniform plane wave
having the electric field

incident on the interface from region 1, obtain the expression for the re-
flected and transmitted wave electric fields.

P4.33. Normal incidence of a nonsinusoidal uniform plane wave onto a material medi-
um. Repeat Problem P4.32 for the incident wave electric field given by

P4.34. Uniform plane wave reflection and transmission involving three media in cas-
cade. In Fig. 4.31, medium 3 extends to infinity so that no reflected wave
exists in that medium. For a uniform plane wave having the electric field

incident from medium 1 onto the interface obtain the expressions for the
phasor electric- and magnetic-field components in all three media.

z = 0,

Ei = E0 cos 13 * 108pt - pz2 ax V>m

1-2

Ei = E0 cos3 13p * 105t - 10-3pz2 ax V>m

z = 0

Ei = E0 cos 13p * 105t - 10-3pz2 ax V>m

m = m0.s = 10-4 S>m, e = 5e0,
2 1z 7 021 1z 6 02

m = m0.e = 4e0z 6 0
m = m0,e = 2.25e0z 7 0

Js = -0.2 cos 6p * 108t ax A>m

z = 0

z = 0.
m = m0.

s = 10-3 S>m, e = 6e0,z 6 0
z 7 0

z

x

y

Medium 1

(�)

(�)

z � 0

m0, e0

Medium 2

(�)

(�)

m0, 9e0

Medium 3

(�)

m0, 4e0

z �      m1
3

FIGURE 4.31

For Problem P4.34.
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P4.35. Plotting field variations for a nonsinusoidal wave incident on a perfect dielectric.
A uniform plane wave propagating in the and having the electric
field where in the plane is as shown in Fig. 4.32, is in-
cident normally from free space onto a nonmagnetic perfect
dielectric of permittivity Find and sketch the following: (a) ver-
sus z for and (b) versus z for t = 1 ms.Hyt = 1 ms

Ex4e0.1z 7 02
1m = m02,1z 6 02

z = 0Exi1t2Ei = Exi1t2ax,
+z-direction

z

x

y

Perfect
Dielectric

z � 0

z 	 0

Perfect
Conductor

z 
 0

m, e

FIGURE 4.33

For Problem P4.36.

t, �s0

[Exi]z � 0, V/m

E0

1 2

FIGURE 4.32

For Problem P4.35

P4.36. Normal incidence of a uniform plane wave on a perfect conductor surface. The
region is a perfect dielectric, whereas the region is a perfect con-
ductor, as shown in Fig. 4.33. For a uniform plane wave having the electric and
magnetic fields

where and obtain the expressions for the reflected wave
electric and magnetic fields and hence the expressions for the total

electric and magnetic fields in the dielectric, and the cur-
rent density on the surface of the perfect conductor.
1incident + reflected2

h = 1m>e,b = v1me  Hi =
E0

h
  cos 1vt - bz2 ay

 Ei = E0 cos 1vt - bz2 ax

z 7 0z 6 0

REVIEW PROBLEMS

R4.1. Finding surface charge densities for plane conducting slabs between two sheets
of charge. Two infinite plane conducting slabs lie between and parallel to two
infinite plane sheets of uniform surface charge densities and as shown
by the cross-sectional view in Fig. 4.34. Find the surface charge densities on all
four surfaces of the slabs.

rSB,rSA
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R4.2. Characteristic polarizations for an anisotropic dielectric. An anisotropic dielec-
tric material is characterized by the D to E relationship

Express as the linear combination of and which corre-
spond to two of the characteristic polarizations of the material.

R4.3. Magnetic dipole moment of a charged rotating disk of nonuniform charge den-
sity. Charge Q is distributed with density proportional to r on a circular disk of
radius a lying on the xy-plane with its center at the origin and rotating around
the z-axis with angular velocity in the sense of increasing Find the magnet-
ic dipole moment.

R4.4. Finding H and the material parameters of a nonmagnetic medium from E in the
medium. The electric field of a uniform plane wave propagating in the

in a nonmagnetic material medium is given by

Find the magnetic field of the wave. Further, find the values of and of the
medium.

R4.5. Infinite plane current sheet sandwiched between two different perfect dielectric
media. An infinite plane current sheet of uniform density is
sandwiched between two perfect dielectric media, as shown in Fig. 4.35(a). If

is a triangular pulse of duration the plots of at some value of z
equal to and for some value of t equal to are given by
Figs. 4.35(b) and (c), respectively. If instead of
being a pulse, find E and H on both sides of the sheet, and the time-average
power radiated by the sheet for unit area of the sheet.

R4.6. Application of boundary conditions on a perfect conductor surface. The region
is occupied by a perfect conductor. If at a point on the

perfect conductor surface, the surface charge and current densities at a particu-
lar instant of time are and find D and H at that
point at that instant of time.

R4.7. Application of boundary conditions at interface between dielectric and free
space. Medium 1, consisting of the region in spherical coordinates, is a
perfect dielectric of permittivity whereas medium 2, consisting of thee1 = 2e0,

r 6 a

JS014ax - 3ay2A>m,rS0 C>m2

3x + 4y + 12z 6 12

JS1t2 = JS0 cos 6p * 108t A>m,
t0 17  02Hy1z2z0 17  02

Ex1t23 ms,JS1t2
JS = -JS1t2ax

es

E = 8.4e- 0.0432z cos 14p * 106t - 0.1829z2 ax V>m
1m = m02+z-direction

f.v

E2,E1E = E01ax - ay2

CDx

Dy

Dz

S = e0C6.5 1.5 0
1.5 2.5 0
0 0 2

S CEx

Ey

Ez

S

rSA

rSB

1

2

3

4
FIGURE 4.34

For Problem R4.1.
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(a)

Medium 1

z � 0           z

m1, e1

Medium 2
m2, e2

(b)

0

[Ex]z � z0

t

E0

3 �s

(c)

[Ex]t � t0

z
225 m

150 m

0

E0

60p

E0

80p
�

FIGURE 4.35

For Problem R4.5.

region is free space. The electric field intensity in medium 1 is given by
Find the electric field intensity at the points (a) (0, 0, a), (b) (0, a, 0),

and (c) in Cartesian coordinates, in medium 2.
R4.8. Normal incidence of a uniform plane wave onto a slab of perfect dielectric. For

a sinusoidally time-varying uniform plane wave incident normally from medium
1 on to the interface in Fig. 4.36, show that there is a minimum value of
the frequency for which a wave at that frequency or any integer multiple of that
frequency undergoes no reflection at the interface. Further, find the maximum
value of the period of a nonsinusoidal periodic wave for which no reflection oc-
curs at the interface. Note that medium 1 and medium 3 are both free space.

z = 0

10, a>12, a>122,
E1 = E0 az.

r 7 a,

Medium 1

(�)

z � 0 z z � 0.5 m

m0, e0

Medium 2
m0, 9e0

Medium 3
m0, e0

FIGURE 4.36

For Problem R4.8.
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In Chapters 2, 3, and 4, we introduced progressively Maxwell’s equations and
studied uniform plane waves and associated topics. Two quantities of funda-
mental importance, resulting from Maxwell’s equations in differential form, are
the electromagnetic potentials: the electric scalar potential and the magnetic
vector potential. We introduce these quantities in this chapter and also consider
several topics of relevance to circuits and systems.

We begin the discussion of topics for circuits and systems with two impor-
tant differential equations involving the electric potential and discuss several
applications based on the solution of these equations, including the analysis of a
p-n junction semiconductor and arrangements involving two parallel conduc-
tors. We then introduce an important relationship between the (lumped) circuit
parameters, capacitance, conductance, and inductance for infinitely long, paral-
lel perfect conductor arrangements, and consider their determination.

Next we turn our attention to electric- and magnetic-field systems, that is,
systems in which either the electric field or the magnetic field is predominant,
leading from quasistatic extensions of the static fields existing in the structures
when the frequency of the source driving the structure is zero. The concepts of
electric- and magnetic-field systems are important in the study of electro-
mechanics. We shall also consider magnetic circuits, an important class of mag-
netic field systems, and the topic of electromechanical energy conversion.

5.1 GRADIENT, LAPLACIAN, AND THE POTENTIAL FUNCTIONS

In Example 3.9, we showed that for any vector A, It then fol-
lows from Gauss’ law for the magnetic field in differential form, that
the magnetic flux density vector B can be expressed as the curl of another

� # B = 0,
� # � � A = 0.Magnetic

vector
potential

282
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Electromagnetic Potentials
and Topics for Circuits
and Systems
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5.1 Gradient, Laplacian, and the Potential Functions 283

vector A; that is,

(5.1)

The vector A in (5.1) is known as the magnetic vector potential.
Substituting (5.1) into Faraday’s law in differential form,

and rearranging, we then obtain

or

(5.2)

If the curl of a vector is equal to the null vector, that vector can be ex-
pressed as the gradient of a scalar, since the curl of the gradient of a scalar func-
tion is identically equal to the null vector. The gradient of a scalar, say,
denoted (del ) is defined in such a manner that the increment in 
from a point P to a neighboring point Q is given by

(5.3)

where dl is the differential length vector from P to Q.Applying Stokes’ theorem
to the vector and a surface S bounded by closed path C, we then have

(5.4)

for any single-valued function Since (5.4) holds for an arbitrary S, it follows that

(5.5)

To obtain the expression for the gradient in the Cartesian coordinate sys-
tem, we write

(5.6)

 = a 0£
0x

 ax +
0£
0y

 ay +
0£
0z

 azb # 1dx ax + dy ay + dz az2

 d£ =
0£
0x

 dx +
0£
0y

 dy +
0£
0z

 dz

� � �£ = 0

£.

 = 0

 = CC
 d£

 LS
1� � �£2 # dS = CC

�£ # dl

� � �£

d£ = �£ # dl

£d££�£
£,

� � aE +
0A
0t
b = 0

� � E +
0
0t

 1� � A2 = 0

� � E = -0B>0t,

B = � � A

Gradient
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Then comparing with (5.3), we observe that

(5.7)

Note that the right side of (5.7) is simply the vector obtained by applying the del
operator to the scalar function It is for this reason that the gradient of is
written as Expressions for the gradient in cylindrical and spherical coordi-
nate systems are derived in Appendix B. These are as follows:

CYLINDRICAL

(5.8a)

SPHERICAL

(5.8b)

To discuss the physical interpretation of the gradient, let us consider a sur-
face on which is equal to a constant, say, and a point P on that surface, as
shown in Fig. 5.1(a). If we now consider another point on the same surface
and an infinitesimal distance away from between these two points is zero
since is constant on the surface. Thus, for the vector drawn from P to

and hence is perpendicular to Since this is true fordl1.[�£]PQ1, [�£]P
# dl1 = 0

dl1£
P, d£

Q1

£0,£

�£ =
0£
0r

 ar +
1 0£
r 0u

 au +
1

r sin u
 
0£
0f

 af

�£ =
0£
0r

 ar +
1 0£
r 0f

 af +
0£
0z

 az

�£.
££.

�£ =
0£
0x

 ax +
0£
0y

 ay +
0£
0z

 az

d l3

d l1
d l2 d l

Q2

Q

Q1

Q3

P

P

an

an

� � �0

� � �0

� � �0 � d�

a

(a) (b)

FIGURE 5.1

For discussing the physical interpretation of the gradient of a scalar function.

Physical
interpretation
of gradient

RaoCh05v3.qxd  12/18/03  4:08 PM  Page 284



5.1 Gradient, Laplacian, and the Potential Functions 285

all points on the constant surface, it follows that must be
normal to all possible infinitesimal length vectors drawn at P and
hence is normal to the surface. Denoting to be the unit normal vector to the
surface at P, we then have

(5.9)

Let us now consider two surfaces on which is constant, having values 
and as shown in Fig. 5.1(b). Let P and Q be points on the 
and surfaces, respectively, and dl be the vector drawn from P to
Q. Then from (5.3) and (5.9),

where is the angle between at P and dl. Thus,

(5.10)

Since is the distance between the two surfaces along and hence is the
shortest distance between them, it follows that is the maximum rate of in-
crease of at the point P. Thus, the gradient of a scalar function at a point is
a vector having magnitude equal to the maximum rate of increase of at that
point and is directed along the direction of the maximum rate of increase, which
is normal to the constant surface passing through that point; that is,

(5.11)

where dn is a differential length along The concept of the gradient of a scalar
function we just discussed is often utilized to find a unit vector normal to a given
surface. We shall illustrate this by means of an example.

Example 5.1 Finding unit vector normal to a surface by using the
gradient concept

Let us find the unit vector normal to the surface at the point (2, 4, 1) by using the
concept of the gradient of a scalar.

Writing the equation for the surface as

we note that the scalar function that is constant on the surface is given by

£1x, y, z2 = x2 - y

x2 - y = 0

y = x2

an.

�£ =
d£
dn

 an

£

£
££

ƒ �£ ƒP
andl cos a

ƒ �£ ƒP =
d£

dl cos a

ana

 = ƒ �£ ƒP dl cos a

 = ƒ �£ ƒP an
# dl

 d£ = [�£]P
# dl

£ = £0 + d£
£ = £0£0 + d£,

£0£

[�£]P = ƒ �£ ƒP an

an

dl1, dl2, dl3, Á
[�£]P£Q1, Q2, Q3, Á
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Electric
scalar
potential

The gradient of the scalar function is then given by

The value of the gradient at the point (2, 4, 1) is Thus, the
required unit vector is

Returning now to (5.2), we write

(5.12)

where we have chosen the scalar to be the reason for the minus sign to be
explained in Section 5.2. Rearranging (5.12), we obtain

(5.13)

The quantity in (5.13) is known as the electric scalar potential.
The electric scalar potential and the magnetic vector potential A are

known as the electromagnetic potentials. As we shall show later in this section,
the electric scalar potential is related to the source charge density whereas
the magnetic vector potential is related to the source current density J. For the
time-varying case, the two are not independent, since the charge and current
densities are related through the continuity equation. For a given J, it is suffi-
cient to determine A, since B can be found from (5.1) and then E can be found
by using Ampère’s circuital law For static fields, that is,
for the two potentials are independent. Equation (5.1) remains unal-
tered, whereas (5.13) reduces to We shall consider the static field
case in Section 5.2.

To proceed further, we recall that Maxwell’s equations in differential form
are given by

(5.14a)

(5.14b)

(5.14c)

(5.14d) � # B = 0

 � # D = r

 � � H = J +
0D
0t

 � � E = -  
0B
0t

E = - �£.
0>0t = 0,

� � H = J + 0D>0t.

r,

£
£

E = - �£ -
0A
0t

- £,

E +
0A
0t

= - �£

an = �
4ax - ay

ƒ4ax - ay ƒ
= � a 4117

 ax -
1117

 ayb

[2122ax - ay] = 14ax - ay2.
 = 2xax - ay

 =
01x2 - y2

0x
  ax +

01x2 - y2
0y

  ay +
01x2 - y2

0z
  az

 �£ = �1x2 - y2

Electro-
magnetic 
potentials
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From (5.14d), we expressed B in the manner

(5.15)

and then from (5.14a), we obtained

(5.16)

We now substitute (5.16) and (5.15) into (5.14c) and (5.14b), respectively, to obtain

(5.17a)

(5.17b)

We now define the Laplacian of a scalar quantity denoted (del
squared ) as

(5.18)

In Cartesian coordinates,

so that

or

(5.19)

Note that the Laplacian of a scalar is a scalar quantity. Expressions for the
Laplacian of a scalar in cylindrical and spherical coordinates are derived in
Appendix B. These are as follows:

CYLINDRICAL
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Laplacian of
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Laplacian of
a vector

SPHERICAL

(5.20b)

Before proceeding further, it is interesting to note that the four vector dif-
ferential operations that we have learned thus far in this chapter are such that

The curl of a vector is a vector.
The divergence of a vector is a scalar.
The gradient of a scalar is a vector.
The Laplacian of a scalar is a scalar.

Thus, all four combinations of vector and scalar are involved in the four operations.
Next, we define the Laplacian of a vector, denoted as

(5.21)

Expanding the right side of (5.21) in Cartesian coordinates and simplifying, we
obtain in the Cartesian coordinate system,

(5.22)

Thus, in the Cartesian coordinate system, the Laplacian of a vector is a vector
whose components are the Laplacians of the corresponding components of A.
It should, however, be cautioned that this simple observation does not hold in
the cylindrical and spherical coordinate systems. (See, e.g., Problem P5.6.)

Using (5.18) and (5.21), we now write (5.17a) and (5.17b) as

(5.23a)

(5.23b)

Equations (5.23a) and (5.23b) are a pair of coupled differential equations
for and A. To uncouple the equations, we make use of a theorem known as
Helmholtz’s theorem, which states that a vector field is completely specified by
its curl and divergence. Therefore, since the curl of A is given by (5.15), we are
at liberty to specify the divergence of A. We do this by setting

(5.24)� # A = -me 
0£
0t

£

§2A - �a� # A + me 
0£
0t
b - me 
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which is known as the Lorenz condition1. This uncouples (5.23a) and (5.23b) to
give us

(5.25)

(5.26)

These are the differential equations relating the electromagnetic potentials 
and A to the source charge and current densities and J, respectively.

Before proceeding further, we shall show that the continuity equation is
implied by the Lorenz condition. To do this, we take the Laplacian of both sides
of (5.24). We then have

or

(5.27)

Substituting for and in (5.27) from (5.26) and (5.25), respectively, we
get

or

(5.28)

Thus, by assuming the Lorenz condition (5.24), we imply 
which is the continuity equation.

As pointed out earlier in this section, it is sufficient to determine A for the
time-varying case for a given J. Hence, we shall be concerned only with (5.26),
which we shall refer to in Section 10.1 in connection with obtaining the electro-
magnetic field due to an elemental antenna.

K5.1. Magnetic vector potential; Gradient of a scalar; Physical interpretation of gradi-
ent; Electric scalar potential; Laplacian of a scalar; Potential function equations.
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1Note “Lorenz condition” and not “Lorentz condition.” In editions 2, 3, and 4 of this book, as well as
extensively in books by other authors, this condition has been mistakenly attributed to Lorentz in-
stead of Lorenz. See the note “Lorentz or Lorenz,” by J. Van Bladel in IEEE Antennas and Propa-
gation Magazine, Vol. 33, No. 2, April 1991, p. 69.
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D5.1. Find the outward pointing unit vectors normal to the closed surface 
at the following points: (a) (b) (1, 1, 2); and (c)

Ans. (a) (b) (c)

D5.2. Two scalar functions are given by

Find the following at the point (3, 4, 12): (a) the maximum rate of increase of
(b) the maximum rate of increase of and (c) the rate of increase of 

along the direction of the maximum rate of increase of 
Ans. (a) 26; (b) 3; (c)

D5.3. Find the Laplacians of the following functions: (a) (b) in cylin-
drical coordinates; and (c) in spherical coordinates.
Ans. (a) (b) 0; (c)

5.2 POTENTIAL FUNCTIONS FOR STATIC FIELDS

As already pointed out in the preceding section, Eq. (5.13) reduces to

(5.29)

for the static field case. We observe from (5.29) that the potential function 
then is such that the electric field lines are orthogonal to the equipotential sur-
faces, that is, to the surfaces on which the potential remains constant, as shown
in Fig. 5.2. If we consider two such equipotential surfaces corresponding to

£

E = - �£

4 cos u.2yz3 + 6x2yz;
r2 cos u

11>r2 sin fx2yz3;
23 

1
3.

£2.
£1£2;£1;

 £21x, y, z2 = x + 2y + 2z

 £11x, y, z2 = x2 + y2 + z2

12ax + 2ay + az17

ax + ay + az13

ax + ay12
;

11, 12, 122.112, 12, 02;z2 = 8
2x2 + 2y2 +  

Potential
difference

� � �A
� � �B

Equipotential
Surfaces

A
B

E

FIGURE 5.2

Set of equipotential surfaces in a region of static electric field.
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Potential
difference
versus voltage

and as shown in the figure, the potential difference 
is given, according to the definition of the gradient, by

(5.30)

Using (5.29), we obtain

(5.31)

We now recall from Section 2.1 that is the voltage between points A
and B. Thus, the potential difference in the static field case has the same mean-
ing as the voltage. The reason for the minus sign in (5.13) and hence in (5.29) is
now evident, since without it the voltage between A and B would be the nega-
tive of the potential difference between A and B.

Before proceeding further, we recall that the voltage between two points
A and B in a time-varying electric field is in general dependent on the path fol-
lowed from A to B to evaluate since, according to Faraday’s law,

is not in general equal to zero. On the other hand, the potential difference (or
voltage) between two points A and B in a static electric field is independent of
the path followed from A to B to evaluate since, for static fields,

Thus, the potential difference (or voltage) between two points in a static electric
field has a unique value. Since the potential difference and voltage have the
same meaning for static fields, we shall hereafter replace in (5.29) by V, there-
by writing

(5.32)

Let us now consider the electric field of a point charge and investigate the
electric potential due to the point charge. To do this, we recall that the electric
field intensity due to a point charge Q is directed radially away from the point
charge and its magnitude is where R is the radial distance from the
point charge. Since the equipotential surfaces are everywhere orthogonal to the

Q>4peR2,
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Equipotentials

E

Q

FIGURE 5.3

Cross-sectional view of equipotential surfaces
and electric field lines for a point charge.

field lines, it then follows that they are spherical surfaces centered at the point
charge, as shown by the cross-sectional view in Fig. 5.3. If we now consider two
equipotential surfaces of radii R and the potential drop from the sur-
face of radius R to the surface of radius is or the incre-
mental potential rise dV is given by

(5.33)

where C is a constant. Thus,

(5.34)

Since the potential difference between two points does not depend on the value
of C, we can choose C such that V is zero at some arbitrary reference point.
Here we can conveniently set C equal to zero by noting that it is equal to 
and by choosing for the reference point.Thus, we obtain the electric po-
tential due to a point charge Q to be

(5.35)

We note that the potential drops off inversely with the radial distance away
from the point charge.

Equation (5.35) is often the starting point for the computation of the po-
tential field due to static charge distributions and the subsequent determination
of the electric field by using (5.32). We shall illustrate this by considering the
case of the electric dipole in the following example.

V =
Q

4peR

R = q
V1q2

V1R2 =
Q

4peR
+ C

 = da Q

4peR
+ Cb

 dV = -  

Q

4peR2 dR

1Q>4peR22 dRR + dR
R + dR,
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z
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x
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Q

r1

r2

r

Equipotentials

u

fd/2

d/2

P(r, u, f)

Direction
Lines

(a) (b)

FIGURE 5.4

(a) Geometry pertinent to the determination of the electric field due to an electric dipole.
(b) Cross sections of equipotential surfaces and direction lines of the electric field for the
electric dipole.

Example 5.2 Electric field of a static electric dipole via the potential
due to the dipole

As we have learned in Section 4.2, the electric dipole consists of two equal and opposite
point charges. Let us consider a static electric dipole consisting of point charges Q and

situated on the z-axis at and respectively, as shown in Fig. 5.4(a)
and find the potential and hence the electric field at a point P far from the dipole.

First, we note that in view of the symmetry associated with the dipole around the
z-axis, it is convenient to use the spherical coordinate system. Denoting the distance
from the point charge Q to P to be and the distance from the point charge to P to
be we write the expression for the electric potential at P due to the electric dipole as

For a point P far from the dipole, that is, for the lines drawn from the two
charges to the point are almost parallel. Hence,

and
1
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1
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=
r2 - r1
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Electro-
cardiography

Computer
plotting of
equipotentials

2See, for example, R. K. Hobbie, “The Electrocardiogram as an Example in Electrostatics,”
American Journal of Physics, June 1973, pp. 824–831.

so that

(5.36)

where is the dipole moment of the electric dipole. Thus, the potential field of
the electric dipole drops off inversely with the square of the distance from the dipole.
Proceeding further, we obtain the electric field intensity due to the dipole to be

(5.37)

Equation (5.36) shows that the equipotential surfaces are given by 
whereas from (5.37), it can be shown that the direction lines of the electric field are

given by and These are shown sketched in Fig. 5.4(b).
Alternative to using the equation for the direction lines, they can be sketched by recognizing
that (1) they must originate from the positive charge and end on the negative charge and (2)
they must be everywhere perpendicular to the equipotential surfaces.

A technique in everyday life in which the potential field of an electric di-
pole is relevant is electrocardiography.This technique is based on the character-
ization of the electrical activity of the heart by using a dipole model.2 The dipole
moment, p, referred to in medical literature as the electric force vector or the
activity of the heart, sets up an electric potential within the chest cavity and a
characteristic pattern of equipotentials on the body surface. The potential dif-
ferences between various points on the body are measured as a function of time
and are used to deduce the temporal evolution of the dipole moment during the
cardiac cycle, thereby monitoring changes in the electrical activity of the heart.

We shall now consider an example for illustrating a method of computer
plotting of equipotentials when a closed form expression such as that for the
electric dipole of Example 5.2 is not available.

Example 5.3 Computer plotting of equipotentials for a set of two point
charges

Let us consider two point charges and situated at 
and (1, 0, 0), respectively, as shown in Fig. 5.5.We wish to discuss the computer plotting of
the equipotentials due to the two point charges.

First, we recognize that since the equipotential surfaces are surfaces of revolution
about the axis of the two charges, it is sufficient to consider the equipotential lines in any
plane containing the two charges. Here we shall consider the xz-plane. The equipotential
lines are also symmetrical about the x-axis, and, hence, we shall plot them only on one

1-1, 0, 02Q2 = -4pe0 CQ1 = 8pe0 C

f = constant.r cosec2 u = constant
constant,

r2 sec u =  

 =
Qd

4per3 12 cos u ar + sin u au2
 E = - �V = -  

0
0r

 aQd cos u

4per2 b  ar -
1
r

  
0
0u

 aQd cos u

4per2 b  au

p = Qdaz

V L
Qd cos u

4per2 =
p # ar
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V0 � �V
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E�1 0

0.1

1

E

FIGURE 5.5

For illustrating the procedure for the computer plotting of
equipotentials due to two point charges.

side of the x-axis and inside the rectangular region having corners at 
and 

As we go from to along the x-axis, the potential varies from to and
is given by

The value of x lying between and 1 for a given potential is then given by

or

We shall begin the equipotential line at this value of x on the x-axis for a given value of
To plot the line, we make use of the property that the equipotential lines are orthog-

onal to the direction lines of E so that they are tangential to the unit vector
We shall step along this unit vector by a small distance (chosen here to

be 0.1), and if necessary, correct the position by repeatedly moving along the electric
field until the potential is within a specified value (chosen here to be 0.001 V) of that for
which the line is being plotted. To correct the position, we make use of the fact that

Thus, the incremental distance required to be moved opposite to the electric
field to increase the potential by is and, hence, the distances required to be
moved opposite to the x- and z-directions are and re-
spectively.The plotting of the line is terminated when the point goes out of the rectangu-
lar region.
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The computer plot obtained from a run of a PC program that carries out this pro-
cedure for values of potentials ranging from to 4 V is shown in Fig. 5.6. It should,
however, be pointed out that for a complete plot, those equipotential lines that surround
both point charges should also be considered.

The computation of potential can be extended to continuous charge distri-
butions by using superposition in conjunction with the expression for the poten-
tial due to a point charge, as in the case of electric field computation in Section
1.5. We shall illustrate by means of an example.

Example 5.4 Electric potential field of an infinitely long line charge

An infinitely long line charge of uniform density is situated along the z-axis. It
is desired to obtain the potential field due to this charge.

First, we divide the line into a number of infinitesimal segments each of length dz,
as shown in Fig. 5.7, such that the charge in each segment can be considered as a
point charge. Let us consider a point P at a distance r from the z-axis, with the projection
of P onto the z-axis being O. For the sake of generality, we consider the point at a dis-
tance from O along OP as the reference point for zero potential and write the poten-
tial dV at P due to the infinitesimal charge at A as

(5.38)
 =

rL0 dz

4pe04r2 + z2
-

rL0 dz

4pe04r0
2 + z2

 dV =
rL0 dz

4pe0 1AP2 -
rL0 dz

4pe0 1AP02

rL0 dz
r0

P0

rL0 dz

rL0 C>m

-2 V

Potential due
to a line
charge

(�4, 0)

�2
�1

(4, 0)

(4, 5)

1 02 4 Q1

Q1 � 8pe0 C
Q2 � �4pe0 C

Q2

(�4, 5)

1
4

1
8

1
2

1
16

1
2

�
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�

1
8

�

1
16

�

FIGURE 5.6

Personal computer-generated plot of equipotentials for the arrangement of two point
charges of Fig. 5.5. The values of potentials are in volts.
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P0a0 a

r0

r

z

P

A

O

rL0 dz

FIGURE 5.7

Geometry for the computation of the
potential field of an infinitely long line
charge of uniform density rL0 C>m.

We will, however, find later that we have to choose the reference point for zero potential
at a finite value of r, in contrast to the case of the point charge for which the reference
point can be chosen to be infinity. The potential V at P due to the entire line charge is
now given by the integral of (5.38), where the integration is to be performed between the
limits and Thus,

(5.39)

Introducing and in the first and second terms, respectively, in
the integrand on the right side of (5.39), we have

(5.40)

In view of the cylindrical symmetry about the line charge, (5.40) is the general expression
in cylindrical coordinates for the potential field of the infinitely long line charge of uni-
form density. It can be seen from (5.40) that a choice of is not a good choice,
since then the potential would be infinity at all points.The difficulty lies in the fact that in-
finity plus a finite number is still infinity. We also note from (5.40) that the equipotential

r0 = q

 = -  

rL0

2pe0
  ln 

r

r0

 =
rL0

2pe0
 c ln 

14r2 + z2 + z2r0

14r0
2 + z2 + z2r dz = 0

q

 =
rL0

2pe0
 5[ln1sec a + tan a2]a= 0

p>2 - [ln1sec a0 + tan a02]a0 = 0
p>2 6

 V =
rL0

2pe0
 aL

p>2

a= 0
 sec a da - L

p>2

a0 = 0
 sec a0 da0b

z = r0 tan a0z = r tan a

 =
rL0

2pe0L
q

z = 0
 a dz4r2 + z2

-
dz4r0
2 + z2

b

 V = L
q

z = -q
 dV = L

q

z = -q
 a rL0 dz

4pe04r2 + z2
-

rL0 dz

4pe04r0
2 + z2

b

z = q .z = - q
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298 Chapter 5 Electromagnetic Potentials and Topics for Circuits and Systems

surfaces are or that is, surfaces of cylinders with the line
charge as their axis.The result of Example 2.6 shows that the electric field due to the line
charge is directed radially away from the line charge. Thus, the direction lines of E and
the equipotential surfaces are indeed orthogonal to each other.

We shall now turn our attention to the magnetic vector potential for the
static field case. Thus, let us consider a current element of length dl situated at
the origin, as shown in Fig. 5.8, and carrying current I A. We shall obtain the
magnetic vector potential due to this current element. To do this, we recall from
Section 1.6 that the magnetic field due to it at a point is given by

(5.41)

Expressing B as

(5.42)

and using the vector identity

(5.43)

we obtain

(5.44)

Since dl is a constant, and (5.44) reduces to

(5.45)B = � �
mIdl
4pr

� � dl = 0,

B = -  

mI

4pr
 � � dl + � �

mI dl
4pr

A � �£ = £� � A - � � £A

B =
m

4p
 I dl � a - � 

1
r
b

B =
m

4p
  

I dl � ar

r2

P1r, u, f2

r = constant,ln r>r0 = constant

Magnetic
vector
potential due
to a current
element

u

f

r

d l

P

z

y

x

FIGURE 5.8

For finding the magnetic vector potential due to
a current element.
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Comparing (5.45) with (5.1), we see that the magnetic vector potential due to
the current element situated at the origin is given by

(5.46)

It follows from (5.46) that for a current element I dl situated at an arbitrary
point, the magnetic vector potential is given by

(5.47)

where R is the distance from the current element.Thus, it has a magnitude inverse-
ly proportional to the radial distance from the element (similar to the inverse dis-
tance dependence of the electric scalar potential due to a point charge) and
direction parallel to the element. We shall make use of this result in Section 10.1.

K5.2. Potential difference; Potential due to a point charge; Computation of potential
due to charge distributions; Electric dipole; Plotting of equipotential lines; Mag-
netic vector potential due to a current element.

D5.4. In a region of static electric field find the potential
difference for each of the following pairs of points: (a) A(2, 1, 1) and
B(1, 4, 0.5); (b) A(2, 2, 2) and B(1, 1, 1); and (c) A(5, 1, 0.2) and B(1, 2, 3).
Ans. (a) 0 V; (b) (c) 5 V.

D5.5. Three point charges are located as follows: at (3, 4, 0), at
and at Find the following: (a) the potential at

the point (0, 0, 3.2); (b) the coordinate x to three decimal places of the point on
the x-axis at which the potential is a maximum; and (c) the potential at the point
found in (b).
Ans. (a) 0 V; (b) 3.872 m; (c) 1.3155 V.

D5.6. For each of the following arrangements of point charges, find the first significant
term in the expression for the electric potential at distances far from the origin

(a) Q at (0, 0, d), 2Q at (0, 0, 0), and Q at and (b) Q at (0, 0,
d), at (0, 0, 0), and Q at 
Ans. (a) (b)

5.3 POISSON’S AND LAPLACE’S EQUATIONS

In Section 5.2, we introduced the static electric potential as related to the static
electric field in the manner

(5.48)

Substituting (5.48) into Maxwell’s divergence equation for D given by

(5.49)� # D = r

E = - �V

1Qd2>4pe0 r3213 cos2 u - 12.Q>pe0 r;
10, 0, -d2.-2Q

10, 0, -d21r � d2:

1-5, 0, 02).-40pe0 C13, -4, 02,
10pe0 C30pe0 C

-7 V;

VA - VB

E = yzax + zxay + xyaz,

A =
mI dl
4pR

A =
mI dl
4pr

Poisson’s
equation
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we obtain

(5.50)

where is the permittivity of the medium. Using the vector identity

(5.51)

we can write (5.50) as

or

(5.52)

If we assume to be uniform in the region of interest, then and (5.52)
becomes

(5.53)

This equation is known as Poisson’s equation. It governs the relationship be-
tween the volume charge density in a region of uniform permittivity to the
electric scalar potential V in that region. Note that (5.53) also follows from
(5.25) for and In Cartesian coordinates, (5.53) becomes

(5.54)

which is a three-dimensional, second-order partial differential equation. For the
one-dimensional case in which V varies with x only, and are
both equal to zero, and (5.54) reduces to

(5.55)

We shall illustrate the application of (5.55) by means of an example.

Example 5.5 Solution of Poisson’s equation for a p–n junction
semiconductor

Let us consider the space charge layer in a p-n junction semiconductor with zero bias, as
shown in Fig. 5.9(a), in which the region is doped p-type and the region is
doped n-type. To review briefly the formation of the space charge layer, we note that
since the density of the holes on the p side is larger than that on the n side, there is a ten-
dency for the holes to diffuse to the n side and recombine with the electrons. Similarly,
there is a tendency for the electrons on the n side to diffuse to the p side and recombine
with the holes. The diffusion of holes leaves behind negatively charged acceptor atoms,
and the diffusion of electrons leaves behind positively charged donor atoms. Since these

x 7 0x 6 0

02V

0x2 =
d2V

dx2 = -  

r

e

02V>0z202V>0y2

02V

0x2 +
02V

0y2 +
02V

0z2 = -  

r

e

£ = V.0>0t = 0

er

§2V =
-r
e

�e = 0e

e§2V + �e # �V = -r

e� # �V + �e # �V = -r

� # £A = £� # A + A # �£

e

- � # e�V = r

p-n junction
semi-
conductor
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FIGURE 5.9

For illustrating the application of Poisson’s equation for the determination of the
potential distribution for a p-n junction semiconductor.

acceptor and donor atoms are immobile, a space charge layer, also known as the
depletion layer, is formed in the region of the junction, with negative charges on the p
side and positive charges on the n side. This space charge gives rise to an electric field
directed from the n side of the junction to the p side so that it opposes diffusion of the
mobile carriers across the junction, thereby resulting in an equilibrium. For simplicity, let
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302 Chapter 5 Electromagnetic Potentials and Topics for Circuits and Systems

us consider an abrupt junction, that is, a junction in which the impurity concentration is
constant on either side of the junction. Let and be the acceptor and donor ion
concentrations, respectively, and and be the widths in the p and n regions, respec-
tively, of the depletion layer. The space charge density is then given by

(5.56)

as shown in Fig. 5.9(b), where is the magnitude of the electronic charge. Since the
semiconductor is electrically neutral, the total acceptor charge must be equal to the total
donor charge; that is,

(5.57)

We wish to find the potential distribution in the depletion layer and the depletion layer
width in terms of the potential difference across the depletion layer and the acceptor and
donor ion concentrations.

Substituting (5.56) into (5.55), we obtain the equation governing the potential dis-
tribution to be

(5.58)

To solve (5.58) for V, we integrate it once and obtain

where and are constants of integration. To evaluate and we note that since
is simply equal to Since the electric field lines

begin on the positive charges and end on the negative charges, and in view of (5.57), the
field and, hence, must vanish at and giving us

(5.59)

The field intensity, that is, may now be sketched as a function of x as shown in
Fig. 5.9(c).

Proceeding further, we integrate (5.59) and obtain

V = d ƒe ƒNA

2e
 1x + dp22 + C3 for -dp 6 x 6 0

-  

ƒe ƒND

2e
 1x - dn22 + C4 for 0 6 x 6 dn

-dV>dx,

dV

dx
= d ƒe ƒNA

e
 1x + dp2 for -dp 6 x 6 0

-  

ƒe ƒND

e
 1x - dn2 for 0 6 x 6 dn

x = dn,x = -dp0V>0x

-Ex.E = - �V = -10V>0x2 ax, 0V>0x
C2,C1C2C1

dV

dx
= d ƒe ƒNA

e
 x + C1 for -dp 6 x 6 0

-  

ƒe ƒND

e
 x + C2 for 0 6 x 6 dn

d2V

dx2 = d ƒe ƒNA

e
for -dp 6 x 6 0

-  

ƒe ƒND

e
for 0 6 x 6 dn

ƒe ƒNA dp = ƒe ƒND dn

ƒe ƒ

r = e - ƒe ƒNA for -dp 6 x 6 0

ƒe ƒND for 0 6 x 6 dn

r

dndp

NDNA
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where and are constants of integration. To evaluate and we first set the po-
tential at arbitrarily equal to zero to obtain equal to zero.Then we make use
of the condition that the potential be continuous at since the discontinuity in
dV/dx at is finite, to obtain

or

Substituting this value for and setting equal to zero in the expression for V, we get
the required solution

(5.60)

The variation of potential with x as given by (5.60) is shown in Fig. 5.9(d).
We can proceed further and find the width of the depletion layer by

setting equal to the contact potential, that is, the potential difference across the
depletion layer resulting from the electric field in the layer. Thus,

where we have made use of (5.57). Finally, we obtain the result that

which tells us that the depletion layer width is smaller, the heavier the doping is. This
property is used in tunnel diodes to achieve layer widths on the order of by
heavy doping as compared to widths on the order of in ordinary p-n junctions.

We have just illustrated an example of the application of Poisson’s equa-
tion involving the solution for the potential distribution for a given charge dis-
tribution. Poisson’s equation is even more useful for the solution of problems in
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304 Chapter 5 Electromagnetic Potentials and Topics for Circuits and Systems

which the charge distribution is the quantity to be determined given the func-
tional dependence of the charge density on the potential. We shall, however,
proceed to the discussion of Laplace’s equation.

If the charge density in a region is zero, then Poisson’s equation (5.53) re-
duces to

(5.61)

This equation is known as Laplace’s equation. It governs the behavior of the po-
tential in a charge-free region characterized by uniform permittivity. In Carte-
sian coordinates, it is given by

(5.62)

Laplace’s equation is also satisfied by the potential in conductors under
the steady-current condition. For the steady-current condition, and
the continuity equation given for the time-varying case by

reduces to

(5.63)

Replacing by where is the conductivity of the conductor and
assuming to be constant, we obtain

or

The problems to which Laplace’s equation is applicable consist of finding
the potential distribution in the region between two conductors, given the
charge distribution on the surfaces of the conductors, or the potentials of the
conductors, or a combination of the two. The procedure involves the solving of
Laplace’s equation subject to the boundary conditions on the surfaces of the
conductors. We shall illustrate this by means of an example involving variation
of V in one dimension.

Example 5.6 Solution of Laplace’s equation for a parallel-plate
capacitor

Let us consider two infinite, plane, parallel, perfectly conducting plates occupying the
planes and and kept at potentials and respectively, as shown
by the cross-sectional view in Fig. 5.10, and find the solution for Laplace’s equation in
the region between the plates. The arrangement may be considered an idealization of a

V = V0,V = 0x = dx = 0

§2V = 0

� # sE = s� # E = -s� # �V = -s§2V = 0

s

ssE = -s�V,Jc

� # Jc = 0

� # Jc +
0r
0t

= 0

0r>0t = 0,

02V

0x2 +
02V

0y2 +
02V

0z2 = 0

§2V = 0

Laplace’s
equation

Parallel-plate
arrangement,
capacitance
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�

x � 0,  V � 0

E

x � d, V � V0

�

�

�

�

�

�

�

�

�

�

�

�

�

Equipotential

FIGURE 5.10

Cross-sectional view of parallel-plate capacitor for illustrating the
solution of Laplace’s equation in one dimension.

parallel-plate capacitor with its plates having dimensions very large compared to the
spacing between them.

The potential is obviously a function of x only, and hence (5.62) reduces to

Integrating this equation twice, we obtain

(5.64)

where A and B are constants of integration. To determine the values of A and B, we
make use of the boundary conditions for V; that is,

giving us

Thus, the particular solution for the potential here is given by

(5.65)

which tells us that the equipotentials are planes parallel to the conductors, as shown in
Fig. 5.10.

Proceeding further, we obtain

(5.66)E = - �V = -  
0V

0x
 ax = -  

V0

d
 ax  for  0 6 x 6 d

V =
V0

d
 x  for  0 6 x 6 d

V0 = A1d2 + B = Ad  or  A =
V0

d

0 = A102 + B  or  B = 0

V = 0 for x = 0
V = V0 for x = d

V1x2 = Ax + B

02V

0x2 =
02V

0x2 = 0
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306 Chapter 5 Electromagnetic Potentials and Topics for Circuits and Systems

This field is uniform and directed from the higher potential plate to the lower potential
plate, as shown in Fig. 5.10. The surface charge densities on the two plates are given by

The magnitude of the surface charge per unit area on either plate is

Finally, we can find the capacitance C per unit area of the plates, defined to be the ratio
of Q to Thus,

(5.67)

The units of capacitance are farads (F).

If the medium between the plates in Fig. 5.10 is a conductor, then the con-
duction current density is given by

The conduction current from the higher potential plate to the lower potential
plate per unit area of the plates is

The ratio of this current to the potential difference is the conductance G (recip-
rocal of resistance) per unit area of the plates. Thus,

(5.68)

The units of conductance are siemens (S).
We have just illustrated the solution of Laplace’s equation in one dimen-

sion by considering an example involving the variation of V with one Cartesian
coordinate. In a similar manner, solutions for one-dimensional Laplace’s equa-
tions involving variations of V with single coordinates in the other two coordi-
nate systems can be obtained. Of particular interest are the case in which V is a
function of the cylindrical coordinate r only, pertinent to the geometry of a ca-
pacitor made up of coaxial cylindrical conductors, and the case in which V is a

G =
Ic

V0
=
s

d
  per unit area of the plates

Ic = ƒJc ƒ112 =
sV0

d

Jc = sE = -  

sV0

d
 ax

C =
Q

V0
=
e

d
  per unit area of the plates

V0.

Q = ƒrS ƒ112 =
eV0

d

 [rs]x = d = [D]x = d
# 1-ax2 = -  

eV0

d
 ax

# 1-ax2 =
eV0

d

 [rS]x = 0 = [D]x = 0
# ax = -  

eV0

d
 ax

# ax = -  

eV0

d

Parallel-plate
arrangement,
conductance

Cylindrical
and spherical
capacitors
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5.3 Poisson’s and Laplace’s Equations 307

function of the spherical coordinate r only, pertinent to the geometry of a ca-
pacitor made up of concentric spherical conductors. These two geometries are
shown in Figs. 5.11(a) and (b), respectively. The various steps in the solution of
Laplace’s equation and subsequent determination of capacitance for these two
cases are summarized in Table 5.1, which also includes the parallel plane case of
Fig. 5.10.

(a) (b)

V � 0

V � V0

b

Cylinders

r

a
z

e f

V � 0

V � V0

b

Spheres

r

a

e

FIGURE 5.11

Cross-sectional views of capacitors made up of (a) coaxial cylindrical
conductors and (b) concentric spherical conductors.

TABLE 5.1 Summary of Various Steps in the Solution of Laplace’s Equation and Determination of
Capacitance for Three One-Dimensional Cases

Geometry Parallel planes Coaxial cylinders Concentric spheres

Figure 5.10 5.11(a) 5.11(b)

Boundary conditions

Laplace’s equation

General solution

Particular solution

Electric field

Surface charge densities

Capacitance per unit area per unit length
4pe

1>a - 1>b
2pe

ln 1b>a2
e

d

eV0

a2
 11>a - 1>b2, r = a

-eV0

b2 11>a - 1>b2, r = b

eV0

a ln 1b>a2, r = a

-eV0

b ln 1b>a2, r = b

µ
-  

eV0

d
, x = 0

eV0

d
, x = d

V0

r2
 11>a - 1>b2  ar

V0

r ln 1b>a2  ar-  

V0

d
 ax

V = V0  

1>r - 1>b
1>a - 1>bV = V0  

ln 1r>b2
ln 1a>b2V = V0 

x

d

V =
A

r
+ BV = A ln r + BV = Ax + B

1

r2
  

0
0r

 ar2
 
0V

0r
b = 0

1
r

  
0
0r

 ar 
0V

0r
b = 0

02V

0x2
= 0

V = V0, r = a

V = 0, r = b

V = V0, r = a

V = 0, r = b
eV = 0, x = 0

V = V0, x = d
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K5.3. Poisson’s equation; p-n junction; Laplace’s equation in one dimension; Paral-
lel-plate arrangement; Capacitance; Conductance; Cylindrical and spherical
capacitors.

D5.7. The potential distribution in a simplified model of a vacuum diode consisting of
cathode in the plane and anode in the plane and held at a potential

relative to the cathode is given by for Find the
following: (a) V at (b) E at (c) at and (d) on the
anode.
Ans. (a) (b) (c) (d)

D5.8. Find the following: (a) the spacing between the plates of a parallel-plate capaci-
tor with a dielectric of and having capacitance per unit area equal to
1000 pF; (b) the ratio of the outer radius to the inner radius for a coaxial cylin-
drical capacitor with a dielectric of and having capacitance per unit
length equal to 100 pF; and (c) the radius of an isolated spherical conductor in
free space for which the capacitance is 10 pF.
Ans. (a) 1.99 cm; (b) 3.4903; (c) 9 cm.

5.4 CAPACITANCE, CONDUCTANCE, AND INDUCTANCE

In the previous section, we introduced the capacitance and conductance by con-
sidering the solution of Laplace’s equation in one dimension. Specifically, we
derived the expressions for the capacitance per unit area and the conductance
per unit area of a parallel-plate arrangement, the capacitance per unit length of
a coaxial cylindrical arrangement, and the capacitance of a concentric spherical
arrangement.

Let us now consider the three arrangements shown in Fig. 5.12, each of
which is a cross-sectional view of a pair of infinitely long coaxial perfectly con-
ducting cylinders with a material medium between them. In Fig. 5.12(a), the

e = 2.25e0,

e = 2.25e0,

4e0 V0>3d.-16e0 V0>9d2;-12V0>3d2ax;V0>16;

rSx = d>8;rx = d>8;x = d>8;
0 6 x 6 d.V = V01x>d24>3V0

x = dx = 0

(a)

V � 0

E

V � V0

b

r
a

e

f

(b)

V � 0

Jc

V � V0

b

r
a

s

(c)

H

b

ra

m

FIGURE 5.12

Cross sections of three arrangements, each consisting of two infinitely long, coaxial, perfectly
conducting cylinders. The medium between the cylinders is a perfect dielectric for (a), a conductor for
(b), and a magnetic material for (c).

Coaxial
cylindrical
arrangement
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material medium is a dielectric of uniform permittivity in Fig. 5.12(b), it is a
conductor of uniform conductivity and in Fig. 5.12(c), it is a magnetic materi-
al of uniform permeability In (a) and (b), a potential difference of is ap-
plied between the conductors, whereas in (c), a current I flows with uniform
density in the on the inner cylinder and returns with uniform den-
sity in the on the outer cylinder.

We know from the discussion in Section 5.3 that the arrangement of
Fig. 5.12(a) is that of a coaxial cylindrical capacitor and from Table 5.1 that its
capacitance (C) per unit length, defined as the magnitude of the charge per unit
length on either conductor to the potential difference between the conductors,
is given by

(5.69)

the units of C being farads (F) and, hence, those of being F/m.
Just as in the case of the parallel-plate arrangement of Example 5.7, re-

placing the dielectric in Fig. 6.4(a) by a conductor as in Fig. 5.12(b) would result
in a conduction current of density

in the medium and, hence, a current per unit length

from the inner cylinder to the outer cylinder. Thus, the ratio of the current per
unit length from the inner to the outer cylinder to the potential difference be-
tween the cylinders, that is, the conductance (G) per unit length of the arrange-
ment, is given by

(5.70)

the units of G being siemens (S) and, hence, those of being S/m.
Turning now to Fig. 5.12(c), we know from the application of Ampere’s

circuital law in integral form that the current flow on the cylinders results in a
magnetic field between the cylinders as given by

g

g =
G

l
=

2ps
ln 1b>a2

 =
2psV0

ln 1b>a2

 Ic = L
2p

f= 0
Jc

# r df ar = L
2p

f= 0
  

sV0

r ln 1b>a2  r df

Jc = sE =
sV0

r ln 1b>a2  ar

c

c =
C

l
=

2pe
ln 1b>a2

-z-direction
+z-direction

V0m.
s;

e;

Conductance
per unit
length,g

Inductance
per unit
length,l

Capacitance
per unit
length,c
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The magnetic flux density is then given by

The magnetic flux linking the current per unit length of the conductors is

We now define the inductance (L) per unit length of the arrangement to be the
ratio of the magnetic flux linking the current per unit length of the arrangement
to the current. Thus,

(5.71)

The units of L are henrys (H) and, hence, those of are H/m.
An examination of (5.69), (5.70), and (5.71) reveals that

(5.72)

and

(5.73)

Thus, only one of the three parameters and is independent, with the
other two obtainable from it and the material parameters. Although this result
is deduced here for the coaxial cylindrical arrangement, it is a general result
valid for all arrangements involving two infinitely long, parallel perfect con-
ductors embedded in a homogeneous medium (a medium of uniform material
parameters). Expressions for the three quantities and are listed in
Table 5.2 for some common configurations of conductors having cross-sectional
views shown in Fig. 5.13. The coaxial cylindrical arrangement is repeated for
the sake of completion.

lg,c,

lg,c,

lc = me

g

c
=
s

e

l

l =
L

l
=
m

2p
  ln  

b
a

 =
mI

2p
  ln  

b
a

 = L
b

r = a
 

mI

2pr
  dr

 c = L
b

r = a
B # dr af

B = mH =
mI

2pr
 af for a 6 r 6 b

H =
I

2pr
 af for a 6 r 6 b
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TABLE 5.2 Conductance, Capacitance, and Inductance per Unit Length for Some Structures Consisting of Infinitely
Long Conductors Having the Cross Sections Shown in Fig. 5.13

Capacitance Conductance Inductance 
Description per unit length, per unit length, per unit length,

Parallel-plane 
conductors, Fig. 5.13 (a)

Coaxial cylindrical 
conductors, Fig. 5.13 (b)

Parallel cylindrical 
wires, Fig. 5.13 (c)

Eccentric inner 
conductor, Fig. 5.13 (d)

Shielded parallel 
cylindrical wires, Fig. 5.13 (e)

m

p
  ln  

d1b2 - d2>42
a1b2 + d2>42

ps

ln 
d1b2 - d2>42
a1b2 + d2>42

pe

ln  

d1b2 - d2>42
a1b2 + d2>42

m

2p
  cosh-1 aa2 + b2 + d2

2ab
b2ps

cosh-1 aa2 + b2 - d2

2ab
b

2pe

cosh-1 aa2 + b2 - d2

2ab
b

m

p
  cosh-1 

 
d

a

ps

cosh-1 1d>a2
pe

cosh-1 1d>a2

m

2p
  ln  

b

a

2ps
ln 1b>a2

2pe
ln 1b>a2

m 
d

w
s 

w

d
e 

w

d

lgc

Example 5.7 Capacitance, conductance, and inductance per unit length
for a parallel-wire line

It is desired to obtain the capacitance, conductance, and inductance per unit length of the
parallel-cylindrical wire arrangement of Fig. 5.13(c).

In view of (5.72) and (5.73), it is sufficient to find one of the three quantities.
Hence, we choose to find the capacitance per unit length. Here we shall do this by con-
sidering the electric potential field of two parallel, infinitely long, straight-line charges of

and of
parallel-
cylindrical
wire
arrangement

lc, g

w

d d 		 w
a

b

(a) (b)

a a

2d

(c) (d)

b a

d 	 (b � a)

d

2a
b

2a

(e)

d

(b2 �
4
d2

) 

 a2

a 		 d

FIGURE 5.13

Cross sections of some common configurations of parallel, infinitely long conductors.
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(a) (b)

rL0

�rL0

FIGURE 5.14

(a) Infinitely long line charge of uniform density along the z-axis. (b) Pair of
parallel, infinitely long line charges of equal and opposite uniform densities.

equal and opposite uniform charge densities and showing that the equipotential surfaces
are cylinders having their axes parallel to the line charges. By placing conductors in two
equipotential surfaces, thereby forming a parallel-wire line, we shall obtain the expres-
sion for the capacitance per unit length of the line.

Let us first consider an infinitely long, straight-line charge of uniform density
situated along the z-axis, as shown in Fig. 5.14(a), and obtain the electric poten-

tial due to the line charge. The symmetry associated with the problem indicates that the
potential is dependent on the cylindrical coordinate r. Thus, we have

(5.74)

where A and B are constants to be determined. We can arbitrarily set the potential to be
zero at a reference value giving us and

(5.75)

To evaluate the arbitrary constant A in (5.75), we find that the electric-field inten-
sity due to the line charge is given by

The electric field is thus directed radial to the line charge. Let us now consider a cylindri-
cal box of radius r and length l coaxial with the line charge, as shown in Fig. 5.14(a), and
apply Gauss’ law for the electric field in integral form to the surface of the box. For the
cylindrical surface,

LD # dS = -  
eA

r
 12prl2

E = - �V = -  
0V

0r
 ar = -  

A

r
 ar

V = A ln r - A ln r0 = A ln 
r

r0

B = -A ln r0r = r0,

 V = A ln r + B

 §2V =
1
r

  
0
0r

 ar 
0V

0r
b = 0 for r Z 0

rL0 C>m
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For the top and bottom surfaces, since the field is parallel to the surfaces.
The charge enclosed by the box is Thus, we have

Substituting this result in (5.75), we obtain the potential field due to the line charge to be

(5.76)

which is consistent with (5.40).
Let us now consider two infinitely long, straight-line charges of equal and opposite

uniform charge densities and parallel to the z-axis and passing
through and respectively, as shown in Fig. 5.14(b). Applying superposi-
tion and using (5.76), we write the potential due to the two line charges as

where and are the distances of the point of interest from the line charges and and
are the distances to the reference point at which the potential is zero. By choosing the

reference point to be equidistant from the two line charges, that is, we get

(5.77)

From (5.77), we note that the equipotential surfaces for the potential field of the
line-charge pair are given by

(5.78)

where k lies between 0 and In terms of Cartesian coordinates, (5.78) can be written as

Rearranging, we obtain

or

This equation represents cylinders having their axes along

x = b  
k2 + 1

k2 - 1
, y = 0

ax - b  
k2 + 1

k2 - 1
b2

+ y2 = ab  
2k

k2 - 1
b2

x2 - 2b  
k2 + 1

k2 - 1
 x + y2 + b2 = 0

1x + b22 + y2

1x - b22 + y2 = k2

q .

r2

r1
= constant, say, k

V =
rL0

2pe
  ln  

r2

r1

r01 = r02,
r02

r01r2r1

V =
rL0

2pe
  ln  

r01

r1
-
rL0

2pe
  ln  

r02

r2

x = -b,x = b
-rL0 C>m,rL0 C>m

V = -  

rL0

2pe
  ln  

r

r0
=
rL0

2pe
  ln  

r0

r

-  
eA

r
 12prl2 = rL0l or A = -  

rL0

2pe

rL0l.
1D # dS = 0,
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x � 0,  k � 1

d d

bb

r2

r1

a a
rL0 rL0

FIGURE 5.15

Cross sections of equipotential surfaces for the line charge pair of Fig
5.14(b). Thick circles represent a cross section of parallel-wire line.

and radii equal to The corresponding potentials are The
cross sections of the equipotential surfaces are shown in Fig. 5.15.

We can now place perfectly conducting cylinders in any two equipotential surfaces
without disturbing the field configuration, as shown, for example, by the thick circles in
Fig. 5.15, thereby obtaining a parallel-wire line. Letting the distance between their cen-
ters be 2d and their radii be a, we have

Solving these two equations for k and accepting only those solutions lying between 0 and
we obtain

The potentials of the right and left conductors are then given, respec-
tively, by

 = -  

rL0

2pe
  ln  

d + 4d2 - a2

a

 V- =
rL0

2pe
  ln  

d - 4d2 - a2

a

 V+ =
rL0

2pe
  ln  

d + 4d2 - a2

a

1k 6 121k 7 12
k =

d ; 4d2 - a2

a

q ,

 a = b  
2k

k2 - 1

 ;d = b  
k2 + 1

k2 - 1

1rL0>2pe2 ln k.b[2k>1k2 - 12].
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The potential difference between the two conductors is

Finally, to find the capacitance, we note that since the electric field lines begin
on the positive charge and end on the negative charge orthogonal to the equipoten-
tials, the magnitude of the charge on either conductor, which produces the same field
as the line-charge pair, must be the same as the line charge itself. Thus, considering
unit length of the line, we obtain the capacitance per unit length of the parallel-wire
line to be

(5.79)

and, hence, the expressions for and as given in Table 5.2.

If the conductors in a given configuration are not perfect, then the cur-
rents flow in the volumes of the conductors instead of being confined to the sur-
faces. We then have to consider the magnetic field internal to the current
distribution in addition to the magnetic field external to it.The inductance asso-
ciated with the internal field is known as the internal inductance as compared to
the external inductance associated with the external field. The expressions for
the inductance per unit length given in Table 5.2 are for the external inductance.
To obtain the internal inductance, we have to take into account the fact that dif-
ferent flux lines in the volume occupied by the current distribution link differ-
ent partial amounts of the total current. We shall illustrate this by means of an
example.

Example 5.8 Internal inductance per unit length of a solid cylindrical
conductor

A current I A flows with uniform volume density along an infinitely long,
solid cylindrical conductor of radius a and returns with uniform surface density in the op-
posite direction along the surface of an infinitely long, perfectly conducting cylinder of
radius and coaxial with the inner conductor. It is desired to find the internal in-
ductance per unit length of the inner conductor.

The cross-sectional view of the conductor arrangement is shown in Fig. 5.16(a).
From symmetry considerations, the magnetic field is entirely in the direction and inde-
pendent of Applying Ampère’s circuital law to a circular contour of radius as
shown in Fig. 5.16(a), we have

2prHf = pr2J0

r 16  a2,f.
f

b 17  a2

J = J0 az A>m2

l,g

 =
pe

cosh-11d>a2

 c =
rL0

V0
=

pe

ln [1d + 4d2 - a22>a]

V0 = V+ - V- =
rL0

pe
  ln  

d + 4d2 - a2

a

Internal
inductance
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l

(a) (b)

dr dr

r

a

b

a

b

r
z

f

FIGURE 5.16

For evaluating the internal inductance per unit length associated with a volume current of
uniform density along an infinitely long cylindrical conductor.

or

The corresponding magnetic flux density is given by

where is the permeability of the conductor. Let us now consider a rectangle of infini-
tesimal width dr in the r-direction and length l in the z-direction at a distance r from the
axis, as shown in Fig. 5.16(b). The magnetic flux crossing this rectangular surface is
given by

where the subscript i denotes flux internal to the conductor. This flux surrounds only the
current flowing within the radius r, as can be seen from Fig. 5.16(a). Let N be the fraction
of the total current I linked by this flux. Then

 =
J0pr2

J0pa2 = a r

a
b2

 N =
current flowing within radius r 16  a2

total current I

 =
mJ0 rl dr

2

 dci = Bf 1area of the rectangle2

dci

m

B = mH =
mJ0 r

2
  af r 6 a

H = Hfaf =
J0 r

2
  af r 6 a
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The contribution from the flux to the internal flux linkage associated with the
current I is the product of N and the flux itself, that is, To obtain the internal flux
linkage associated with I, we integrate between the limits and taking
into account the dependence of N on Thus,

Finally, the required internal inductance per unit length is

(5.80)

From the steps involved in the solution of Example 5.8, we observe that
the general expression for the internal inductance is

(5.81a)

where S is any surface through which the internal magnetic flux associated with
I passes.We note that (5.81a) is also good for computing the external inductance
since for external inductance, N is independent of Hence,

(5.81b)

In (5.81b), the value of N is unity if I is a surface current, as in the arrangement
of Fig. 5.12(c). On the other hand, for a filamentary wire wound on a core, N is
equal to the number of turns of the winding, in which case represents the flux
through the core, that is, the flux crossing the surface formed by one turn, ac-
cording to the same consideration as that in conjunction with the discussion of
Faraday’s law for an N-turn coil (see Fig. 2.13).

The discussion pertaining to inductance thus far has been concerned with
self-inductance, that is, inductance associated with a current distribution by
virtue of its own flux linking it. On the other hand, if we have two independent
currents and we can talk of the flux due to one current linking the second
current. This leads to the concept of mutual inductance. The mutual inductance
denoted as is defined as

(5.82a)L12 = N1 

c12

I2

L12

I2,I1

c

Lext =
N

I LS
dc = N 

c

I

dc.

Lint =
1
ILS

N dc

li =
ci

lI
=
mJ0 a2>8
J0pa2 =

m

8p

ci = L
a

r = 0
N dci = L

a

r = 0
 a r

a
b2

 

mJ0 lr

2
  dr =

mJ0 la2

8

dci.
r = a,r = 0N dci

N dci.
dci

Mutual
inductance
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FIGURE 5.17

For the computation of mutual inductance per unit length between a two-wire telephone
line and a single wire parallel to it.

where is the magnetic flux produced by but linking one turn of the
winding carrying current Similarly,

(5.82b)

where is the magnetic flux produced by but linking one turn of the 
winding carrying current It can be shown that We shall now con-
sider a simple example illustrating the computation of mutual inductance.

Example 5.9 Mutual inductance per unit length between a single wire
and a two-wire telephone line

A single straight wire, infinitely long and carrying current lies below to the left and
parallel to a two-wire telephone line carrying current as shown by the cross-sectional
and plan views in Figs. 5.17(a) and (b), respectively. It is desired to obtain the mutual in-
ductance between the single wire and the telephone line per unit length of the wires.The
thickness of the telephone wire is assumed to be negligible.

Choosing a coordinate system with the axis of the single wire as the z-axis and ap-
plying Ampère’s circuital law to a circular path around the single wire, we obtain the
magnetic flux density due to the single wire as

B =
m0 I1

2pr
  af

I2,
I1,

L21 = L12.I2.
N2-turnI1c21

L21 = N2 

c21

I1

I1.N1-turn
I2c12
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The flux crossing a rectangular surface of length unity and width dy lying between
the telephone wires, as shown in Fig. 5.17(b), is then given by

where is the angle between the flux lines and the normal to the rectangular surface, as
shown in Fig. 5.17(a). The total flux crossing the rectangular surface of length unity
and extending from one telephone wire to the other is

This is the flux due to linking per unit length along the wires. Thus, the required mu-
tual inductance per unit length of the wires is given by

K5.4. Infinitely long, coaxial cylindrical arrangement; Capacitance per unit length
Conductance per unit length Inductance per unit length Rela-

tionship between and Parallel cylindrical wire arrangement; Internal
inductance; Mutual inductance.

D5.9. A coaxial cylindrical conductor arrangement [see Fig. 5.13(b)] has the dimen-
sions and (a) By what value of the distance d should the
inner conductor be displaced parallel to the outer conductor [see Fig. 5.13(d)] to
increase the capacitance per unit length of the arrangement by 25%? (b) By
what percentage is the inductance per unit length of the arrangement then
changed from the original value?
Ans. (a) 1.2368 cm; (b)

D5.10. Figure 5.18 is the cross-sectional view of the coaxial cylindrical conductor
arrangement in which a solid conductor of radius a is enclosed by a hollow con-
ductor of inner radius 4a and outer radius 5a. Current flows in the inner con-
ductor in the and returns on the outer conductor in the

with densities given by

Find the value of N, the fraction of the current linked by the magnetic flux at
a given radius r, for each of the following values of r: (a) 0.8a; (b) 3a; and (c) 4.5a.
Ans. (a) 0.4547; (b) 1; (c) 0.5278.

dciI0

J = d I0 e

pa2 11 - e-r2>a22az for 0 6 r 6 a

-  

I0

9pa2 az for 4a 6 r 6 5a
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-20.

b = 3 cm.a = 1 cm

l;c, g,
1l2;1g2;1c2;
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5.5 ELECTRIC- AND MAGNETIC-FIELD SYSTEMS

In Section 3.1, we discussed briefly how lumped circuit theory is based upon ap-
proximations resulting from the neglect of certain terms in one or both of
Maxwell’s curl equations. Such approximations, valid at low frequencies, are
known as quasistatic approximations. In this section, we illustrate the determi-
nation of the low-frequency terminal behavior of a physical structure via a qua-
sistatic extension of the static field existing in the structure when the frequency
of the source driving the structure is zero. The quasistatic extension consists of
starting with a time-varying field having the same spatial characteristics as that
of the static field, and obtaining the field solutions containing terms up to and
including the first power in the radian frequency, leading to the concept of
electric- and magnetic-field systems.

To introduce the quasistatic field approach, we consider the case of an in-
ductor, as represented by the structure shown in Fig. 5.19(a), in which an
arrangement of two parallel-plane conductors joined at one end by another
conducting sheet is excited by a current source at the other end. We neglect
fringing of the fields by assuming that the spacing d between the plates is very
small compared with the dimensions of the plates or that the structure is part of
a structure of much larger extent in the y- and z-directions. For a constant-current
source of value driving the structure at the end as shown in the figure,
such that the surface current densities on the two plates are given by

(5.83)

the medium between the plates is characterized by a uniform y-directed mag-
netic field, as shown by the cross-sectional view in Fig. 5.19(b). From the boundary
condition for the tangential magnetic-field intensity at the surface of a perfect

JS = d I0

w
  az for x = 0

-  

I0

w
  az for x = d

z = - l,I0

v,

Quasistatic
field analysis
for an
inductor

f

4a

5a

a

FIGURE 5.18

For Problem D5.9
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conductor, the magnitude of this field is Thus, we obtain the static magnetic-
field intensity between the plates to be

(5.84)

The field is zero outside the plates.
The corresponding magnetic flux density is given by

(5.85)

The magnetic flux linking the current is simply the flux crossing the cross-
sectional plane of the structure. Since B is uniform in the cross-sectional plane
and normal to it,

(5.86)

The ratio of this magnetic flux to the current, that is, the inductance of the struc-
ture, is given by

(5.87)L =
c

I0
=
mdl

w

c = By1dl2 =
mdl

w
 I0

c

B = mH =
mI0

w
  ay for 0 6 x 6 d

H =
I0

w
  ay for 0 6 x 6 d

I0>w.
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VI
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FIGURE 5.19

(a) Parallel-plate structure short-circuited at one
end and driven by a current source at the other
end. (b) Magnetic field between the plates for a
constant-current source.
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To discuss the quasistatic behavior of the structure, we now let the current
source vary sinusoidally with time at a frequency and assume that the mag-
netic field between the plates varies accordingly. Thus for

(5.88)

we have

(5.89)

where the subscript 0 denotes that the field is of the zeroth power in In terms
of phasor notation, we have

(5.90)

(5.91)

The time-varying magnetic field (5.87) gives rise to an electric field in ac-
cordance with Maxwell’s curl equation for E. Expansion of the curl equation for
the case under consideration gives

or, in phasor form,

(5.92)

Substituting for from (5.91), we have

or

(5.93)

The constant is, however, equal to zero, since to satisfy the bound-
ary condition of zero tangential electric field on the perfect conductor surface.
Thus, we obtain the quasistatic electric field in the structure to be

(5.94)E
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where the subscript 1 denotes that the field is of the first power in The value
of this field at the input of the structure is given by

(5.95)

The voltage developed across the current source is now given by

or

(5.96)

Thus, the quasistatic extension of the static field in the structure of Fig. 5.19 il-
lustrates that its input behavior for low frequencies is essentially that of a single
inductor of value equal to that found from static-field considerations.

We shall now determine the condition under which the quasistatic ap-
proximation is valid, that is, the condition under which the field of the first
power in is the predominant part of the total field. To do this, we proceed in
the following manner. The electric field gives rise to a magnetic field in ac-
cordance with Maxwell’s curl equation for H, which for the case under consid-
eration is given by

or in phasor form by

(5.97)

Substituting from (5.94) for in (5.97), we have

or

(5.98)H
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where the subscript 2 denotes that the field is of power 2 in The constant 
can be evaluated by noting that at must be zero, since by itself
satisfies the boundary condition Thus, we get

(5.99)

This magnetic field gives rise to an electric field in accordance with
Maxwell’s curl equation for E. Hence, we have

or

(5.100)

where the subscript 3 denotes that the field is of power 3 in The constant 
has to be equal to zero to satisfy the boundary condition of zero tangential elec-
tric field on the conductor surface Thus, we obtain

(5.101)

and, hence,

(5.102)

Continuing in this manner, we would obtain

(5.103)

and so on. The total electric field at can then be written as
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or

(5.104)

From (5.104), it can be seen that for 

which is the same as Thus, the condition under which the quasistatic
approximation is valid is

or

(5.105)

For frequencies beyond which (5.105) is valid, the input behavior of the struc-
ture of Fig. 5.19 is no longer essentially that of a single inductor.

To further investigate the condition for the quasistatic approximation, we
recognize that (5.105) can be written as

or,

(5.106)

where is the wavelength corresponding to f in the dielectric region
between the plates. Thus, (5.106) tells us that the length of the structure must
be very small compared to the wavelength.

The criterion (5.106) is a general condition for the quasistatic approxima-
tion for the input behavior of a physical structure. Physical structures can be
classified as electric-field systems and magnetic-field systems, depending on
whether the electric field or the magnetic field is predominant. Quasistatic
electric- and magnetic-field systems are particularly important in electro-
mechanics. The structure of Fig. 5.19 is a magnetic-field system, since for the
static case the only field present between the plates is the magnetic field and
the quasistatic magnetic field has the same spatial dependence as that of the

l = vp>f
l �
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l �
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static magnetic field. The quasistatic magnetic field gives rise to a time-varying
electric field, but the corresponding displacement current is so small that its
effect in adding to the quasistatic magnetic field is negligible, and hence it can
be omitted from Maxwell’s curl equation for H.Thus, for a quasistatic magnetic-
field system, we have

(5.107a)

(5.107b)

(5.107c)

Likewise, if the structure of Fig. 5.19 is open-circuited at and driven
by a voltage source at the only field present between the plates in the
static case would be the electric field, and the quasistatic electric field would
have the same spatial dependence as that of the static electric field. The system
would then be an electric-field system. The quasistatic electric field would give
rise to a time-varying magnetic field, but the corresponding value of 
would be so small that its effect in adding to the quasistatic electric field would
be negligible and, hence, it can be omitted from Maxwell’s curl equation for E.
Thus, for a quasistatic electric-field system, we have

(5.108a)

(5.108b)

(5.108c)

When the medium between the plates is conductive, a conduction current
flows between the plates in accordance with and the analysis for
low-frequency input behavior results in both electric and magnetic fields of the
first order in We shall illustrate this by means of an example.

Example 5.10 Determination of low-frequency behavior of a resistor by
quasistatic field approach

Let us consider the case of two parallel perfectly conducting plates separated by a lossy
medium characterized by conductivity permittivity and permeability and driven
by a voltage source at one end, as shown in Fig. 5.20(a). We wish to determine its low-
frequency behavior by using the quasistatic-field approach.

Assuming the voltage source to be a constant-voltage source, we first obtain the
static electric field in the medium between the plates to be

following the procedure of Example 5.6. The conduction current density in the medium
is then given by

Jc = sE =
sV0

d
  ax

E =
V0

d
  ax

m,e,s,

v.

J = Jc = sE

 � # D = r

 � � H = J +
0D
0t

 � � E = 0

0B>0t

z = - l,
z = 0

 � # B = 0

 � � E = -  
0B
0t

 � � H = J

Low-
frequency
behavior of a
resistor
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The conduction current gives rise to a static magnetic field in accordance with Maxwell’s
curl equation for H, given for static fields by

For the case under consideration, this reduces to

giving us

The constant is, however, equal to zero, since in view of the boundary
condition that the surface current density on the plates must be zero at Thus, the
static magnetic field in the medium between the plates is given by

The static electric- and magnetic-field distributions are shown by the cross-sectional
view of the structure in Fig. 5.20(b).

To determine the quasistatic behavior of the structure, we now let the voltage
source vary sinusoidally with time at a frequency and assume that the electric andv

H = -  

sV0 z

d
 ay

z = 0.
[Hy]z = 0 = 0C1

Hy = -  

sV0 z

d
+ C1

0Hy

0z
= -sEx = -  

sV0

d

� � H = Jc = sE

H
E, Jc

(b)

(a)

V

a

b

z � �l z � 0

z ��l l z � 0

z

x

y

z

y

d

x � 0

x � d

s, e, m

x

w

�
� FIGURE 5.20

(a) Parallel-plate structure with lossy medium
between the plates and driven by a voltage
source. (b) Electric and magnetic fields between
the plates for a constant-voltage source.
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magnetic fields vary with time accordingly. Thus, for

we have

(5.109a)

(5.109b)

where the subscript 0 denotes that the fields are of the zeroth power in In terms of
phasor notation, we have for 

(5.110a)

(5.110b)

The time-varying electric field (5.109a) gives rise to a magnetic field in accordance
with

and the time-varying magnetic field (5.109b) gives rise to an electric field in accordance with

For the case under consideration and using phasor notation, these equations reduce to

giving us

where the subscript 1 denotes that the fields are of the first power in The constant 
is, however, equal to zero in view of the boundary condition that the surface current den-
sity on the plates must be zero at To evaluate the constant we note that

since the boundary condition at the source end, that is,
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is satisfied by alone. Thus, we have

or

Substituting for and in the expressions for and respectively, we get

(5.111a)

The result for is, however, not complete, since gives rise to a conduction current
of density proportional to which in turn provides an additional contribution to 
Denoting this contribution to be we have

The constant is zero for the same reason that is zero. Hence, setting equal to
zero and adding the resulting expression for to the right side of the expression for

we obtain the complete expression for as

(5.111b)

The total field components correct to the first power in are then given by

(5.112a)

(5.112b)

The current drawn from the voltage source is

(5.113)
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L
3

�
�

R

C

I

V
FIGURE 5.21

Equivalent circuit for the low-frequency input
behavior of the structure of Fig. 5.20.

Finally, the input admittance of the structure is given by

(5.114)

where we have approximated by Proceeding fur-
ther, we have

(5.115)

where is the capacitance of the structure if the material is a perfect dielectric,
is the dc resistance (reciprocal of the conductance) of the structure, and
is the inductance of the structure if the material is lossless and the two plates

are short-circuited at The equivalent circuit corresponding to (5.115) consists of
capacitance C in parallel with the series combination of resistance R and inductance L/3,
as shown in Fig. 5.21. Thus, the low-frequency input behavior of the structure of Fig. 5.20
(which acts like a pure resistor at dc) can be represented by the circuit Fig. 5.21, with the
understanding of the approximation used in (5.114).

Note that for (5.113) reduces to

and the input behavior of the structure is essentially that of a single capacitor of the same
value as that found from static-field considerations.

Sometimes, it is of interest to consider equivalent circuit representation
for the input behavior of a structure for frequencies beyond the quasistatic ap-
proximation. For an example, let us consider frequencies slightly beyond those
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1
3I L C FIGURE 5.22

Equivalent circuit for the input behavior of the
structure of Fig. 5.19 for frequencies slightly beyond
those for which the quasistatic approximation is valid.

for which the quasistatic approximation is valid for the structure of Fig. 5.19.
Then

and from (5.95) and (5.102), we have

(5.116)

and the voltage developed across the current source is given by

(5.117)

where is the capacitance of the structure with the end open-
circuited and from static-field considerations. Rearranging (5.117), we get

(5.118)

Thus, the equivalent circuit consists of the parallel combination of L and as
shown in Fig. 5.22.
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s
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b V � 0
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f
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FIGURE 5.23

(a) Toroidal conductor. (b) Toroidal magnetic core.

K5.5. Quasistatic approximation; Condition for quasistatic approximation; Electric-
and magnetic-field systems; Low-frequency terminal behavior; Inductor; Resistor.

D5.11. For the structure of Fig. 5.19, assume that and
that the medium between the conductors is free space.Assuming that the condi-
tion for quasistatic approximation given by (5.105) is valid for 
find the following: (a) the maximum frequency for which the input behavior of
the structure is essentially that of a single inductor; (b) the value of this induc-
tor; and (c) the ratio of the amplitude of the electric field at the input, if the
structure behaves exactly like a single inductor, to the amplitude of the actual
electric field at the input for the frequency found in (a).
Ans. (a) 47.746 MHz; (b) (c) 0.9967.

5.6 MAGNETIC CIRCUITS

Let us consider the two structures shown in Fig. 5.23.The structure of Fig. 5.23(a)
is a toroidal conductor of uniform conductivity and has a cross-sectional area
A and mean circumference l.There is an infinitesimal gap a–b across which a po-
tential difference of volts is maintained by connecting an appropriate voltage
source. Because of the potential difference, an electric field is established in the
toroid and a conduction current results from the higher-potential surface a to
the lower-potential surface b as shown in the figure. The structure of Fig. 5.23(b)
is a toroidal magnetic core of uniform permeability with a cross-sectional area
A and mean circumference l. A current I A is passed through a filamentary wire
of N turns wound around the toroid by connecting an appropriate current
source. Because of the current through the winding, a magnetic field is estab-
lished in the toroid and a magnetic flux results in the direction of advance of a
right-hand screw as it is turned in the sense of the current.

c

m

Ic

V0

s

4p * 10-9 H;

f 6 1>20p1mel,l = 10 cm, d = 1 cm, w = 10 cm,

Toroidal
conductor
versus
toroidal
magnetic core
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5.6 Magnetic Circuits 333

Since the conduction current cannot leak into the free space surrounding
the conductor, it is confined entirely to the conductor. On the other hand, the
magnetic flux can leak into the free space surrounding the magnetic core and,
hence, is not confined completely to the core. However, let us consider the case
for which Applying the boundary conditions at the boundary between
a magnetic material of and free space, as shown in Fig. 5.24, we have

or

Thus, and

For example, if the values of and are and 89°, respectively, then
and We can assume, for all practical purposes,

that the magnetic flux is confined to the magnetic core, just as the conduction
current is confined to the conductor. The structure of Fig. 5.23(b) is then known
as a magnetic circuit, similar to the electric circuit of Fig. 5.23(a). Magnetic cir-
cuits are encountered in applications involving electromechanical systems, typi-
cal examples of which are electromagnets, transformers, and rotating machines.

For the toroidal conductor of Fig. 5.23(a), we have

(5.119)L
b

a
E # dl = V0

sin a1>sin a2 = 0.057.a1 = 3°16¿
1000m0a2m1

B2

B1
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� 1
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tan a1
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� 1

 
B1

H1
  tan a1 =

B2

H2
  tan a2

 H1 cos a1 = H2 cos a2

 B1 sin a1 = B2 sin a2

m � m0

m � m0.

B1

B2

a2

a1

Magnetic Material

Free Space

m1 

     m0

m2 � m0 FIGURE 5.24

Lines of magnetic flux density at the boundary between
free space and a magnetic material of m � m0.
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Reluctance
defined

Proceeding with the assumption that is uniform over the cross-sectional area
and equal to its value at the mean radius of the toroid, and we obtain

Thus, the resistance of the circuit is given by

(5.120)

Similarly, for the toroidal magnetic core of Fig. 5.23(b),

(5.121)

Assuming to be uniform over the cross-sectional area and equal to its value
at the mean radius of the toroid, we obtain

We now define the reluctance of the magnetic circuit, denoted by the sym-
bol as the ratio of the ampere turns applied to the magnetic circuit to the
magnetic flux Thus,

(5.122)

The reluctance of the magnetic circuit is analogous to the resistance of an elec-
tric circuit and has the units of ampere-turns per weber (A-t/Wb). In fact, the
complete analogy between the toroidal conductor and the toroidal magnetic
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FIGURE 5.26

B versus H curve for annealed sheet steel.

core can be seen as follows.

The equivalent-circuit representations of the two arrangements are shown in
Figs. 5.25(a) and (b), respectively. We note from (5.122) that for a given magnetic
material, the reluctance appears to be purely a function of the dimensions of the
circuit. This is, however, not true, since, for the ferromagnetic materials used for
the cores, is a function of the magnetic flux density in the material, as we
learned in Section 4.3.

As a numerical example of computations involving the magnetic circuit of
Fig. 5.23(b), let us consider a core of cross-sectional area and mean cir-
cumference 20 cm. Let the material of the core be annealed sheet steel for
which the B versus H relationship is shown by the curve of Fig. 5.26. Then to es-
tablish a magnetic flux of in the core, the mean flux density must3 * 10-4 Wb

2 cm2

m

 R 4R
 Ic 4 c
 s4 m
 Jc 4 B

 E 4 H

 V0 4 NI0

�
� R

(a)

V0

Ic

(b)

RNI0

c

�
�

FIGURE 5.25

Equivalent-circuit representations for the structures of Figs. 5.23(a) and (b), respectively.
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FIGURE 5.27

(a) Magnetic circuit. (b) Fringing of magnetic flux in the air gap of the magnetic circuit.
(c) Effective and actual cross sections for the air gap.

be or From Fig. 5.26, the corresponding
value of H is 1000 A/m. The number of ampere-turns required to establish the
flux is then equal to or 200, and the reluctance of the core is

or We shall now consider a more detailed
example.

Example 5.11 Determination of the ampere-turns for a specified flux in
the air gap of a magnetic circuit

A magnetic circuit containing three legs and with an air gap in the right leg is shown in
Fig. 5.27(a). A filamentary wire of N turns carrying current I is wound around the center
leg. The core material is annealed sheet steel, for which the B versus H relationship is
shown in Fig. 5.26. The dimensions of the magnetic circuit are

Let us determine the value of NI required to establish a magnetic flux of in
the air gap.

The current in the winding establishes a magnetic flux in the center leg that divides be-
tween the right and left legs.Fringing of the flux occurs in the air gap,as shown in Fig.5.27(b).
This is taken into account by using an effective cross section larger than the actual cross
section, as shown in Fig. 5.27(c). Using subscripts 1, 2, 3, and g for the quantities associated
with the left, center, and right legs, and the air gap, respectively, we can write

 c2 = c1 + c3

 c3 = cg

4 * 10-4 Wb

l1 = l3 = 20 cm l2 = 10 cm lg = 0.2 mm
A1 = A3 = 3 cm2 A2 = 6 cm2

12>32 * 106 A-t>Wb.200>13 * 10-42, 1000 * 20 * 10-2,

1.5 Wb>m2.13 * 10-42>12 * 10-42,

Magnetic
circuit with
three legs and
an air gap
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Also, applying Ampère’s circuital law to the right and left loops of the magnetic circuit,
we obtain, respectively,

It follows from these two equations that

which can also be written directly from a consideration of the outer loop of the magnetic
circuit.

Noting from Fig. 5.27(c) that the effective cross section of the air gap is
we find the required magnetic flux density in the air gap to be

The magnetic-field intensity in the air gap is

The flux density in leg 3 is

From Fig. 5.26, the value of is 475 A/m.
Knowing the values of and we then obtain

From Fig. 5.26, the value of is and, hence, the flux in leg 1 is

Thus,

 B2 =
c2

A2
=

8.68 * 10-4

6 * 10-4 = 1.447 Wb>m2

 = 4.68 * 10-4 + 4 * 10-4 = 8.68 * 10-4 Wb

 c2 = c1 + c3

c1 = B1 A1 = 1.56 * 3 * 10-4 = 4.68 * 10-4 Wb

1.56 Wb>m2,B1

 H1 =
302.4
0.2

= 1512 A>m
 = 302.4 A
 = 475 * 0.2 + 0.1037 * 107 * 0.2 * 10-3

 H1 l1 = H3 l3 + Hg lg

H3,Hg

H3

B3 =
c3

A3
=
cg

A3
=

4 * 10-4

3 * 10-4 = 1.333 Wb>m2

Hg =
Bg

m0
=

1.303

4p * 10-7 = 0.1037 * 107 A>m

Bg =
cg

1Ag2eff
=

4 * 10-4

3.07 * 10-4 = 1.303 Wb>m2

113 + lg22 = 3.07 cm2,

H1 l1 = H3 l3 + Hg lg

 NI = H2 l2 + H1 l1

 NI = H2 l2 + H3 l3 + Hg lg
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NI

c1 c3

c2

�
�

R2

R3

Rg

R1

FIGURE 5.28

Equivalent circuit for the magnetic
circuit of Fig. 5.27.

From Fig. 5.26, the value of is 750 A/m. Finally, we obtain the required number of am-
pere-turns to be

Note that the equivalent circuit corresponding to the magnetic circuit is as shown in
Fig. 5.28, where the reluctances are given by

K5.6. Magnetic circuit; Analogy with electric circuit; Reluctance; Air gap.
D5.12. Assume that the portion of B versus H curve of Fig. 5.26 in the range

can be approximated by the straight line

For a toroidal magnetic circuit made of annealed sheet steel, find the reluctance
for each of the following cases: (a)
(b) A-t; and (c)

Ans. (a) 849,057 A-t/Wb; (b) 1,538,462 A-t/Wb; (c) 625,000 A-t/Wb.
D5.13. For the magnetic circuit of Fig. 5.27, assume that the region of operation on the

B–H curve of the material is such that of the material is equal to 4000 for all
three legs. Find the reluctance as viewed by the excitation for each of the fol-
lowing cases: (a) winding in leg 1; (b) winding in leg 2; and (c) winding in leg 3.
Ans. (a) 164,207 A-t/Wb; (b) 143,681 A-t/Wb; (c) 689,671 A-t/Wb.

mr

8 * 10-4 Wb.
c =  A = 5 cm2, l = 25 cm,A = 2 cm2, l = 20 cm, NI = 500

A = 4 cm2, l = 30 cm, H = 1800 A>m;

B = 1.5 + 5 * 10-5H

1500 … H … 3000

 Rg =
lg

m01Ag2eff
=

0.2 * 10-3

4p * 10-7 * 3.07 * 10-4 = 518,420 A-t>Wb

 R3 =
l3

m3 A3
=

H3 l3

B3 A3
=

475 * 0.2

1.333 * 3 * 10-4 = 237,559 A-t>Wb

 R2 =
l2

m2 A2
=

H2 l2

B2 A2
=

750 * 0.1

1.447 * 6 * 10-4 = 86,386 A-t>Wb

 R1 =
l1

m1 A1
=

H1 l1

B1 A1
=

1512 * 0.2

1.56 * 3 * 10-4 = 646,154 A-t>Wb

 = 377.4
 = 750 * 0.1 + 302.4

 NI = H2 l2 + H1 l1

H2
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5.7 ELECTROMECHANICAL ENERGY CONVERSION

Let us consider a parallel-plate capacitor with one plate fixed and the other
plate free to move, as shown by a cross-sectional view in Fig. 5.29. If we assume
a positive charge Q on the movable plate and a negative charge on the fixed
plate, resulting from the application of a voltage V between the plates, then a
force directed toward the fixed plate is exerted on the movable plate. If this
force is allowed to produce a displacement of the movable plate, mechanical
work results, thereby converting electrical energy in the system into mechanical
energy. Conversely, an externally applied mechanical force can be made to act
on the movable plate so as to increase the stored electrical energy in the system.
Thus, energy can be converted from electrical to mechanical or vice versa. A fa-
miliar example of the former is in the case of an electrical motor, whereas that
of the latter is in the case of an electrical generator.To determine the amount of
energy converted from one form to another, we first need to know how to com-
pute the force In this section, we illustrate this computation and discuss the
determination of energy converted from one form to another.

The computation of the mechanical force of electric origin follows from
considerations of energy balance associated with the electromechanical system.
The energy balance can be expressed as

(5.123)

For simplicity, we shall consider the system to be lossless so that the last term
on the right side of (5.123) is zero. In using (5.123) to find we shall apply to
the movable element of the system an external force equal to and displace
the element by an infinitesimal distance in the direction of the external force,
so that no change in stored mechanical energy occurs. This eliminates the first
term on the right side of (5.123). Thus, with reference to the system of Fig. 5.29,
we have

(5.124)-Fex dx + VI dt = dWe

-Fe

Fe,

Mechanical
energy
input

 +  
Electrical

energy
input

 =  

Increase
in stored

mechanical
energy

 +  

Increase
in stored
electrical
energy

 +  
Energy

dissipated

Fe

Fe.

Fe

-Q
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Parallel-plate
capacitor
with a
movable plate

Computation
of mechanical
force of
electric origin

Fe

Movable

V

I

� � � � � �

� � � � � �

Fixed

�Q

Q

x

FIGURE 5.29

Parallel-plate capacitor with a movable plate,
depicting the force on the movable plate.Fe
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340 Chapter 5 Electromagnetic Potentials and Topics for Circuits and Systems

where dx is the displacement of the movable plate, I is the current drawn from
the voltage source, and is the electric stored energy in the capacitor. Substi-
tuting from the law of conservation of charge, we obtain

or

(5.125)

To proceed further, we shall neglect fringing of the electric field at the
edges of the capacitor plates so that the charges on the plates and the electric
field between the plates are uniformly distributed. Then if A is the area of each
plate, we can write the following:

Thus, we obtain

(5.126)

Note that in this procedure V was held constant, since the voltage source
was kept connected to the capacitor plates in the process of displacing the plate.
If, on the other hand, the voltage source is not connected to the capacitor plates
in the process of displacing the plate, then Q remains constant, and we can write
the following:

 
dWe

dx
=

d

dx
 a1

2
 e0 E2Axb

 
dQ

dx
= 0

 = -  
1
2

  

e0 AV2

x2

 Fex =
e0 V2A

2x2 -
e0 AV2

x2

 
dQ

dx
= -  

e0 AV

x2

 Q = CV =
e0 AV

x

 
dWe

dx
= -  

e0 V2A

2x2

 =
e0 V2A

2x

 We =
1
2

 e0 E2Ax =
1
2

 e0 aV
x
b2

Ax

Fex = -  

dWe

dx
+ V 

dQ

dx

-Fex dx + VdQ = dWe

I = dQ>dt
We
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5.7 Electromechanical Energy Conversion 341

(5.127)

The results obtained for in (5.126) and (5.127) appear to be different,
but they are not. This can be seen by expressing (5.126) in terms of Q or by ex-
pressing (5.127) in terms of V. Choosing the first option, we can write (5.126) as

which is the same as that given by (5.127). This is to be expected since Q and V
are not independent of each other; they are related through the capacitance of
the capacitor. Thus, the force is given by

(5.128)

We shall now illustrate, by means of an example, the application of the re-
sult we obtained for in the computation of energy converted from electrical
to mechanical, or vice versa, in the energy conversion process.

Example 5.12 Energy conversion in a parallel-plate capacitor with a
movable plate

Assume that in the parallel-plate capacitor of Fig. 5.29, a source of mechanical force F is
applied to the movable plate such that F is always maintained equal to By appro-
priately varying V and F, the system is made to traverse the closed cycle in the Q–x-
plane, shown in Fig. 5.30. We wish to calculate the energy converted per cycle and
determine whether the conversion is from electrical to mechanical or vice versa.

Since the system is made to traverse a closed cycle in the Q–x-plane, there is no
change in the electrical stored energy from the initial state to the final state. Hence, the
sum of the mechanical and electrical energy inputs to the system must be zero, or the
electrical energy output is equal to the mechanical energy input. The mechanical energy

-Fe.

Fe

Fe = -  
1
2

  

e0 AV2

x2  ax = -  
1
2

  

Q2

Ae0
 ax

Fe

 = -  
1
2

  

Q2

Ae0

 = -  
1
2

 e0 Aa Q

Ae0
b2

 = -  
1
2

 e0 AE2

 Fex = -  
1
2

  

e0 AV2

x2

Fex

 Fex = -  
1
2

  

Q2

Ae0

 =
1
2

  

Q2

Ae0

 =
d

dx
 c1

2
 e0 a Q

Ae0
b2

Ax d

Energy
conversion
computation
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d 2d0

Q0

2Q0

x

Q

B Q � 2Q0

Q � Q0

x � d

C

A

x
d

FIGURE 5.30

Closed cycle traversed by the capacitor
system of Fig. 5.29.

Electromagnet

input is given by

From A to B, x remains constant; hence, is zero. From (5.127),

Hence,

Thus, an amount of energy equal to is converted from mechanical to electri-
cal form.

We have thus far considered an electric-field electromechanical system, that
is, one in which conversion takes place between energy stored in an electric field
and mechanical energy. For an example of a magnetic-field electromechanical

5Q0
2d>6e0 A

 =
5
6

  

Q0
2d

e0 A

 =
2Q0

2d

e0 A
-

7Q0
2d

6e0 A

 Wmechanical input = L
2d

x = d
  
2Q2

0
Ae0

 dx + L
d

x = 2d
  

Q2
0x

2

2Ae0d2 dx

Fex = d -  

2Q0
2

Ae0
 from B to C

-  

Q0
2x2

2Ae0 d2  from C to A

1B
A Fex dx

 = -L
B

A
Fex dx - L

C

B
Fex dx - L

A

C
Fex dx

 Wmechanical input = CABCA
Fx dx = -CABCA

Fex dx
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5.7 Electromechanical Energy Conversion 343

system, that is, one in which conversion takes place between energy stored in a
magnetic field and mechanical energy, let us consider the arrangement shown in
Fig. 5.31, which is the cross section of an electromagnet. When current is passed
through the coil, the armature is pulled upward to close the air gap.The mechani-
cal force of electric origin can once again be found from energy balance.

In the case of the parallel-plate capacitor of Fig. 5.31, we found in two
ways: by keeping the voltage across the plates constant and by keeping the
charge on the plates constant. We found that the two approaches resulted in
equivalent expressions for the force. In the present case, we can find by keep-
ing the current I in the exciting coil to be a constant or by keeping the magnetic
flux in the core (and, hence, in the air gap) to be a constant. The two ap-
proaches should result in equivalent expressions for We shall, therefore, take
advantage of this to simplify the task of finding by keeping constant, since
then no voltage is induced in the coil and, hence, the electrical energy input
term in (5.123) can be set to zero. Also, we shall once again assume a lossless
system, apply to the armature an external force equal to and displace it by
an infinitesimal distance in the direction of the external force. Thus, we obtain

where is the magnetic stored energy in the system.
Neglecting fringing of flux across the air gap and noting that the displace-

ment of the armature changes only the magnetic energy stored in the air gap, we
write the following:

 Hgap =
c

Am0

Wm

 Fex = -  

dWm

dx

 - Fex dx = dWm

-Fe,

cFe

Fe.
c

Fe

Fe

Fe

N

Fe

I

c

FIGURE 5.31

Electromagnet.
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where A is the cross-sectional area of each gap, and the factor 2 takes into ac-
count two gaps. Proceeding further, we have

(5.129)

The expression for in terms of the current I in the coil that would result
from considerations of constant I may now be found by simply expressing in
(5.129) in terms of I. Thus, if we assume for simplicity that the permeability of
the magnetic core material is so high that

where and are the lengths of the core and air gap, respectively, then

(5.130)

Finally, the computation of energy converted from electrical to mechanical,
or vice versa, in a magnetic-field electromechanical system can be performed in
a manner similar to that illustrated in Example 5.12 for an electric-field system.

Fe L -  

m0 N2I2A

4x2   ax

 c L
m0 NIA

2x

 Bgap L
m0 NI

2x

 Hgap L
NI

2x

 NI L 2Hgap x

lgaplcore

Hcore lcore � Hgap lgap

c

Fe

Fe = -  

c2

Am0
  ax

 Fex = -  

c2

Am0

 =
c2

Am0

 
dWm

dx
=

d

dx
 [1Wm2gap]

 =
c2x

Am0

 = m0 a c
Am0
b2

Ax

 1Wm2gap = 2 c1
2

 m01Hgap22Ax d
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Summary 345

K5.7. Mechanical force of electric origin; Energy conversion; Parallel-plate capacitor
with movable plate; Electromagnet.

D5.14. For the parallel-plate capacitor of Fig. 5.29, assume and
and compute for each of the following cases: (a) the dielectric

between the plates is free space; (b) the dielectric between the plates is a mate-
rial of permittivity and (c) the lower half of the region between the plates is
a dielectric of permittivity whereas the upper half is free space.
Ans. (a) (b) (c)

SUMMARY

In this chapter, we first introduced the electric scalar and magnetic vector po-
tential functions, less and A, respectively. From Gauss’ law for the magnetic
field in differential form, we have

(5.131)

and then from Faraday’s law in differential form, we obtain

(5.132)

In (5.132), is the gradient of the scalar function We learned that the gra-
dient of a scalar is a vector having magnitude equal to the maximum rate of
increase of at that point, and its direction is the direction in which the maxi-
mum rate of increase occurs, that is, normal to the constant surface passing
through that point; that is,

In Cartesian coordinates, the expansion for the gradient is

Next, we derived two differential equations for the potential functions.
These are given by

(5.133a)

(5.133b) §2A - me 
02A
0t2 = -mJ

 §2£ - me 
02£
0t2 = -  

r

e

�£ =
0£
0x

 ax +
0£
0y

 ay +
0£
0z

 az

�£ =
0£
0n

 an

£
£

£
£.�£

E = - �£ -
0A
0t

B = � � A

£

-12,800e0 ax N.-20,000e0 ax, N;-5000e0 ax N;
4e0,

4e0;

FeA = 0.01 m2
V = 10 V, x = 1 cm,
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where is the Laplacian of the scalar and is the Laplacian of the vec-
tor A. In Cartesian coordinates,

and

In deriving (5.133a) and (5.133b), we made use of the Lorenz condition

which is consistent with the continuity equation.
We then considered the potential functions for the static field case, for

which (5.132) reduces to

(5.134)

whereas (5.131) remains unaltered. In (5.134), the symbol is replaced by the
symbol V, since the electric potential difference between two points in a static elec-
tric field has the same meaning as the voltage between the two points. We consid-
ered the potential field of a point charge and found that for the point charge

(5.135)

where R is the radial distance away from the point charge. The equipotential
surfaces for the point charge are thus spherical surfaces centered at the point
charge. We illustrated the application of the potential concept in the determina-
tion of electric field due to charge distributions by considering the examples of
an electric dipole and a line charge. We also discussed a procedure for comput-
er plotting of equipotentials. We then derived the expression for the magnetic
vector potential due to a current element. For a current element I dl, the mag-
netic vector potential is given by

(5.136)

where R is the distance from the current element.
Next, we introduced Poisson’s and Laplace’s equations. Poisson’s equation

given by

§2V = -  

r

e

A =
mI dl
4pR

V =
Q

4peR

£

E = - �£ = - �V

� # A = -me 
0£
0t

§2A = 1§2Ax2ax + 1§2Ay2ay + 1§2Az2az

§2£ =
02£
0x2 +

02£
0y2 +

02£
0z2

§2A£§2£
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is a differential equation governing the behavior of the electric scalar potential
in a region of charge, whereas Laplace’s equation

holds in a charge-free region. We discussed the application of Poisson’s and
Laplace’s equations for the solution of problems involving the variation of V
with one dimension only. In particular, we illustrated the solution of Poisson’s
equation by considering the example of a p-n junction diode and the solution of
Laplace’s equation by considering the determination of capacitance for several
cases. We then considered the determination of circuit parameters for infinitely
long, parallel conductor arrangements. Specifically, (1) we derived the expres-
sions for the capacitance per unit length the conductance per unit length

and the inductance per unit length for a coaxial cylindrical arrange-
ment; (2) we showed that the three circuit parameters are related through the
material parameters and as given by

and (3) we used these relationships for other geometries of the conductors. We
then extended our discussions to internal inductance and mutual inductance.

Next, we introduced the quasistatic extension of the static field as a means
of obtaining the low-frequency behavior of a physical structure.The quasistatic-
field approach involves starting with a time-varying field having the same spa-
tial characteristics as the static field and then obtaining field solutions
containing terms up to and including the first power in frequency by using
Maxwell’s curl equations for time-varying fields. We learned that the quasistatic
approximation leads to electric- and magnetic-field systems. We illustrated the
quasistatic-field analysis by considering two examples, one of them involving a
lossy medium.

We then discussed the magnetic circuit, which is essentially an arrange-
ment of closed paths for magnetic flux to flow around, just as current does in
electric circuits. The closed paths are provided by ferromagnetic cores, which,
because of their high permeability relative to that of the surrounding medium,
confine the flux almost entirely to within the core regions. We illustrated the
analysis of magnetic circuits by considering two examples, one of them includ-
ing an air gap in one of the legs.

Finally, we studied the topic of electromechanical energy conversion. By
considering examples of a parallel-plate capacitor with one movable plate, and
an electromagnet, we discussed the determination of mechanical forces of elec-
tric origin. We also illustrated energy conversion computation for the parallel-
plate capacitor example.

 lc = me

 
g

c
=
s

e

m,s, e,

1l21g2, 1c2,

§2V = 0
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REVIEW QUESTIONS

Q5.1. What are electromagnetic potentials? How do they arise?
Q5.2. What is the expansion for the gradient of a scalar in Cartesian coordinates?

When can a vector be expressed as the gradient of a scalar?
Q5.3. Discuss the physical interpretation for the gradient of a scalar function and the

application of the gradient concept for the determination of unit vector normal
to a surface.

Q5.4. How is the Laplacian of a scalar defined? What is its expansion in Cartesian co-
ordinates?

Q5.5. Compare and contrast the operations of curl of a vector, divergence of a vector,
gradient of a scalar, and Laplacian of a scalar.

Q5.6. How is the Laplacian of a vector defined? What is its expansion in Cartesian co-
ordinates?

Q5.7. Outline the derivation of the differential equations for the electromagnetic po-
tentials.

Q5.8. What is the relationship between the static electric field intensity and the elec-
tric scalar potential?

Q5.9. Distinguish between voltage, as applied to time-varying fields, and the potential
difference in a static electric field.

Q5.10. Describe the electric potential field of a point charge.
Q5.11. Discuss the determination of the electric field intensity due to a charge distribu-

tion by using the potential concept.
Q5.12. Discuss the procedure for the computer plotting of equipotentials due to two

(or more) point charges.
Q5.13. Compare the magnetic vector potential field due to a current element to the

electric scalar potential due to a point charge.
Q5.14. State Poisson’s equation. How is it derived?
Q5.15. Discuss the application of Poisson’s equation for the determination of potential

due to the space charge layer in a p-n junction semiconductor.
Q5.16. State Laplace’s equation. In what regions is it valid?
Q5.17. Discuss the application of Laplace’s equation for a conducting medium.
Q5.18. Outline the solution of Laplace’s equation in one dimension by considering the

variation of potential with x only.
Q5.19. Outline the steps in the derivation of the expression for the capacitance of an

arrangement of two conductors.
Q5.20. Discuss the relationship between the capacitance, conductance, and inductance

per unit length for an infinitely long, parallel conductor arrangement.
Q5.21. Outline the steps in the derivation of the expressions for the capacitance, con-

ductance, and inductance per unit length of an infinitely long parallel cylindri-
cal-wire arrangement.

Q5.22. Distinguish between internal inductance and external inductance. Discuss the
concept of flux linkage pertinent to the determination of the internal inductance.

Q5.23. Explain the concept of mutual inductance and discuss an example of its
computation.

Q5.24. What is meant by the quasistatic extension of the static field in a physical
structure?
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Problems 349

Q5.25. Outline the steps involved in the quasistatic extension of the static field in a par-
allel-plate structure short-circuited at one end.

Q5.26. Discuss the derivation of the condition for the validity of the quasistatic ap-
proximation for the parallel-plate structure short-circuited at one end.

Q5.27. Discuss the general condition for the quasistatic approximation of a physical
structure.

Q5.28. Discuss the classification of physical structures as electric- and magnetic-field
systems.

Q5.29. Discuss the low-frequency behavior of a parallel-plate structure with a lossy
medium between the plates.

Q5.30. Discuss the quasistatic behavior of the structure of Fig. 5.20 for 
Q5.31. What is a magnetic circuit? Why is the magnetic flux in a magnetic circuit con-

fined almost entirely to the core?
Q5.32. Define the reluctance of a magnetic circuit. What is the analogous electric cir-

cuit quantity? Why is the reluctance for a given set of dimensions of a magnetic
circuit not a constant?

Q5.33. Discuss the complete analogy between a magnetic circuit and an electric circuit
using the example of the toroidal magnetic core versus the toroidal conductor.

Q5.34. How is the fringing of the magnetic flux in an air gap in a magnetic circuit taken
into account?

Q5.35. Discuss by means of an example the analysis of a magnetic circuit with three
legs and its equivalent-circuit representation.

Q5.36. Discuss by means of an example the phenomenon of electromechanical energy
conversion.

Q5.37. Outline the computation of mechanical force of electric origin from considera-
tions of energy balance associated with an electromechanical system.

Q5.38. Discuss by means of an example the computation of energy converted from
electrical to mechanical, or vice versa, in an electromechanical system.

PROBLEMS

Section 5.1

P5.1. Two identities in vector calculus. Show by expansion in the Cartesian coordi-
nate system that: (a) for any A and (b) for any 

P5.2. Application of identities in vector calculus. Determine which of the following
vectors can be expressed as the curl of another vector and which of them can be
expressed as the gradient of a scalar:

(a)
(b) in cylindrical coordinates
(c) in spherical coordinates.

P5.3. Finding a scalar function for which the gradient is a given vector function. Find
the scalar functions whose gradients are given by the following vector functions:

(a)
(b) in cylindrical coordinates
(c) in spherical coordinates11>r3212 cos u ar + sin u au2

1cos f ar - sin f af2
e-y1cos x ax - sin x ay2

11>r2 sin u af

11>r221cos f ar + sin f af2
xyax + yzay + zxaz

£.� � �£ = 0� # � � A = 0

s L 0.
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P5.4. Application of the gradient concept. By using the gradient concept, show that
the unit vector along the line of intersection of two planes

which are not parallel is given by

Then find the unit vector along the intersection of the planes 
and 

P5.5. Application of the gradient concept. By using the gradient concept, show that
the equation of the plane passing through the point and normal to
the vector is given by

Then find the equation of the plane tangential to the surface at the
point 

P5.6. Laplacian of a vector in cylindrical coordinates. Show that the Laplacian of a
vector in cylindrical coordinates is given by

Section 5.2

P5.7. Equipotential surfaces and direction lines of electric field for a given electric po-
tential. For the static electric potential function discuss the equipo-
tential surfaces and the direction lines of the electric field with the aid of sketches.

P5.8. Electric potential and field for a rectangular quadrupole. An arrangement of
point charges known as the rectangular quadrupole consists of the point
charges and at the points (0, 0, 0), and

respectively. Obtain the approximate expression for the electric po-
tential and hence for the electric field intensity due to the rectangular quadru-
pole at distances r from the origin large compared to and 

P5.9. Electric potential for a finitely long line charge. For a finitely long line charge
of uniform density situated along the line between and (0, 0,
a), obtain the expression for the electric potential at an arbitrary point 
in cylindrical coordinates. Further show that the equipotential surfaces are el-
lipsoids with the ends of the line as their focii.

P5.10. Electric potential for two parallel infinitely long line charges. Show that for two
infinitely long line charges parallel to the z-axis, having uniform densities

and and passing through and (1,
0, 0), respectively, the potential is given by where and are dis-
tances to the point from the line charges 1 and 2, respectively.

P5.11. Electric potential at the center of a rectangular uniformly distributed surface
charge. Consider the surface charge distributed uniformly with density rS0 C>m2

r2r1V = ln 1r2>r1
k2,

0, 021-1,rL2 = -2pe0 C>mrL1 = 2kpe0 C>m

1r, f, z2
10, 0, -a2rL0 C>m

¢z.¢x

10, 0, ¢z2,
1¢x, 0, ¢z2,1¢x, 0, 02,-Q,Q, -Q, Q,

V1x, y2 = xy,

§2A = a§2Ar -
Ar

r2 -
2

r2  

0Af

0f
bar + a§2Af -

Af

r2 +
2

r2  

0Ar

0f
baf + 1§2Az2az

112, 14, 82.
xyz = 1

a1x - x02 + b1y - y02 + c1z - z02 = 0

1aax + bay + caz2
1x0, y0, z02

y = x.
x + y + z = 3

�
1a2 b3 - a3 b22ax + 1a3 b1 - a1 b32ay + 1a1 b2 - a2 b12az41a2 b3 - a3 b222 + 1a3 b1 - a1 b322 + 1a1 b2 - a2 b122

 b1 x + b2 y + b3 z = c2

 a1 x + a2 y + a3 z = c1
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on a rectangular-shaped surface of sides a and b. Show that the electric potential
at the center of the rectangle is

Further show that for a square-shaped surface of sides a, the potential at the
center is 

P5.12. Potential difference in the field of an infinitely long strip of surface charge.
Consider surface charge of uniform density distributed on an infinite-
ly long strip lying between the straight lines and 
Noting that the electric potential is independent of z, show that the potential
difference between two points in the first quadrant of the xy-plane 
and is given by

P5.13. Magnetic vector potential and field for a magnetic dipole. Consider a circular
current loop of radius a lying in the xy-plane with its center at the origin and
with current I flowing in the sense of increasing so that the magnetic dipole
moment m is Show that far from the dipole such that the mag-
netic vector potential is given by

and hence the magnetic flux density is given by

P5.14. An identity in vector calculus. By expansion in Cartesian coordinates, show that

Section 5.3

P5.15. Solution of Poisson’s equation for a space-charge distribution in Cartesian co-
ordinates. A space-charge density distribution is given by

r = e
-r0 a1 +

x

d
b for -d 6 x 6 0

r0 a1 -
x

d
b for 0 6 x 6 d

0 otherwise

A � �£ � £� � A � � � 1£A2

B =
mm

4pr3 12 cos u ar + sin u au2

A L
mm � ar

4pr2

r � a,Ipa2 az.
f,

 - 2y1 a tan-1
  
a - x1

y1
+ tan-1

  
a + x1

y1
b f

 + 2y2 a tan-1
  
a - x2

y2
+ tan-1

  
a + x2

y2
b

 - 1a - x12 ln [1a - x122 + y1
2] - 1a + x12 ln [1a + x122 + y1

2]

 
rS0

4pe0
 e 1a - x22 ln [1a - x222 + y2

2] + 1a + x22 ln [1a + x222 + y2
2]

1x2, y2, 02
1x1, y1, 02

x = a, y = 0.x = -a, y = 0
rS0 C>m2

1rS0a>pe02 ln 11 + 122.

rS0

2pe0
 aa ln 

4a2 + b2 + b

a
+ b ln 

4a2 + b2 + a

b
b
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352 Chapter 5 Electromagnetic Potentials and Topics for Circuits and Systems

where is a constant. Obtain the solution for the potential V versus x for all x.
Assume for 

P5.16. Solution of Poisson’s equation for a space-charge distribution in Cartesian co-
ordinates. A space-charge density distribution is given by

where is a constant. Find and sketch the potential V versus x for all x.Assume
for 

P5.17. Solution of Poisson’s equation for a space-charge distribution in spherical coor-
dinates. A space-charge density distribution is given in spherical coordinates by

where is a constant. Find and sketch the potential V versus r for all r.
P5.18. Solution of Laplace’s equation for a parallel-plate capacitor with two perfect di-

electrics. The region between the two plates in Fig. 5.10 is filled with two per-
fect dielectric media having permittivities for (region 1) and for

(region 2). (a) Find the solutions for the potentials in the two regions
and (b) Find the capacitance per unit area of the plates.

P5.19. Solution of Laplace’s equation for a parallel-plate capacitor with imperfect di-
electrics. Assume that the two media in Problem P5.18 are imperfect dielectrics
having conductivities and for and respectively.
(a) What are the boundary conditions to be satisfied at (b) Find the so-
lutions for the potentials in the two regions. (c) Find the potential at 

P5.20. Parallel-plate capacitor with a dielectric of nonuniform permittivity. Assume
that the region between the two plates of Fig. 5.10 is filled with a perfect dielec-
tric of nonuniform permittivity

Find the solution for the potential between the plates and obtain the expression
for the capacitance per unit area of the plates.

P5.21. Coaxial cylindrical capacitor with a dielectric of nonuniform permittivity. As-
sume that the region between the coaxial cylindrical conductors of Fig. 5.11(a) is
filled with a dielectric of nonuniform permittivity Obtain the solution
for the potential between the conductors and the expression for the capacitance
per unit length of the cylinders.

Section 5.4

P5.22. Capacitance per unit length of parallel wire line with large spacing between the
wires. For the parallel-wire arrangement of Fig. 5.13(c), show that for 
the capacitance per unit length of the line is Find the value of d/a
for which the exact value of the capacitance per unit length is 1.05 times the
value given by the approximate expression for d � a.

pe>ln 12d>a2.
d � a,

e = e0 b>r.

e =
e0

1 - 1x>2d2

x = t.
x = t?

t 6 x 6 d,0 6 x 6 ts2s1

t 6 x 6 d.0 6 x 6 t
t 6 x 6 d

e20 6 x 6 te1

r0

r = er0 for a 6 r 6 2a

0 otherwise

x = 0.V = 0
r0

r = er0 sin x for -p 6 x 6 p
0 otherwise

x = 0.V = 0
r0
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P5.23. Direction lines of electric field for a parallel-wire line. For the line-charge pair
of Fig. 5.15, show that the direction lines of the electric field are arcs of circles
emanating from the positively charged line and terminating on the negatively
charged line.

P5.24. Inductance of a toroid with magnetic core. A filamentary wire carrying current
I is closely wound around a toroidal magnetic core of rectangular cross section,
as shown in Fig. 5.32. The mean radius of the toroidal core is a and the number
of turns per unit length along the mean circumference of the toroid is N. Find
the inductance of the toroid.

I

c

b

a

FIGURE 5.32

For Problem P5.24.

P5.25. Inductance per unit length of an infinitely long, uniformly wound solenoid. An
infinitely long, uniformly wound solenoid of radius a and having N turns per
unit length carries a current I. Find the inductance per unit length of the sole-
noid. Assume air core 

P5.26. Internal inductance per unit length of a wire with nonuniform current distribu-
tion. A current I flows with nonuniform volume density given by

along an infinitely long cylindrical conductor of radius a having the z-axis as its
axis. The current returns with uniform surface density in the opposite direction
along the surface of an infinitely long, perfectly conducting cylinder of radius

and coaxial with the inner conductor. Find the internal inductance per
unit length of the inner conductor.

P5.27. Magnetic energy stored in an infinitely long cylindrical conductor of current.
Consider the infinitely long solid cylindrical conductor of Fig. 5.16. Obtain the
expression for the energy stored per unit length in the magnetic field internal to
the current distribution and show that it is equal to where I is the total
current.

P5.28. Mutual inductance per unit length of two coaxial solenoids. An infinitely long,
uniformly wound solenoid of radius a and having turns per unit length is
coaxial with another infinitely long, uniformly wound solenoid of radius 
and having turns per unit length. Find the mutual inductance per unit length
of the solenoids. Assume air core 1m = m02.

N2

b 17  a2
N1

1
2 li I2,

b 17  a2

J = J0 a r

a
b2

az

1m = m02.
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Section 5.5

P5.29. Input behavior of an inductor at low and high frequencies. For the structure of
Fig. 5.19, assume that and and free space for
the medium between the plates. (a) For a current source 
find the voltage developed across the source. (b) Repeat part (a) for 

P5.30. Frequency behavior of a capacitor beyond the quasistatic approximation. For
the structure of Fig. 5.20 with show that the input behavior for frequen-
cies slightly beyond those for which the quasistatic approximation is valid is
equivalent to the series combination of and where 
is the inductance of the structure obtained from static-field considerations with
the two plates joined by another conductor at as in Fig. 5.19.

P5.31. Quasistatic input behavior of a resistor for three different cases. Find the con-
ditions under which the quasistatic input behavior of the structure of Fig. 5.20 is
essentially equivalent to that of: (a) a single resistor; (b) a capacitor 
in parallel with a resistor; and (c) a resistor in series with an inductor.

P5.32. Frequency behavior of an inductor with material having nonzero conductivity.
For the structure of Fig. 5.19, assume that the medium has nonzero conductivity 
(a) Show that the input behavior correct to the first power in is the same as if 
were zero. (b) Investigate the input behavior correct to the second power in and
obtain the equivalent circuit.

P5.33. Frequency behavior of an inductor beyond the quasistatic approximation. For
the structure of Fig. 5.19, obtain the equivalent circuit for the input behavior for
frequencies for which the fields up to and including the fifth-order terms in 
are significant.

Section 5.6

P5.34. Calculations involving a toroidal magnetic core. A toroidal magnetic core has
the dimensions and (a) If it is found that for NI equal to
200 A-t, a magnetic flux equal to is established in the core, find
the permeability of the core material. (b) If now an air gap of width 

is introduced, find the new value of NI required to maintain the flux of
neglecting fringing of flux in the air gap.

P5.35. Calculations involving a magnetic circuit with three legs and an air gap. For the
magnetic circuit of Fig. 5.27, assume the air gap to be in the center leg. Find the
NI required to establish a magnetic flux of in the air gap.

P5.36. Calculations involving a magnetic circuit with three legs and two air gaps. For
the magnetic circuit of Fig. 5.27, assume that there is an air gap of length 0.2 mm
in the left leg in addition to that in the right leg. Find the NI required to estab-
lish a magnetic flux of in the air gap in the right leg.

P5.37. Magnetic circuit with a center leg and two symmetrical side legs. For the mag-
netic circuit of Fig. 5.27, assume that there is no air gap. Find the magnetic flux
established in the center leg for an applied NI equal to 180 A-t.

P5.38. Magnetic circuit with a center leg and two asymmetrical side legs. For the mag-
netic circuit of Fig. 5.27, assume that there is no air gap and that with
all other dimensions remaining as specified in Example 5.1. Find the magnetic flux
density in the center leg for an applied NI equal to 150 A-t.

A1 = 5 cm2,

4 * 10-4 Wb

9 * 10-4 Wb

8 * 10-4 Wb,
0.1 mm

lg =m

8 * 10-4 Wbc

l = 20 cm.A = 5 cm2

v

v

sv

s.

C1=  ewl>d2

z = 0,

L = m dl>w1
3 L,C1=  ewl>d2

s = 0,

1 cos 109 pt A.
I1t2 =

I1t2 = 1 cos 106 pt A,
w = 5 cml = 10 cm, d = 5 mm,
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Section 5.7

P5.39. Finding the mechanical force of electric origin for a parallel-plate capacitor sys-
tem. In Fig. 5.33, a dielectric slab of permittivity sliding between the plates of
a parallel-plate capacitor experiences a mechanical force of electrical origin.
Assuming width for the plates normal to the page and neglecting fringing of
fields at the edges of the plates, find the expression for Fe.

w
Fe

e

L

x

V � 0

V � V0

Fe

a

b

e e0

FIGURE 5.34

For Problem P5.40.

P5.40. Finding the mechanical force of electric origin for a cylindrical capacitor sys-
tem. In Fig. 5.34, a dielectric material of permittivity sliding freely in a cylin-
drical capacitor experiences a mechanical force of electrical origin in the
axial direction. Show that

Fe =
V0

2p1e - e02
ln 1b>a2   ax

Fe

e

e Fe

L

V

x

d

FIGURE 5.33

For Problem P5.39.

P5.41. Energy conversion in a parallel-plate capacitor with a movable plate. Assume
that in Example 5.12, the parallel-plate capacitor system of Fig. 5.29 is made
to traverse the closed cycle in the V-x plane shown in Fig. 5.35 instead of the
closed cycle in the Q-x plane shown in Fig. 5.30. Calculate the energy con-
verted per cycle and determine whether the conversion is from mechanical to
electrical or vice versa.
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(b)

(a)

b/2 (b � l)/20

D C

A B
I0

2I0

x

x

I

b

l

Fe

Magnetic core

m 

 m0

m0

FIGURE 5.36

For Problem P5.42.

P5.42. Energy conversion in a solenoidal coil with sliding magnetic core. Figure 5.36(a)
shows a magnetic-field electromechanical device in which the magnetic core is
free to slide inside a long air-core solenoidal coil. The solenoid has length l, ra-
dius a, and number of turns per meter N, and carries a current I. The magnetic
core has length radius a, and permeability and extends a distance
x into the solenoid. (a) Neglect fringing of the field and find the mechanical force

of electric origin on the core. Plot versus x. (b) Assume that the device isFexFe

m � m0,b 6 l,

d 2d

V0 A
C

B

V � V0

x � d
V � 3V0 � V0(x /d)

2V0

0
x

V

FIGURE 5.35

For Problem P5.41.
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made to traverse the closed path in the I-x plane, as shown in Fig. 5.36(b). Find
the energy converted per cycle and determine whether it is from mechanical to
electrical or vice versa.

REVIEW PROBLEMS

R5.1. Finding the angle between two planes by using the gradient concept. By using
the gradient concept, show that the angle between two planes

is given by

Then find the angle between the planes and 
R5.2. Electric potential due to a circular charged disk of uniform charge density.

Consider a circular disk of radius a lying in the xy-plane with its center at the
origin and carrying charge of uniform density Obtain the expression
for the potential V due to the charged disk at a point (0, 0, z) on the z-axis. Ver-
ify your answer by considering the limiting cases of V(z) for and 
for 

R5.3. Magnetic vector potential and field for an infinitely long straight wire of cur-
rent. Obtain the magnetic vector potential at an arbitrary point due to an infi-
nitely long straight filamentary wire lying along the z-axis and carrying a
current I in the Then evaluate B by performing the curl operation
on the magnetic vector potential.

R5.4. Spherical capacitor with a dielectric of nonuniform permittivity. Assume that
the region between the concentric spherical conductors of Fig. 5.11(b) is filled with
a dielectric of nonuniform permittivity Obtain the solution for
the potential between the conductors and the expression for the capacitance.

R5.5. Finding the internal inductance per unit length of a cylindrical conductor
arrangement. Current I flows with uniform density along an infinitely long, hol-
low cylindrical conductor of inner radius a and outer radius b and returns with
uniform surface density in the opposite direction along the surface of an infinite-
ly long, perfectly conducting cylinder of radius and coaxial with the hol-
low conductor. Find the internal inductance per unit length of the arrangement.

R5.6. Quasistatic input behavior of a short-circuited coaxial cable. An air-dielectric
coaxial cable of inner radius outer radius and length

is short-circuited at one end. Obtain the equivalent circuit for the input
behavior of the structure for frequencies slightly beyond those for which the
quasistatic approximation is valid. Compute the resonant frequency of the equiv-
alent circuit and comment on its value compared to those for which the circuit is
valid.

R5.7. Calculations involving a magnetic circuit with three legs. For the magnetic cir-
cuit shown in Fig. 5.37, the dimensions of the legs are 

and The permeability of the core materiall2 = 10 cm.3 cm2, l1 = l3 = 30 cm,
A2 =A1 = A3 = 2 cm2,

l = 1 m
b = 2 cm,a = 1 cm,

c 17  b2

e = e0 b2>r2.

+z-direction.

ƒz ƒ � a.
Ez1z2ƒz ƒ � a

rS0 C>m2.

z = 0.x + y + z = 1

a = cos-1
  

a1 b1 + a2 b2 + a3 b341a1
2 + a2

2 + a3
221b1

2 + b2
2 + b3

22

 b1 x + b2 y + b3 z = c2

 a1 x + a2 y + a3 z = c1

a
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can be assumed to be (a) Draw the equivalent electric circuit. (b) For
and find the magnetic flux in each leg.

R5.8. For analyzing an electromechanical system set in motion. In the system shown
in Fig. 5.38, the mass M is set in motion in the following manner: (1) the mass is
brought to rest at the equilibrium position with no charge on the capac-
itor plates; (2) the mass is constrained to that position and the capacitor plates
are charged to as shown; and (3) the mass is released, thereby permitting
frictionless motion. Obtain the differential equation for the motion of M and
find the solution.

�Q

x = x0

N2 I2 = 100 A-t,N1 I1 = 200 A-t
1000m0.
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M
e0

x

�Q Q

K

Capacitor
with plates
area A

FIGURE 5.38

For Problem R5.8.

I1 I2

N1 N2

Leg 1 Leg 3

Leg 2

FIGURE 5.37

For Problem R5.7.
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C H A P T E R  6

Transmission-Line Essentials 
for Digital Electronics

In Chapter 3 we alluded to the fact that lumped circuit theory is based on low-
frequency approximations resulting from the neglect of certain terms in one or
both of Maxwell’s curl equations. We further pointed out that electromagnetic
wave propagation phenomena and transmission-line (distributed circuit) theory
are based on the simultaneous application of the two laws, with all the terms in-
cluded. We then studied wave propagation in Chapters 3 and 4. In Chapter 5 we
introduced the (lumped) circuit parameters for infinitely long, parallel perfect
conductor arrangements, and also extended the discussion to electric and mag-
netic field systems, which are low-frequency approximations of physical struc-
tures. In this chapter, we begin our study of transmission line theory. Specifically,
we focus on time-domain analysis, an understanding of which is particularly es-
sential for digital electronic systems, while being of general importance.

We introduce the transmission line by considering a uniform plane wave
and placing two parallel plane, perfect, conductors such that the fields remain
unchanged by satisfying the boundary conditions on the perfect conductor sur-
faces. The wave is then guided between and parallel to the conductors, thereby
leading to the parallel-plate line.We shall learn to represent a line by the distrib-
uted parameter equivalent circuit and discuss wave propagation along the line in
terms of voltage and current, as well as the computation of line parameters. We
devote the remainder of the chapter to time-domain analysis using a progres-
sive treatment, beginning with a line terminated by a resistive load and leading
to interconnections between logic gates, and finally culminating in crosstalk on
transmission lines.

6.1 TRANSMISSION LINE

In Section 5.4, we considered a physical arrangement of two parallel, perfect
conductors and discussed the circuit parameters, capacitance, conductance, and

359

Parallel-plate
line
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360 Chapter 6 Transmission-Line Essentials for Digital Electronics

inductance per unit length of the structure. In the general case of time-varying
fields, the situation corresponds to the structure characterized by the properties
of all three of the circuit parameters, continuously and overlappingly along it.
The arrangement is then called a transmission line. To introduce the transmis-
sion-line concept, we recall that in Section 4.5, we learned that the tangential
component of the electric field intensity and the normal component of the mag-
netic field intensity are zero on a perfect conductor surface. Let us now consid-
er the uniform plane electromagnetic wave propagating in the z-direction and
having an x-component only of the electric field and a y-component only of the
magnetic field, that is,

and place perfectly conducting sheets in two planes and as shown
in Fig. 6.1. Since the electric field is completely normal and the magnetic field is
completely tangential to the sheets, the two boundary conditions just referred to
are satisfied, and, hence, the wave will simply propagate, as though the sheets
were not present, being guided by the sheets. We then have a simple case of
transmission line, namely, the parallel-plate transmission line. We shall assume
the medium between the plates to be a perfect dielectric so that the waves prop-
agate without attenuation; hence, the line is lossless.

According to the remaining two boundary conditions, there must be charges
and currents on the conductors.The charge densities on the two plates are

(6.1a)

(6.1b) [rS]x = d = [an
# D]x = d = -ax

# eEx ax = -eEx

 [rS]x = 0 = [an
# D]x = 0 = ax

# eEx ax = eEx

x = d,x = 0

 H = Hy1z, t2ay

 E = Ex1z, t2ax

x � 0

x � d

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

x

y z

JS � Hyaz

H

JS � �Hyaz

E rS � �eEx

rS � eEx

FIGURE 6.1

Uniform plane electromagnetic wave propagating between two perfectly conducting sheets,
supported by charges and current on the sheets.
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6.1 Transmission Line 361

where is the permittivity of the medium between the two plates. The current
densities on the two plates are

(6.2a)

(6.2b)

In (6.1a)–(6.2b), it is understood that the charge and current densities are
functions of z and t, as are and Thus, the wave propagation along the
transmission line is supported by charges and currents on the plates, varying
with time and distance along the line, as shown in Fig. 6.1.

Let us now consider finitely sized plates having width w in the y-direction,
as shown in Fig. 6.2(a), and neglect fringing of the fields at the edges or assume
that the structure is part of a much larger-sized configuration. By considering a
constant-z plane, that is, a plane transverse to the direction of propagation of the
wave, as shown in Fig. 6.2(b), we can find the voltage between the two conduc-
tors in terms of the line integral of the electric field intensity evaluated along any
path in that plane between the two conductors. Since the electric field is directed
in the x-direction and since it is uniform in that plane, this voltage is given by

(6.3)V1z, t2 = L
d

x = 0
Ex1z, t2 dx = Ex1z, t2L

d

x = 0
 dx = dEx1z, t2

Hy.Ex

 [JS]x = d = [an � H]x = d = -ax � Hy ay = -Hy az

 [JS]x = 0 = [an � H]x = 0 = ax � Hy ay = Hy az

e

x

yz

x

y

z

x � 0

x � 0

x � d

x � d

E

w

JS

JS

H

d

w

Transverse Plane
(a)

(b)

FIGURE 6.2

(a) Parallel-plate transmission line. (b) Transverse plane of the parallel-plate
transmission line.
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362 Chapter 6 Transmission-Line Essentials for Digital Electronics

Thus, each transverse plane is characterized by a voltage between the two con-
ductors, which is related simply to the electric field, as given by (6.3). Each
transverse plane is also characterized by a current I flowing in the positive z-
direction on the upper conductor and in the negative z-direction on the lower
conductor. From Fig. 6.2(b), we can see that this current is given by

(6.4)

since is uniform in the cross-sectional plane. Thus, the current crossing a
given transverse plane is related simply to the magnetic field in that plane, as
given by (6.4).

Proceeding further, we can find the power flow down the line by evaluat-
ing the surface integral of the Pointing vector over a given transverse plane.
Thus,

(6.5)

which is the familiar relationship employed in circuit theory.
We now recall from Section 4.4 that and satisfy the two differential

equations

(6.6a)

(6.6b)

where we have set in view of the perfect dielectric medium. From (6.3)
and (6.4), however, we have

(6.7a)

(6.7b) Hy =
I
w

 Ex =
V

d

s = 0

 
0Hy

0z
= -sEx - e 

0Ex

0t
= -e 

0Ex

0t

 
0Ex

0z
= -  

0By

0t
= -m 

0Hy

0t

HyEx

 = V1z, t2I1z, t2
 = L

d

x = 0L
w

y = 0
 

V1z, t2
d

  

I1z, t2
w

 dx dy

 = L
d

x = 0L
w

y = 0
Ex1z, t2Hy1z, t2az

# dxdy az

 P1z, t2 = Ltransverse
plane

1E � H2 # dS

Hy

 = wHy1z, t2
 I1z, t2 = L

w

y = 0
JS1z, t2 dy = L

w

y = 0
Hy1z, t2 dy = Hy1z, t2L

w

y = 0
 dy

Transmission
-line equa-
tions
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6.1 Transmission Line 363

Substituting for and in (6.6a) and (6.6b) from (6.7a) and (6.7b), respec-
tively, we now obtain two differential equations for voltage and current along
the line as

or

(6.8a)

(6.8b)

These equations are known as the transmission-line equations. They character-
ize the wave propagation along the line in terms of line voltage and line current
instead of in terms of the fields.

We now denote two quantities familiarly known as the circuit parameters,
the inductance and the capacitance per unit length of the transmission line in
the z-direction by the symbols and respectively. We observe from Section
5.4 that the inductance per unit length, having the units henrys per meter (H/m),
is the ratio of the magnetic flux per unit length at any value of z to the line cur-
rent at that value of z. Noting from Fig. 6.2 that the cross-sectional area normal
to the magnetic field lines and per unit length in the z-direction is (d)(1), or d,
we find the magnetic flux per unit length to be or Since the line cur-
rent is we then have

(6.9)

We also observe that the capacitance per unit length, having the units farads per
meter (F/m), is the ratio of the magnitude of the charge per unit length on either
plate at any value of z to the line voltage at that value of z. Noting from Fig 6.2
that the cross-sectional area normal to the electric field lines and per unit length
in the z-direction is (1), or , we find the charge per unit length to be 
or Since the line voltage is we then have

(6.10)c =
eEx w

Ex d
=
ew

d

Ex d,eEx w.
rS w,w(w)
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mHy d

Hy w
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md
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364 Chapter 6 Transmission-Line Essentials for Digital Electronics

We note that and are purely dependent on the dimensions of the line and
are independent of and We further note that

(6.11)

so that only one of the two parameters and is independent and the other
can be obtained from the knowledge of and The results given by (6.9) and
(6.10) are the same as those listed in Table 5.2 for the parallel-plane conductor
arrangement, whereas (6.11) is the same as given by (5.73).

Replacing now the quantities in parentheses in (6.8a) and (6.8b) by and
respectively, we obtain the transmission-line equations in terms of these pa-

rameters as

(6.12a)

(6.12b)

These equations permit us to discuss wave propagation along the line in terms
of circuit quantities instead of in terms of field quantities. It should, however,
not be forgotten that the actual phenomenon is one of electromagnetic waves
guided by the conductors of the line.

It is customary to represent a transmission line by means of its circuit
equivalent, derived from the transmission-line equations (6.12a) and (6.12b).To
do this, let us consider a section of infinitesimal length along the line be-
tween z and From (6.12a), we then have

or, for 

(6.13a)

This equation can be represented by the circuit equivalent shown in Fig. 6.3(a),
since it satisfies Kirchhoff’s voltage law written around the loop abcda. Similar-
ly, from (6.12b), we have

lim
¢z:0

 

I1z + ¢z, t2 - I1z, t2
¢z

= lim
¢z:0

 c -c 

0V1z + ¢z, t2
0t

d
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0t

¢z : 0,
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FIGURE 6.3

Development of circuit equivalent for an infinitesimal length of a transmission line.¢z

or, for 

(6.13b)

This equation can be represented by the circuit equivalent shown in Fig. 6.3(b),
since it satisfies Kirchhoff’s current law written for node c. Combining the two
equations, we then obtain the equivalent circuit shown in Fig. 6.3(c) for a section

of the line. It then follows that the circuit representation for a portion of
length l of the line consists of an infinite number of such sections in cascade, as
shown in Fig. 6.4. Such a circuit is known as a distributed circuit as opposed to
the lumped circuits that are familiar in circuit theory. The distributed circuit no-
tion arises from the fact that the inductance and capacitance are distributed uni-
formly and overlappingly along the line.

A more physical interpretation of the distributed-circuit concept follows
from energy considerations. We know that the uniform plane wave propagation
between the conductors of the line is characterized by energy storage in the

¢z

I1z + ¢z, t2 - I1z, t2 = -c ¢z  

0V1z + ¢z, t2
0t

¢z : 0,

�

 �z  �z  �z

�z �z �z

FIGURE 6.4

Distributed circuit representation of a transmission line.
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366 Chapter 6 Transmission-Line Essentials for Digital Electronics

TEM waves

electric and magnetic fields. If we consider a section of the line, the energy
stored in the electric field in this section is given by

(6.14a)

The energy stored in the magnetic field in that section is given by

(6.14b)

Thus, we note that and are elements associated with energy storage in the
magnetic field and energy storage in the electric field, respectively, for a given
infinitesimal section of the line. Since these phenomena occur continuously and
since they overlap, the inductance and capacitance must be distributed uniform-
ly and overlappingly along the line.

Thus far, we have introduced the transmission-line equations and the dis-
tributed-circuit concept by considering the parallel-plate line in which the
waves are uniform plane waves. In the general case of a line having conductors
with arbitrary cross sections, the fields consist of both x- and y-components and
are dependent on x- and y-coordinates in addition to the z-coordinate.Thus, the
fields between the conductors are given by

These fields are no longer uniform in x and y but are directed entirely trans-
verse to the direction of propagation, that is, the z-axis, which is the axis of the
transmission line. Hence, they are known as transverse electromagnetic waves, or
TEM waves.The uniform plane waves are simply a special case of the transverse
electromagnetic waves. The transmission-line equations (6.12a) and (6.12b) and
the distributed equivalent circuit of Fig. 6.4 hold for all transmission lines made
of perfect conductors and perfect dielectric, that is, for all lossless transmission
lines.The quantities that differ from one line to another are the line parameters 
and which depend on the geometry of the line. Since there is no z-component
of H, the electric-field distribution in any given transverse plane at any given
instant of time is the same as the static electric-field distribution resulting
from the application of a potential difference between the conductors equal
to the line voltage in that plane at that instant of time. Similarly, since there is
no z-component of E, the magnetic-field distribution in any given transverse

c,
l

 H = Hx1x, y, z, t2ax + Hy1x, y, z, t2ay
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6.1 Transmission Line 367

General
solution

plane at any given instant of time is the same as the static magnetic-field distri-
bution resulting from current flow on the conductors equal to the line current in
that plane at that instant of time. Thus, the values of and are the same as
those obtainable from static field considerations.

Before we consider several common types of lines, we shall show that the
relation (6.11) is valid in general by obtaining the general solution for the
transmission-line equations (6.12a) and (6.12b).To do this, we note their analogy
with the field equations (3.72a) and (3.72b) in Section 3.4, as follows:

The solutions to (6.12a) and (6.12b) can therefore be written by letting

in the solutions (3.78) and (3.79) to the field equations. Thus, we obtain

(6.15a)

(6.15b)

These solutions represent voltage and current traveling waves propagating
along the and with velocity

(6.16)

in view of the arguments for the functions f and g. We, however,
know that the velocity of propagation in terms of the dielectric parameters is
given by

(6.17)vp =
12me

1t < z2lc2
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12lc
-z-directions+z-
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368 Chapter 6 Transmission-Line Essentials for Digital Electronics

Therefore, it follows that

(6.18)

We now define the characteristic impedance of the line to be

(6.19)

so that (6.15a) and (6.15b) become

(6.20a)

(6.20b)

where we have also substituted for From (6.20a) and (6.20b), it can
be seen that the characteristic impedance is the ratio of the voltage to current in
the wave or the negative of the same ratio for the wave. It is analogous to
the intrinsic impedance of the dielectric medium but not necessarily equal to it.
For example, for the parallel-plate line,

(6.21)

is not equal to unless is equal to 1. In fact for equal to 1, (6.21) is
strictly not valid because fringing of the fields cannot be neglected. Note also
that the characteristic impedance of a lossless line is a purely real quantity. We
shall find in Section 7.6 that for a lossy line, the characteristic impedance is com-
plex just as the intrinsic impedance of a lossy medium is complex.

Equations (6.20a) and (6.20b) are the general solutions for the voltage
and current along a lossless line in terms of and the parameters that char-
acterize the propagation along the line. Whereas is dependent on the dielec-
tric as given by (6.17), is dependent on the dielectric as well as the geometry
associated with the line, in view of (6.19). Combining (6.18) and (6.19), we note
that

(6.22)

Thus, the determination of for a given line involving a given homogeneous
dielectric medium requires simply the determination of of the line and
then the use of (6.22). Since the dielectrics of common transmission lines are

c
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Ground Plane

(a)

(b)

w Strip

Substrate, erd

FIGURE 6.5

(a) Transverse cross-sectional view of a
microstrip line. (b) Approximate electric-field
distribution in the transverse plane.

generally nonmagnetic, we can further express the propagation parameters
in the manner

(6.23)

(6.24)

where is the relative permittivity of the dielectric, and is the ve-
locity of light in free space.

If the cross section of a transmission line involves more than one dielec-
tric, the situation corresponds to inhomogeneity. An example of this type of
line is the microstrip line, used extensively in microwave integrated circuitry
and digital systems. The basic microstrip line consists of a high-permittivity
substrate material with a conductor strip applied to one side and a conducting
ground plane applied to the other side, as shown by the cross-sectional view in
Fig. 6.5(a). The approximate electric field distribution is shown in Fig. 6.5(b).
Since it is not possible to satisfy the boundary condition of equal phase veloci-
ties parallel to the air-dielectric interface with pure TEM waves, the situation
for the microstrip line does not correspond exactly to TEM wave propagation,
as is the case with any other line involving multiple dielectrics.

The determination of and for the case of a line with multiple di-
electrics involves a modified procedure, assuming that the inhomogeneity has
no effect on and the propagation is TEM. Thus, if is the capacitance per
unit length of the line with all the dielectrics replaced by free space and is the
capacitance per unit length of the line with the dielectrics in place and comput-
ed from static field considerations, we can write

(6.25a)

(6.25b) vp =
12lc =

12lc0
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c
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c
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cc0
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370 Chapter 6 Transmission-Line Essentials for Digital Electronics

Table 6.1 Expressions for Characteristic Impedance for the Lines of Fig. 6.6

Description Figure

Coaxial cable 6.6(a)

Parallel-wire line 6.6(b)

Single wire above ground plane 6.6(c)

Shielded parallel-wire line 6.6(d)
h

p
  ln  

d1b2 - d2>42
a1b2 + d2>42

h

2p
  cosh-1 

 
h

a

h

p
  cosh-1

  
d

a

h

2p
  ln  

b

a

Z0

where we have assumed nonmagnetic dielectrics. To express (6.25a) and (6.25b)
in the form of (6.23) and (6.24), respectively, we define an effective relative per-
mittivity so that

(6.26)

(6.27)

Thus, the determination of and requires the knowledge of both and 
The techniques for finding (and ) and, hence, the propagation para-

meters can be broadly divided into three categories: (1) analytical, (2) numeri-
cal, and (3) graphical.

A. Analytical Techniques

The analytical techniques are based on the closed-form solution of Laplace’s
equation, subject to the boundary conditions, or the equivalent of such a solu-
tion. We have already discussed these techniques in Sections 5.3 and 5.4 for sev-
eral configurations. Hence, without further discussion, we shall simply list in
Table 6.1 the expressions for for some common types of lines, shown by
cross-sectional views in Fig. 6.6. Note that in Table 6.1, is the intrin-
sic impedance of the dielectric medium associated with the line.

B. Numerical Techniques

When a closed-form solution is not possible or when the approximation permit-
ting a closed-form solution breaks down, numerical techniques can be em-
ployed. These are discussed in Chapter 11.

C. Graphical Technique

For a line with arbitrary cross section and involving a homogeneous dielectric,
an approximate value of and, hence, of can be determined by constructing
a field map, that is, a graphical sketch of the direction lines of the electric field

Z0c

h = 2m>eZ0

c0c
c0.cvpZ0

 vp =
c2ereff

 Z0 =
1ereff

cc

ereff
= c>c0

Several
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FIGURE 6.6

Cross sections of some common types of transmission lines.

Magnetic field lines

Electric field lines

FIGURE 6.7
Example of field map for a line of
arbitrary cross section.

and associated equipotential lines between the conductors, as illustrated, for
example, in Fig. 6.7. This technique, known as the field mapping technique, is
discussed in Section 11.5.

K6.1. Parallel-plate line; Transmission-line equations; Circuit parameters; Distributed
equivalent circuit; TEM waves; Characteristic impedance Velocity of propaga-
tion; and for line with homogeneous dielectric; and for line with mul-
tiple dielectrics; Microstrip line.

D6.1. A parallel-plate transmission line is made up of perfect conductors of width
and separation The medium between the plates is a di-

electric of and For a uniform plane wave propagating down
the line, find the power crossing a given transverse plane for each of the following

m = m0.e = 2.25e0

d = 0.01 m.w = 0.2 m

vpZ0vpZ0
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372 Chapter 6 Transmission-Line Essentials for Digital Electronics

cases at a given time in that plane: (a) the electric field between the plates is
(b) the magnetic field between the plates is 7.5 A/m; (c) the voltage

across the plates is and (d) the current along the plates is 0.5 A.
Ans. (a) (b) (c) (d)

D6.2. Find the following: (a) the ratio b/a of a coaxial cable of if
(b) the ratio b/a of a coaxial cable of if and

(c) the ratio d/a of a parallel-wire line of if 
Ans. (a) 3.794; (b) 6.521; (c) 6.132.

6.2 LINE TERMINATED BY RESISTIVE LOAD

In Section 6.1, we obtained the general solutions to the transmission-line equa-
tions for the lossless line, as given by (6.20a) and (6.20b). Since these solutions
represent superpositions of and wave voltages and and wave
currents, we now rewrite them as

(6.28a)

(6.28b)

or, more concisely,

(6.29a)

(6.29b)

with the understanding that is a function of and is a function
of In terms of and wave currents, the solution for the cur-
rent may also be written as

(6.30)

Comparing (6.29b) and (6.30), we see that

(6.31a)

(6.31b)

The minus sign in (6.31b) can be understood if we recognize that in writing
(6.29a) and (6.30), we follow the notation that both and have the same
polarities with one conductor (say, a) positive with respect to the other conductor
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Conductor a

Conductor b

FIGURE 6.8

Polarities for voltages and currents associated
with and waves.1-21+2

(say, b) and that both and flow in the positive z-direction along conductor
a and return in the negative z-direction along conductor b, as shown in Fig. 6.8.
The power flow associated with either wave, as given by the product of the cor-
responding voltage and current, is then directed in the positive z-direction, as
shown in Fig. 6.8. Thus,

(6.32a)

Since is always positive, regardless of whether is numerically positive
or negative, (6.67a) indicates that the wave power does actually flow in the
positive z-direction, as it should. On the other hand,

(6.32b)

Since is always positive, regardless of whether is numerically positive
or negative, the minus sign in (6.32b) indicates that is negative, and, hence,
the wave power actually flows in the negative z-direction, as it should.

Let us now consider a line of length l terminated by a load resistance 
and driven by a constant voltage source in series with internal resistance 
as shown in Fig. 6.9. Note that the conductors of the transmission line are rep-
resented by double ruled lines, whereas the connections to the conductors are
single ruled lines, to be treated as lumped circuits. We assume that no voltage
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FIGURE 6.9

Transmission line terminated by a load resistance
and driven by a constant voltage source in

series with an internal resistance Rg.
RL
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�
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z � 0 z � 0
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FIGURE 6.10

(a) For obtaining the wave voltage and
current at for the line of Fig. 6.9.
(b) Equivalent circuit for (a).

z = 0
1+2

and current exist on the line for and the switch S is closed at We
wish to discuss the transient wave phenomena on the line for The char-
acteristic impedance of the line and the velocity of propagation are and 
respectively.

When the switch S is closed at a wave originates at and
travels toward the load. Let the voltage and current of this wave be and

respectively. Then we have the situation at as shown in Fig. 6.10(a).
Note that the load resistor does not come into play here since the phenomenon
is one of wave propagation; hence, until the wave goes to the load, sets up a
reflection, and the reflected wave arrives back at the source, the source does not
even know of the existence of This is a fundamental distinction between or-
dinary (lumped-) circuit theory and transmission-line (distributed-circuit) theo-
ry. In ordinary circuit theory, no time delay is involved; the effect of a transient
in one part of the circuit is felt in all branches of the circuit instantaneously. In a
transmission-line system, the effect of a transient at one location on the line is
felt at a different location on the line only after an interval of time that the wave
takes to travel from the first location to the second. Returning now to the circuit
in Fig. 6.10(a), the various quantities must satisfy the boundary condition, that
is, Kirchhoff’s voltage law around the loop. Thus, we have

(6.33a)

We, however, know from (6.31a) that Hence, we get

(6.33b)

or

(6.34a)

(6.34b) I+ =
V+

Z0
=
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V0 - I+Rg - V+ = 0

RL.
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z = 0,I+,

V+1+2 z = 01+2t = 0,
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t 7 0.
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Reflection
coefficient

(a) (b)
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For obtaining the voltages and currents
associated with (a) the wave and (b) the

wave, for the line of Fig. 6.9.1- +2
1-2

Thus, we note that the situation in Fig. 6.10(a) is equivalent to the circuit shown
in Fig. 6.10(b); that is, the voltage source views a resistance equal to the charac-
teristic impedance of the line, across This is to be expected since only a

wave exists at and the ratio of the voltage to current in the wave
is equal to 

The wave travels toward the load and reaches the termination at
It does not, however, satisfy the boundary condition there since this

condition requires the voltage across the load resistance to be equal to the cur-
rent through it times its value, But the voltage-to-current ratio in the 
wave is equal to To resolve this inconsistency, there is only one possibility,
which is the setting up of a wave, or a reflected wave. Let the voltage and
current in this reflected wave be and respectively. Then the total voltage
across is and the total current through it is as shown in
Fig. 6.11(a). To satisfy the boundary condition, we have

(6.35a)

But from (6.31a) and (6.31b), we know that and re-
spectively. Hence,

(6.35b)

or

(6.36)

We now define the voltage reflection coefficient, denoted by the symbol as the
ratio of the reflected voltage to the incident voltage. Thus,
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Reflection
coefficients
for some
special cases

We then note that the current reflection coefficient is

(6.38)

Now, returning to the reflected wave, we observe that this wave travels
back toward the source and it reaches there at Since the boundary
condition at which was satisfied by the original wave alone, is then
violated, a reflection of the reflection, or a re-reflection, will be set up and it
travels toward the load. Let us assume the voltage and current in this re-reflect-
ed wave, which is a wave, to be and respectively, with the super-
scripts denoting that the wave is a consequence of the wave. Then the
total line voltage and the line current at are and

respectively, as shown in Fig. 6.11(b). To satisfy the boundary
condition, we have

(6.39a)

But we know that and Hence,

(6.39b)

Furthermore, substituting for from (6.34a), simplifying, and rearranging, we get

or

(6.40)

Comparing (6.40) with (6.36), we note that the reflected wave views the
source with internal resistance as the internal resistance alone; that is, the volt-
age source is equivalent to a short circuit insofar as the wave is concerned.
A moment’s thought will reveal that superposition is at work here. The effect of
the voltage source is taken into account by the constant outflow of the original

wave from the source. Hence, for the reflection of the reflection, that is, for
the wave, we need only consider the internal resistance Thus, the volt-
age reflection coefficient formula (6.37) is a general formula and will be used

Rg.1- +21+2

1-2

V-
 
+ = V-

 

Rg - Z0

Rg + Z0

V-
 
+

 a1 +
Rg

Z0
b = V-

 aRg

Z0
- 1b

V+

V+ + V- + V-
 
+ = V0 -

Rg

Z0
 1V+ - V- + V-

 
+2

I -
 
+ = V-

 
+>Z0.I+ = V+>Z0, I

- = -V->Z0,

V+ + V- + V-
 
+ = V0 - Rg1I+ + I - + I -

 
+2

I+ + I- + I-
 
+,

V+ + V- + V-
 
+z = 0

1-21+2 I -
 
+,V-

 
+1+2

1+2z = 0,
t = 2l>vp.

I-

I+ =
-V->Z0

V+>Z0
= -  

V-

V+ = -≠
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6.2 Line Terminated by Resistive Load 377

Bounce
diagram

repeatedly. In view of its importance, a brief discussion of the values of for
some special cases is in order as follows:

1. or short-circuited line.

The reflected voltage is exactly the negative of the incident voltage, there-
by keeping the voltage across (short circuit) always zero.

2. or open-circuited line.

and the current reflection coefficient Thus, the reflected
current is exactly the negative of the incident current, thereby keeping the
current through (open circuit) always zero.

3. or line terminated by its characteristic impedance.

This corresponds to no reflection, which is to be expected since 
is consistent with the voltage-to-current ratio in the wave alone, and,
hence, there is no violation of boundary condition and no need for the set-
ting up of a reflected wave.Thus, a line terminated by its characteristic im-
pedance is equivalent to an infinitely long line insofar as the source is
concerned.

Returning to the discussion of the re-reflected wave, we note that this
wave reaches the load at time and sets up another reflected wave.This
process of bouncing back and forth of waves goes on indefinitely until the
steady state is reached. To keep track of this transient phenomenon, we make
use of the bounce-diagram technique. Some other names given for this diagram
are reflection diagram and space-time diagram. We shall introduce the bounce
diagram through a numerical example.

Example 6.1 Bounce-diagram technique for time-domain analysis of a
transmission-line system

Let us consider the system shown in Fig. 6.12. Note that we have introduced a new quan-
tity T, which is the one-way travel time along the line from to that is, instead
of specifying two quantities l and we specify Using the bounce diagram
technique, we wish to obtain and plot line voltage and current versus t for fixed values z
and line voltage and current versus z for fixed values t.

T1=  l>vp2.vp,
z = l;z = 0

t = 3l>vp

1+2 RL1=  Z02
≠ =

Z0 - Z0

Z0 + Z0
= 0

RL = Z0,
RL

= -≠ = -1.

≠ =
q - Z0

q + Z0
= 1

RL = q ,
RL

≠ =
0 - Z0

0 + Z0
= -1

RL = 0,

≠
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378 Chapter 6 Transmission-Line Essentials for Digital Electronics

Before we construct the bounce diagram, we need to compute the following
quantities:

The bounce diagram is essentially a two-dimensional representation of the tran-
sient waves bouncing back and forth on the line. Separate bounce diagrams are drawn
for voltage and current, as shown in Fig. 6.13(a) and (b), respectively. Position (z) on the
line is represented horizontally and the time (t) vertically. Reflection coefficient values
for the two ends are shown at the top of the diagrams for quick reference. Note that cur-
rent reflection coefficients are and respectively, at the load and at
the source. Crisscross lines are drawn as shown in the figures to indicate the progress of
the wave as a function of both z and t, with the numerical value for each leg of travel
shown beside the line corresponding to that leg and approximately at the center of the
line. The arrows indicate the directions of travel. Thus, for example, the first line on the
voltage bounce diagram indicates that the initial wave of 60 V takes a time of to
reach the load end of the line. It sets up a reflected wave of 20 V, which travels back to
the source, reaching there at a time of which then gives rise to a wave of volt-
age and so on, with the process continuing indefinitely.

Now, to sketch the line voltage and/or current versus time at any value of z, we note
that since the voltage source is a constant voltage source, each individual wave voltage
and current, once the wave is set up at that value of z, continues to exist there forever.
Thus, at any particular time, the voltage (or current) at that value of z is a superposition
of all the voltages (or currents) corresponding to the crisscross lines preceding that value
of time. These values are marked on the bounce diagrams for and Noting
that each value corresponds to the time interval between adjacent crisscross lines,
we now sketch the time variations of line voltage and current at and as
shown in Figs. 6.14(a) and (b), respectively. Similarly, by observing that the numbers writ-
ten along the time axis for are actually valid for any pair of z and t within the tri-
angle inside which they lie and that the numbers written along the time axis for

are actually valid for any pair of z and t within the triangle inside which they
lie, we can draw the sketches of line voltage and current versus time for any other value
of z. This is done for in Fig. 6.14(c).z = l>2

1�2z = l
1�2

z = 0

z = l,z = 0
2-ms

z = l.z = 0

-4 V,
1+22 ms,

1 ms1+2

-≠S = 1
5,-≠R = -1

3

Voltage reflection coefficient at source, ≠S =
40 - 60
40 + 60

= -  
1
5

Voltage reflection coefficient at load, ≠R =
120 - 60
120 + 60

=
1
3

Current carried by the initial 1+2 wave =
60
60

= 1 A

Voltage carried by the initial 1+2 wave = 100  
60

40 + 60
= 60 V

z � 0

Z0 � 60 	
 T � 1 ms

t � 0

z � l

40 	
120 	

100 V

S

FIGURE 6.12

Transmission-line system for illustrating the
bounce-diagram technique of keeping track
of the transient phenomenon.

Construction
of bounce
diagrams

Plots of line
voltage and
current 
versus t
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7
16876
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1124
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76
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zz � 0 z � l

(a)

t, ms

1
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S � �
1
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R �
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�1/675

�1/3375

�1/15

1
5

�
S �

9
15

28
45

1/45

0
00

2

4

6

1

3

5

7
2109
3375

141
225

1

422
675

1/225

zz � 0 z � l

(b)

� 
1
3

�
R �

FIGURE 6.13

(a) Voltage and (b) current bounce diagrams, depicting the bouncing back and forth of the
transient waves for the system of Fig. 6.12.

It can be seen from the sketches of Fig. 6.14 that as time progresses, the line volt-
age and current tend to converge to certain values, which we can expect to be the steady-
state values. In the steady state, the situation consists of a single wave, which is
actually a superposition of the infinite number of transient waves, and a single 
wave, which is actually a superposition of the infinite number of transient waves. De-
noting the steady-state wave voltage and current to be and respectively, and
the steady-state wave voltage and current to be and respectively, we obtain
from the bounce diagrams

 ISS
- = -  

1
3

+
1

45
-

1
675

+ Á = -  
1
3

 a1 -
1

15
+

1

152 - Á b = -0.3125 A

 VSS
- = 20 -

4
3

+
4

45
- Á = 20a1 -

1
15

+
1

152 - Á b = 18.75 V

 ISS
+ = 1 -

1
15

+
1

225
- Á = 1 -

1
15

+
1

152 - Á = 0.9375 A

 VSS
+ = 60 - 4 +

4
15

- Á = 60a1 -
1

15
+

1

152 - Á b = 56.25 V

ISS
- ,VSS

-1-2
ISS

+ ,VSS
+1+2

1-2
1-21+2

1+2
Steady-state
situation
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380 Chapter 6 Transmission-Line Essentials for Digital Electronics

Note that and as they should be. The steady-state line
voltage and current can now be obtained to be

These are the same as the voltage across and current through if the source and its
internal resistance were connected directly to as shown in Fig. 6.15. This is to be ex-
pected since the series inductors and shunt capacitors of the distributed equivalent cir-
cuit behave like short circuits and open circuits, respectively, for the constant voltage
source in the steady state.

RL,
RLRL

 ISS = ISS
+ + ISS

- = 0.625 A

 VSS = VSS
+ + VSS

- = 75 V

ISS
- = -VSS

- >Z0,ISS
+ = VSS

+ >Z0

3376
45

224
3

16876
22576

60 1124
15

(a)

t, ms

9
15

2109
3375

141
225

2
3

28
45

422
675

2

100

0 4 6 8

[V ]z � 0, V

t, ms
20 4 6 8

[I ]z � 0, A

[V ]z � l, V [I ]z � l, A

[V ]z � l/2, V [I ]z � l/2, A

1
1

80

(b)

t, ms
1

100

0 3 5 7 9 9
t, ms

1

1

0 3 5 7

80

60
224

3

(c)

t, ms
0.5

100

0 2.5 4.5 6.5 8.5 8.5
t, ms

1

0

76

1
28
45

9
15

2
3

0.5 2.5 4.5 6.5

FIGURE 6.14

Time variations of line voltage and line current at (a) (b) and (c) for the
system of Fig. 6.12.

z = l>2z = l,z = 0,
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40 	

120 	

100 V �

�

z � 0 z � l

0.625 A

75 V

FIGURE 6.15

Steady-state equivalent for
the system of Fig. 6.12.

Plots of 
line voltage
and current
versus z

Excitation by
pulse voltage
source

(a)

z

100
76

0 l /2 l

[V ]t � 2.5 ms, V

80

(b)

z

1
1

0 2l /3 l

[I ]t � 1�1/3 ms, A

2
3

FIGURE 6.16

Variations with z of (a) line voltage for and (b) line current for for the
system of Fig. 6.12.

t = 1 
1
3 

 
ms,t = 2.5 ms

Sketches of line voltage and current as functions of distance (z) along the line for
any particular time can also be drawn from considerations similar to those employed for
the sketches of Fig. 6.14. For example, suppose we wish to draw the sketch of line voltage
versus z for Then we note from the voltage bounce diagram that for

the line voltage is 76 V from to and 80 V from to 
This is shown in Fig. 6.16(a). Similarly, Fig. 6.16(b) shows the variation of line current
versus z for 

In Example 6.1, we introduced the bounce-diagram technique for a constant-
voltage source.The technique can also be applied if the voltage source is a pulse.
In the case of a rectangular pulse, this can be done by representing the pulse as
the superposition of two step functions, as shown in Fig. 6.17, and superimpos-
ing the bounce diagrams for the two sources one on another. In doing so, we
should note that the bounce diagram for one source begins at a value of time
greater than zero. Alternatively, the time variation for each wave can be drawn
alongside the time axes beginning at the time of start of the wave. These can
then be used to plot the required sketches. An example is in order to illustrate
this technique, which can also be used for a pulse of arbitrary shape.

t = 1 
1
3 

 
ms.

z = l.z = l>2z = l>2z = 0t = 2.5 ms,
t = 2.5 ms.
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382 Chapter 6 Transmission-Line Essentials for Digital Electronics

Example 6.2 Bounce-diagram technique for a pulse excitation

Let us assume that the voltage source in the system of Fig. 6.12 is a 100-V rectangular
pulse extending from to and extend the bounce-diagram technique.

Considering, for example, the voltage bounce diagram, we reproduce in Fig. 6.18
part of the voltage bounce diagram of Fig. 6.13(a) and draw the time variations of the in-
dividual pulses alongside the time axes, as shown in the figure. Note that voltage axes are
chosen such that positive values are to the left at the left end of the diagram, but
to the right at the right end of the diagram.1z = l2

1z = 02

t = 1 mst = 0

��

t
0

Vg

V0

t0

t0
t t

0
0

V0 V0

�V0

FIGURE 6.17

Representation of a rectangular pulse as the superposition of two step functions.

V V

(+)

(�)

0

1

2

320 �4

�4
4

0

1

20 60

6060

2

3

4

(�)

(�)

(����) (���)

(���)

(��)

(��)

z � 0 z � lz

� 3
4

t, ms

1
5�
S �

1
3


R �

FIGURE 6.18

Voltage bounce diagram for the system of Fig. 6.12 except that the voltage source is a rectangular
pulse of 1- duration from to t = 1 ms.t = 0ms
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(a)

16

1

60

0 2 3 �16/15

4 5

[V ]z � 0, V

(b)

80

1

80

0 2 5 6

43

[V ]z � l, V

(c)

20

1.50.5

60

0

3.5
2.5 4.5

4/15

[V ]z � l/2, V

�16/3

16/45

60

�4 �4/3 5.5

FIGURE 6.19

Time variations of line voltage at (a) 
(b) and (c) for the system of
Fig. 6.12, except that the voltage source is a
rectangular pulse of duration from

to t = 1 ms.t = 0
1-ms

z = l>2z = l,
z = 0,

From the voltage bounce diagram, sketches of line voltage versus time at 
and can be drawn, as shown in Figs. 6.19(a) and (b), respectively. To draw the
sketch of line voltage versus time for any other value of z, we note that as time progress-
es, the wave pulses slide down the crisscross lines from left to right, whereas the 1-21+2

z = l
z = 0
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(b)

z

20

0 l/2 l

V�, V

(a)

z0
�4 l/2 l

V��, V

(c)

z

16

20

0 l/2 l

V, V

FIGURE 6.20

Variations with z of (a) the wave voltage, (b) the 
wave voltage, and (c) the total line voltage, at for
the system of Fig. 6.12, except that the voltage source is a
rectangular pulse of duration from to t = 1 ms.t = 01-ms

t = 2.25 ms
1-21- +2

wave pulses slide down from right to left.Thus, to draw the sketch for we displace
the time plots of the waves at and of the waves at forward in time by

that is, delay them by and add them to obtain the plot shown in Fig. 6.19(c).
Sketches of line voltage versus distance (z) along the line for fixed values of time

can also be drawn from the bounce diagram based on the phenomenon of the individual
pulses sliding down the crisscross lines. Thus, if we wish to sketch V(z) for 
then we take the portion from back to (since the
one-way travel time on the line is ) of all the wave pulses at and lay them
on the line from to and we take the portion from back to

of all the wave pulses at and lay them on the line from
back to In this case, we have only one wave pulse—that of the 

wave—and only one wave pulse—that of the wave—as shown in Figs. 6.20(a)
and (b). The line voltage is then the superposition of these two waveforms, as shown in
Fig. 6.20(c).

Similar considerations apply for the current bounce diagram and plots of line cur-
rent versus t for fixed values of z and line current versus z for fixed values of t.

K6.2. wave; wave; Voltage reflection coefficient; Current reflection coeffi-
cient;Transient bouncing of waves;Voltage bounce diagram; Current bounce di-
agram; Steady-state situation; Rectangular pulse voltage source; Superposition.

D6.3. In the system shown in Fig. 6.21, the switch S is closed at Find the value of
for each of the following cases: (a) (b)

(c) and (d)
Ans. (a) (b) (c) (d) 0 Æ.60 Æ;120 Æ;40 Æ;

I10.4l, q2 = 2.5 A.I10.3l, 4.4 ms2 = 1 A; 2.8 ms2 = 76 V;
V10.6l,V10.5l, 1.7 ms2 = 48 V;RL

t = 0.

1-21+2

1-21-2
1- +21+2z = 0.z = l

z = l1-2t = 2.25 - 1 = 1.25 ms
t = 2.25 msz = l,z = 0
z = 01+21 ms

t = 2.25 - 1 = 1.25 mst = 2.25 ms
t = 2.25 ms,

0.5 ms,0.5 ms,
z = l1-2z = 01+2

z = l>2,
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�

�
(�)

VL

IL

Z0 � 50 	

FIGURE 6.22

For Problem D6.5.

z � 0

Z0 � 60 	
T � 1 ms

t � 0

z � l

40 	

RL

100 V

S

FIGURE 6.21

For Problem D6.4.

D6.4. For a line of characteristic impedance terminated by a resistance and dri-
ven by a constant-voltage source in series with an internal resistance, the line
voltage and current in the steady state are known to be 30 V and 1.2 A, respec-
tively. Find (a) the wave voltage; (b) the wave voltage; (c) the wave
current; and (d) the wave current in the steady state.
Ans. (a) 60 V; (b) (c) 0.8 A; (d) 0.4 A.

D6.5. In Fig 6.22, a line of characteristic impedance is terminated by a passive
nonlinear element. A wave of constant voltage is incident on the termi-
nation. If the volt-ampere characteristic of the nonlinear element in the region
of interest is find the wave voltage for each of the following
values of (a) 36 V; (b) 50 V; and (c) 66 V.
Ans. (a) (b) 0 V; (c) 6 V.

6.3 TRANSMISSION-LINE DISCONTINUITY

We now consider the case of a junction between two lines having different val-
ues for the parameters and as shown in Fig. 6.23. Assuming that a 
wave of voltage and current is incident on the junction from line 1, weI+V+

1+2vp,Z0

-4 V;
V0:

1-2VL = 50 IL
2 ,

V01+2
50 Æ

-30 V;
1-2

1+21-21+2

75 Æ

Junction
between two
lines

(�)
(��)

(�)

Z01, vp1 Z02, vp2

FIGURE 6.23

Transmission-line junction for illustrating
reflection and transmission resulting
from an incident wave.1+2

1+ +21-2

RaoCh06v3.qxd  12/18/03  4:25 PM  Page 385



386 Chapter 6 Transmission-Line Essentials for Digital Electronics

(a) (b)

�

(�)
Z01 Z02

�

�

�

V� � V� V��

I� � I� I��

FIGURE 6.24

(a) For obtaining the reflected wave
and transmitted wave voltages and
currents for the system of Fig. 6.23.
(b) Equivalent to (a) for using the reflection
coefficient concept.

1+ +2
1-2

find that the wave alone cannot satisfy the boundary condition at the junc-
tion, since the voltage-to-current ratio for that wave is whereas the character-
istic impedance of line 2 is Hence, a reflected wave and a transmitted
wave are set up such that the boundary conditions are satisfied. Let the voltages
and currents in these waves be and respectively, where the su-
perscript denotes that the transmitted wave is a wave resulting from the
incident wave.We then have the situation shown in Fig. 6.24(a).

Using the boundary conditions at the junction, we then write

(6.41a)
(6.41b)

But we know that and Hence,
(6.41b) becomes

(6.42)

Combining (6.41a) and (6.42), we have

or

(6.43)

Thus, to the incident wave, the transmission line to the right looks like its char-
acteristic impedance as shown in Fig. 6.24 (b). The difference between a re-
sistive load of and a line of characteristic impedance is that, in the first
case, power is dissipated in the load, whereas in the second ease, the power is
transmitted into the line.
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We now define the voltage transmission coefficient, denoted by the symbol
as the ratio of the transmitted wave voltage to the incident wave voltage.Thus,

(6.44)

The current transmission coefficient, which is the ratio of the transmitted
wave current to the incident wave current, is given by

(6.45)

At this point, one may be puzzled to note that the transmitted voltage can be
greater than the incident voltage if is positive. However, this is not of concern,
since then the transmitted current will be less than the incident current. Similar-
ly, the transmitted current is greater than the incident current when is nega-
tive, but then the transmitted voltage is less than the incident voltage. In fact,
what is important is that the transmitted power is always less than (or equal
to) the incident power since

(6.46)

and irrespective of whether is positive or negative.
We shall illustrate the application of reflection and transmission at a junc-

tion between lines by means of an example.

Example 6.3 Unit impulse response and frequency response for a
system of three lines in cascade

Let us consider the system of three lines in cascade, driven by a unit impulse voltage
source as shown in Fig. 6.25(a). We wish to find the output voltage thereby ob-
taining the unit impulse response.

To find the output voltage, we draw the voltage bounce diagram, as shown in
Fig. 6.25(b). In drawing the bounce diagram, we note that since the internal resistance of
the voltage source is which is equal to the strength of the impulse that the gen-
erator supplies to line 1 is The strengths of the various impulses propagating in the
lines are then governed by the reflection and transmission coefficients indicated on the
diagram. Also note that the numbers indicated beside the crisscross lines are simply the
strengths of the impulses and do not represent constant voltages.

From the bounce diagram, we note that the output voltage is a series of impulses.
In fact, the phenomenon can be visualized without even drawing the bounce diagram,
and the strengths of the impulses can be computed. Thus, the strength of the first im-
pulse, which occurs at is

1 *
50

50 + 50
* a1 +

100 - 50
100 + 50

b * a1 +
50 - 100
50 + 100

b = 1 *
1
2

*
4
3

*
2
3

=
4
9

t = T1 + T2 + T3 = 6 ms,

1
2.

Z01,50 Æ,

Vo,d1t2,

≠11 - ≠22 … 1,

 = V+I+11 - ≠22 = 11 - ≠22P+

 P+
 
+ = V+

 
+I+

 
+ = V+11 + ≠2I+11 - ≠2

P+,
P+

 
+

≠

≠

tC =
I+

 
+

I+ =
I- + I-

I+ = 1 +
I-

I+ = 1 - ≠

tC,

tV =
V+

 
+
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V-
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tV,
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Transmission
coefficient

System of
three lines

Unit impulse
response
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�

�

(a)

(b)

Line 1
Z01 � 50 	
T1 � 2 �s

Line 2
Z02 � 100 	

T2 � 2 �s

Line 3
Z03 � 50 	
T3 � 2 �s

Vo

�
�

50 	

50 	

d(t)

0

4

8

12

t, ms


 � 0 
 � 0tV � 4/3

 � 1/3

1/2


 � �1/3 
 � �1/3
tV � 2/3 tV � 2/3

2/3

�2/9

2/27

�2/81

2/243

�2/729

4/9

4/81

4/729

6

10

14

4/9

4/92

4/93

Vo(t)

FIGURE 6.25

(a) System of three lines in cascade driven by a unit impulse voltage source. (b) Voltage bounce
diagram for finding the output voltage for the system of (a).Vo1t2
Each succeeding impulse is due to the additional reflection and re-reflection of the pre-
vious impulse at the right and left end, respectively, of line 2. Hence, each succeeding im-
pulse occurs or later than the preceding one, and its strength is

times the strength of the previous impulse. We can now write the output voltage as

(6.47)

 =
4
9

 a
q

n = 0
 a1

9
bn

d1t - 4n * 10-6 - 6 * 10-62
 +

4

93  d1t - 14 * 10-62 + Á

 Vo1t2 =
4
9

  d1t - 6 * 10-62 +
4

92  d1t - 10 * 10-62

a50 - 100
50 + 100

b a50 - 100
50 + 100

b = a -  
1
3
b a -  

1
3
b =

1
9

4 ms,2T2,
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6.3 Transmission-Line Discontinuity 389

Frequency
response

Note that is the strength of the first impulse and is the multiplication factor for each
succeeding impulse. In terms of and we have

(6.48)

where we have replaced by 
Proceeding further, since the unit impulse response of the system is a series of im-

pulses delayed in time, the response to any other excitation can be found by the super-
position of time functions obtained by delaying the exciting function and multiplying
by appropriate constants. In particular, by considering we can find the
frequency response of the system. Thus, assuming and substituting the
cosine function for the impulse function in (6.48), we obtain the corresponding output
voltage to be

(6.49)

The complex voltage is then given by

(6.50)

Without going into a detailed discussion of the result given by (6.50), we can conclude
the following: maximum amplitude occurs for that is, for

and its value is Minimum amplitude occurs
for that is, for 
and its value is The amplitude response therefore can be roughly sketched,
as shown in Fig. 6.26.

4
9>11 + 1

92 = 0.4.
v = 12m + 12p>2T2, m = 0, 1, 2, Á ,2vT2 = 12m + 12p, m = 0, 1, 2, Á ;

4
9>11 - 1

92 = 0.5.v = mp>T2, m = 0, 1, 2, Á ,
2vT2 = 2mp, m = 0, 1, 2, Á ;

 =
14>92e-jvT0

1 - 11>92e-j2vT2

 =
4
9

 e-jvT0 a
q

n = 0
 a1

9
 e-j2vT2bn

 Vo1v2 =
4
9

 a
q

n = 0
 a1

9
bn

e-jv12nT2 + T02

Vo1v2
Vo1t2 =

4
9

 a
q

n = 0
 a1

9
bn

 cos v1t - 2nT2 - T02

Vg1t2 = cos vt
Vg1t2 = cos vt,

T0.T1 + T2 + T3

 =
4
9

 a
q

n = 0
 a1

9
bn

d1t - 2nT2 - T02

 Vo1t2 =
4
9

 a
q

n = 0
 a1

9
bn

d[t - 2nT2 - 1T1 + T2 + T32]
T3,T2,T1,

1
9

4
9

p/2T2 p/T2 3p/2T2 2p/T2 5p/2T2 3p/T2

0.5

v

0.4

0

Vo(v)

FIGURE 6.26

Rough sketch of amplitude response versus frequency for the system of Fig. 6.25(a)
for sinusoidal excitation.
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Free Space
e0, m0

Free Space
e0, m0

Perfect Dielectric
e = e0er

m = m0mr

l

FIGURE 6.27

Perfect dielectric slab with free space
on either side.

A practical situation in which the discussion of this example is applicable is in
the design of a radome, which is an enclosure for protecting an antenna from the
weather while allowing transparency for electromagnetic waves. A simple, idealized,
planar version of the radome is a dielectric slab with free space on either side of it, as
shown in Fig. 6.27. For reflection and transmission of uniform plane waves incident
normally onto the dielectric slab, the arrangement is equivalent to three lines in cas-
cade, with the characteristic impedances equal to the intrinsic impedances of the media
and the velocities of propagation equal to those in the media. Thus, the amplitude ver-
sus frequency response is of the same form as that in Fig. 6.26, where is the one-way
travel time in the dielectric slab and the maximum is 1 instead of 0.5 (the factor of 0.5
in Fig. 6.26 is due to voltage drop across the internal resistance of the source in the
transmission-line system). Hence, the lowest frequency for which the dielectric slab is
completely transparent is or Conversely, for a
given frequency f, the minimum thickness for which the slab is transparent is

where is the wavelength in the dielectric, corresponding to f.

We shall now discuss time-domain reflectometry, abbreviated TDR, a tech-
nique by means of which discontinuities in transmission-line systems can be lo-
cated by making measurements with pulses. The block diagram of a typical
TDR system is shown in Fig. 6.28. It consists of a pulse generator whose output
is connected to the system under test through a matched attenuator. Voltage
pulses are propagated down the transmission-line system, and the incident and
reflected pulses are monitored by the display scope using a high-impedance
probe.The matched attenuator serves the purpose of absorbing the pulses arriv-
ing back from the system so that reflections of those pulses are not produced.We
shall illustrate the application of a TDR system by means of an example.

ll = c>2f2ermr = l>2,

f = c>2l2ermr.v = p>T2 = pc>l2ermr

T2

Time-domain
reflectometry

Pulse
Generator

Display
Scope

Matched
Attenuator

System
Under
Test

High
Impedance

probe

Sync Pulse

FIGURE 6.28

Block diagram of a typical
time-domain reflectometer.

Radome
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Z0 � 60 	 120 	

4 m

0 10 m4 m

6 m

yp � 2 � 108 m/s

z

TDR System

FIGURE 6.29

Transmission line with discontinuity under test by a TDR system.

Example 6.4 Application of a time-domain reflectometer system for
analyzing a line discontinuity

Let us consider a transmission line under test, as shown in Fig. 6.29, in which a disconti-
nuity exists at and the line is short-circuited at the far end.We shall first analyze
the system to obtain the waveform measured by a TDR system connected at the input
end assuming the TDR pulses to be of amplitude 1 V, duration 10 ns, and repeti-
tion rate We shall then discuss how one can deduce the information about the
discontinuity from the TDR measurement.

Assuming that a pulse from the TDR system is incident on the input of the system
under test at we draw the voltage-bounce diagram, as shown in Fig. 6.30. Note that
for a pulse incident on the discontinuity from either side, the resistance viewed is the par-
allel combination of and of the line, or Hence, the reflection
and transmission coefficients for the voltage are given, respectively, by

From the bounce diagram, the voltage pulses that would be viewed on the display scope
of the TDR system up to are shown in Fig. 6.31. Subsequent pulses become
smaller and smaller in amplitude as time progresses and diminish to insignificant values
well before which is the period of the TDR pulses.

Now, to discuss how one can deduce information about the discontinuity from the
TDR display of Fig. 6.31, without a prior knowledge of the discontinuity but knowing the
values of and of the line and that the line is short-circuited at the far end of un-
known distance from the input, we proceed in the following manner:

The first pulse is the outgoing pulse from the TDR system. The second pulse arriv-
ing at the input of the system under test at is due to reflection from a disconti-
nuity, since if there is no discontinuity, the voltage of the second pulse should be 
and there should be no subsequent pulses. From the voltage of the second pulse, we
know that the reflection coefficient at the discontinuity is The effective resistance

seen by the incident pulse is therefore given by the solution of

which is Since this value is less than the of the line, the discontinuity must be
due entirely to a resistance in parallel with the line or due to a combination of series and

Z040 Æ.

RL - 60

RL + 60
= -  0.2

RL

-  0.2.

-1 V
t = 40 ns

vpZ0

t = 10 ms,

t = 200 ns

 tV = 1 + ≠ = 0.8

 ≠ =
40 - 60
40 + 60

= -  0.2

40 Æ.Z0 1=  60 Æ2120 Æ

t = 0,

105 Hz.
z = 0,

z = 4 m
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1

0 10

40 50 100 110 160 170

�0.2

�0.64

�0.128

V, V

t, ns

FIGURE 6.31

Voltage versus time at the input of the transmission line of Fig. 6.39, as displayed by
the TDR system.

parallel resistors; it cannot be due entirely to a resistance in series with the line. Let us
proceed with the assumption of a parallel resistor alone.Then the value of this resistance
R must be such that

solving which we obtain The location of the discontinuity can be deduced by
multiplying by 20 ns, which is one-half of the time interval between the first and sec-
ond pulses. Thus, the location is 2 * 108 * 20 * 10-9 = 4 m.

vp

R = 120 Æ.

60R

60 + R
= 40

t, ms


 �  �1
 � �0.2, tV � 0.8


 � �0.2, tV � 0.8
1

V

40

100

160

z � 0 z � 4 m z � 10 m

�0.128

�0.64

�0.2

1

0.8

�0.8

0.16

�0.16

50

110

FIGURE 6.30

Voltage-bounce diagram for the system of Fig. 6.29, for TDR pulses of
amplitude 1 V.
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6.3 Transmission-Line Discontinuity 393

Continuing, let us postulate that the third pulse of at is due to
reflection occurring at a second discontinuity located at 

In terms of the reflection coefficient at the second discontinuity, denoted
the voltage of the third pulse would be where and are the voltage

transmission coefficients at for pulses incident from the right and from the left,
respectively. Since and are both equal to 0.8, we then have or

which corresponds to a short circuit, which would then give a fourth pulse of
at and so on. From these reasonings, we confirm the assumption of

a parallel resistor of for the discontinuity at and also conclude that the
short circuit is at and that no discontinuities exist between and the
short circuit. If the value of comes out to be different from then further reason-
ings are necessary to deduce the information. It should also be noted that the line of rea-
soning depends on which of the line parameters are known.

K6.3. Voltage transmission coefficient; Current transmission coefficient; Unit impulse
response; Frequency response; Time-domain reflectometry.

D6.6. Consider a wave incident from line 1 onto the junction between lines 1 and
2 having characteristic impedances and respectively. Find the value of

for each of the following cases: (a) the reflected wave voltage is times
the incident wave voltage: (b) the transmitted wave voltage is times the incident
wave voltage; (c) the reflected wave voltage is times the transmitted wave volt-
age; and (d) the reflected wave current is times the transmitted wave current.
Ans. (a) 1.5; (b) (c) (d)

D6.7. The output voltage for a system of three lines in cascade is given by

when the input voltage If find the amplitude of
for each of the following values of (a) (b) and

(c)
Ans. (a) 0.375; (b) 0.2372; (c) 0.1875.

D6.8. Consider lines, each of characteristic impedance emanating from a
common junction, as shown in Fig. 6.32 for For a wave carrying power Pn = 2.

Z0,1n + 12
1.5 * 106p.

1.25 * 106p;106p;v:Vo1t2
Vi1t2 = cos vt,Vi1t2 = d1t2.

Vo1t2 =
1
4

 a
q

n = 0
 a1

3
bn

 d1t - 2 * 10-6 n - 3 * 10-62

Vo1t2
3
5.5

3;1
9;

1
5

1
5

1
5

1
5Z02>Z01

Z02,Z01

1+2

-1,≠2

z = 4 mz = 10 m
z = 4 m120 Æ

t = 160 ns,-0.128 V
≠2 = -1,

0.64 ≠2 = -0.64tVLtVR

z = 4 m,
tVLtVRtVR≠2tVL,≠2,

10-9 = 10 m.
z = 4 + 2 * 108 * 160>22 *  

t = 100 ns-0.64 V

Line 2

Z 0

Line 3Z
0

Line 1
Z0

P

FIGURE 6.32

For Problem D.6.8.
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z � 0

Z0, T

Z0

V0

t � 0

z � l

L

S IL(0 �) � 0

FIGURE 6.33

Line terminated by an inductor with zero initial current and driven by a constant-
voltage source in series with internal resistance equal to of the line.Z0

incident on the junction from one of the lines, find the power reflected into that
line and the power transmitted into each of the remaining n lines for the follow-
ing cases: (a) (b) and (c)
Ans. (a) (b) (c) 0.64P, 0.04P.

6.4 LINES WITH REACTIVE TERMINATIONS AND DISCONTINUES

Thus far, we have been concerned with purely resistive terminations and dis-
continuities. Now, we shall consider examples of lines terminated by reactive
elements and lines having reactive discontinuities. Let us first consider the sys-
tem shown in Fig. 6.33, in which a line of length l is terminated by an inductor L
with zero initial current and a constant-voltage source with internal resistance
equal to the characteristic impedance of the line is connected to the line at

The internal resistance is chosen to be equal to so that no reflection
takes place at the source end. The moment the switch S is closed at a 
wave originates at with voltage and current 
and travels down the line to reach the load end at time T. Since the inductor
current cannot change instantaneously from zero to the boundary con-
dition at is violated, and hence a wave is set up. Let the voltage and
current in this wave be and respectively. Then the total voltage
across L and the total current through L are and

respectively, as shown in Fig. 6.34. To satisfy the boundary
condition at we then have

(6.51)

Noting that is a constant and hence that is zero, and rearranging, we
obtain

(6.52)
L

Z0
  
dV-

dt
+ V- = -  

V0

2

dV0>dtV0

V0

2
+ V- = L 

d

dt
 a V0

2Z0
-

V-

Z0
b

z = l,
1V0>2Z02 - 1V->Z02,

1V0>22 + V-
I-1t2,V-1t21-2 1-2z = l

V0>2Z0,

I+1=  V0>2Z02V+1=  V0>22z = 0
1+2t = 0,

Z0t = 0.

1
4 P, 14 P;1

9 P, 49 P;
n = 9.n = 3;n = 2;

Inductive
termination
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6.4 Lines with Reactive Terminations and Discontinues 395

This differential equation for has to be solved, subject to the initial con-
dition. This initial condition is that the current through the inductor is zero at

that is, the inductor behaves initially like an open circuit. Thus, at 

or

(6.53)

The general solution for the differential equation can be written as

(6.54)

where A is an arbitrary constant to be evaluated using (6.53). Thus, we have

or

(6.55)

Substituting this result in (6.54), we obtain the solution for as

(6.56)

The corresponding solution for the wave current is given by

(6.57)

The wave, characterized by and as given by (6.56) and (6.57),
respectively, travels back toward the source, and it does not set up a reflected
wave, since the reflection coefficient at that end is zero. At this point, it can be

I-V-1-2

I-1l, t2 = -  

V-1l, t2
Z0

=
V0

2Z0
-

V0

Z0
 e-1Z0>L2 1t - T2 for t 7 T

1-2

V-1l, t2 = -  

V0

2
+ V0 e-1Z0>L2 1t - T2 for t 7 T

[V-]z = l

A = V0 e1Z0>L2T

V0

2
= -  

V0

2
+ Ae-1Z0>L2T

V- = -  

V0

2
+ Ae-1Z0>L2t

[V-]t = T =
V0

2

c V0

2Z0
-

V-

Z0
d

t = T
= 0

z = l,t = T;

[V-]z = l

Z0

V0

2Z0

V�

Z0

z � l

L

�

�

�

� V�
V0

2

FIGURE 6.34

For obtaining the wave voltage and current for
the system of Fig. 6.33

1-2
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396 Chapter 6 Transmission-Line Essentials for Digital Electronics

seen that unlike in the case of linear resistive terminations and discontinuities,
the concept of the reflection coefficient is not useful for studying transient be-
havior when reactive elements are involved. In fact, we note from (6.56) and
(6.57) that the ratios of reflected voltage and current to the incident voltage and
current, respectively, are no longer constants as in the resistive case.

We may now write the expressions for the total voltage across the induc-
tor and the total current through the inductor as follows:

(6.58)

(6.59)

These quantities are shown sketched in Figs. 6.35 (a) and (b), respectively. It
may be seen from these sketches that in the steady state, the voltage goes to

 = b0 for t 6 T

1V0>Z02[1 - e-1Z0>L2 1t - T2] for t 7 T

 I1l, t2 =
V0

2Z0
+ I-1l, t2

 = b0 for t 6 T

V0 e-1Z0>L2 1t - T2 for t 7 T

 V1l, t2 =
V0

2
+ V-1l, t2

V0

T

V0e�1

L
Z0

T �

(a)

0
t

[V]z � l

V0

T

(1� e�1)

Z0
V0

Z0

L
Z0

T �

(b)

0
t

[I]z � l

FIGURE 6.35

Time variations of (a) voltage across the inductor and (b) current through the
inductor, for the system of Fig. 6.43.
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6.4 Lines with Reactive Terminations and Discontinues 397

zero and the current goes to This is consistent with the fact that the in-
ductor behaves like a short circuit for the dc voltage in the steady state, and
hence the situation in the steady state is the same as that for a short-circuited
line. Note also that the variations of the voltage and current from to

are governed by the time constant which is that of the inductor L
in series with of the line. In fact, we can obtain the voltage and current
sketches from considerations of initial and final behaviors of the reactive ele-
ment and the time constant without formally going through the process of set-
ting up the differential equation and solving it.We shall illustrate this procedure
by means of an example.

Example 6.5 A transmission-line system with a capacitive discontinuity

Let us consider the system shown in Fig. 6.36 consisting of a series capacitor of value 10 pF
at the junction between the two lines. Note that line 2 is terminated by its own character-
istic impedance, whereas the internal resistance of the voltage source is equal to the
characteristic impedance of line 1, so that no reflections occur at the two ends of the sys-
tem. We shall assume that the capacitor is initially uncharged and obtain the plots of line
voltage and line current at the input from considerations of initial and final behav-
iors of the capacitor.

Plots of line voltage and line current at versus time are shown in Figs. 6.37(a)
and (b), respectively. We shall explain the several features in these plots as follows: When
the switch S is closed at a wave of voltage 10 V and current 0.2 A goes down
the line. Since the voltage across a capacitor cannot change instantaneously, the initially
uncharged capacitor behaves like a short circuit when the wave impinges on the junc-
tion at Therefore, the wave then sees a resistance of 
across and produces a wave of initial voltage 5 V and initial current The

wave arrives initially at at thereby changing the line voltage and line
current there to 15 V and 0.1 A, as shown in Figs. 6.37(a) and (b), respectively. In the
steady state, the capacitor behaves like an open circuit, which explains the steady-state
values of 20 V and 0 A in these plots. Between and the voltage and cur-
rent vary exponentially with a time constant of which
is that of in series with or Hence, the voltage and current
values at are and 
respectively.

0.1 - 0.111 - e-12 = 0.037 A,15 + 511 - e-12 = 18.16 Vt = 4 ns
200 Æ.1Z01 + Z022,C1=  10 pF2

10-11 * 200 = 2 * 10-9 s = 2 ns,
t = q ,t = 2 ns

t = 2 ns,z = 01-2
-0.1 A.1-2aa¿

Z021=  150 Æ21+2t = 1 ns.aa¿
1+2

1+2t = 0,

z = 0

z = 0

Z0

L>Z0,t = q
t = T

V0>Z0.

Capacitive
discontinuity

z � 0

Z01 � 50 	
T � 1 ns

Z02 � 150 	

t � 0

a'

a

50 	

150 	

20 V

S 10 pF

FIGURE 6.36

Transmission-line system with a capacitive discontinuity.
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(a)

0 2 4

10

20

t, ns

[V]z � 0, V

18.16

(b)

0 2 4

0.1

0.2

t, ns

[I]z � 0, A

0.037FIGURE 6.37

Plots of (a) line voltage and (b) line
current at for the system of
Fig. 6.36.

z = 0

Finally, the arguments that we have employed to explain the features in Fig. 6.37
can be used to deduce information about the nature of the discontinuity if the plots rep-
resent measurements by a time-domain reflectometer.

K6.4. Inductive termination; Capacitive discontinuity.
D6.9. In the system of Fig. 6.33, assume that and Find

the value of the voltage across the inductor at for each of the following
cases: (a) (b)
(c)
Ans. (a) 12.13 V; (b) 10.61 V; (c) 5.52 V.

D6.10. In the system shown in Fig. 6.38, the capacitor is initially uncharged. Find the val-
ues of the line voltage at at the following times: (a) (b)
and (c)
Ans. (a) 0 V; (b) 15 V; (c) 7.2987 V.

t = 3 ns.
t = q ;t = 2 ns+ ;z = 0

L = 0.05 mH; IL10-2 = 0.1 A.
L = 0.1 mH, IL10-2 = 0.05 A;L = 0.1 mH, IL10-2 = 0 A;

t = 2 ms
T = 1 ms.Z0 = 50 Æ,V0 = 20 V,

z � 0

Z0 � 50 	
T � 1 ns

Z0 � 150 	

t � 0

50 	

150 	

20 V

S

40 pF

FIGURE 6.38

For Problem D6.10.
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6.5 Lines with Initial Conditions 399

6.5 LINES WITH INITIAL CONDITIONS

Thus far, we have considered lines with quiescent initial conditions, that is, with
no initial voltages and currents on them.As a prelude to the discussion of analy-
sis of interconnections between logic gates, we shall now consider lines with
nonzero initial conditions. We discuss first the general case of arbitrary initial
voltage and current distributions by decomposing them into and wave
voltages and currents. To do this, we consider the example shown in Fig. 6.39, in
which a line open-circuited at both ends is charged initially, say, at to the
voltage and current distributions shown in the figure.

Writing the line voltage and current distributions as sums of and 
wave voltages and currents, we have

(6.60a)

(6.60b)

But we know that and Substituting these into (6.60b)
and multiplying by we get

(6.61)

Solving (6.60a) and (6.61), we obtain

(6.62a)

(6.62b) V-1z, 02 = 1
2 [V1z, 02 - Z0 I1z, 02]

 V+1z, 02 = 1
2 [V1z, 02 + Z0 I1z, 02]

V+1z, 02 - V-1z, 02 = Z0 I1z, 02
Z0,

I- = -V->Z0.I+ = V+>Z0

 I+1z, 02 + I-1z, 02 = I1z, 02
 V+1z, 02 + V-1z, 02 = V1z, 02

1-21+2
t = 0,

1-21+2

Arbitrary
initial
distribution

l/2

50

0
z

V(z, 0), V

I(z, 0)

l

l/2

1

0
z

I(z, 0), A

l

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Z0 � 50 	
T � 1 ms

z � 0 z � l

V(z, 0)

FIGURE 6.39

Line open-circuited at both ends and initially charged to the voltage and current distributions V(z, 0)
and I(z, 0), respectively.
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Thus, for the distributions V(z, 0) and I(z, 0) given in Fig. 6.39, we obtain the dis-
tributions of and as shown by Fig. 6.40(a), and hence of

and as shown by Fig. 6.40(b).
Suppose that we wish to find the voltage and current distributions at some

later value of time, say, Then, we note that as the and waves
propagate and impinge on the open circuits at and respectively,
they produce the and waves, respectively, consistent with a voltage re-
flection coefficient of 1 and current reflection coefficient of at both ends.
Hence, at the and wave voltage and current distributions
and their sum distributions are as shown in Fig. 6.41, in which the points A, B, C,
and D correspond to the points A, B, C, and D, respectively, in Fig. 6.40. Pro-
ceeding in this manner, one can obtain the voltage and current distributions for
any value of time.

Suppose that we connect a resistor of value at the end at 
instead of keeping it open-circuited. Then the reflection coefficient at that
end becomes zero thereafter, and the wave, as it impinges on the resistor,
gets absorbed in it instead of producing the wave. The line therefore
completely discharges into the resistor by the time with the result-
ing time variation of voltage across as shown in Fig. 6.42, where the
points A, B, C, and D correspond to the points A, B, C, and D, respectively, in
Fig. 6.40.

For a line with uniform initial voltage and current distributions, the analysis
can be performed in the same manner as for arbitrary initial voltage and current
distributions.Alternatively, and more conveniently, the analysis can be carried out

RL,
t = 1.5 ms,

1-2
1+2

t = 0z = lZ0

1-21+2t = 0.5 ms,
-1

1+21-2 z = 0,z = l
1-21+2t = 0.5 ms.

I-1z, 02,I+1z, 02 V-1z, 02V+1z, 02

l/2

50

0
z

V�(z, 0), V

l

A

B

C

l/2

50

0

(a) (b)

z

V�(z, 0), V

l

D
C

l/2

1

0
z

I�(z, 0), A

l

l/2

–1

0
z

I�(z, 0), A

l

FIGURE 6.40

Distributions of (a) voltage and (b) current in the and waves obtained by decomposing the
voltage and current distributions of Fig. 6.39.

1-21+2

Uniform
initial
distribution
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6.5 Lines with Initial Conditions 401

with the aid of superposition and bounce diagrams. The basis behind this method
lies in the fact that the uniform distribution corresponds to a situation in which
the line voltage and current remain constant with time at all points on the line
until a change is made at some point on the line.The boundary condition is then
violated at that point, and a transient wave of constant voltage and current is set
up, to be superimposed on the initial distribution. We shall illustrate this tech-
nique of analysis by means of an example.

l/2

50

0
z

V�, V

l

D

B
C

l/2

50

0
z

V�, V

l

A

B

l/2

1

0
z

I�, A

l

l/2

50

0
z

V, V

100

l l/2

1

0
z

I, A

2

l

l/2

1

0 z

I�, A

–1

l

(a) (b)

FIGURE 6.41

Distributions of (a) voltage and (b) current in the and waves and their sum for for the
initially charged line of Fig. 6.39.

t = 0.5 ms1-21+2

0.5 1.0 1.5 2.0

50

0
t, ms

[V]RL, V

A

B

C
D

FIGURE 6.42

Voltage across resulting from
connecting it at to the end of the line
of Fig. 6.39.

z = lt = 0
RL1=  Z0 = 50 Æ2
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402 Chapter 6 Transmission-Line Essentials for Digital Electronics

Example 6.6 Bounce-diagram technique and checking energy balance
for an initially charged line

Let us consider a line of and initially charged to uniform voltage
and zero current. A resistor is connected at to the end

of the line, as shown in Fig. 6.43(a). We wish to obtain the time variation of the
voltage across for 

Since the change is made at by connecting to the line, a wave origi-
nates at so that the total line voltage at that point is and the total line
current is or as shown in Fig. 6.43(b). To satisfy the boundary condition at

we then write

(6.63)

But we know that Hence, we have

(6.64)

or

(6.65a)

(6.65b)

We may now draw the voltage and current bounce diagrams, as shown in Fig. 6.44 We
note that in these bounce diagrams, the initial conditions are accounted for by the horizontal
lines drawn at the top, with the numerical values of voltage and current indicated on

For V0 = 100 V, Z0 = 50 Æ, and RL = 150 Æ, we obtain V+ = -25 V and I + = - 0.5 A.

 I+ = -V0  
1

RL + Z0

 V+ = -V0  

Z0

RL + Z0

V0 + V+ = -  

RL

Z0
 V+

I+ = V+>Z0.

V0 + V+ = -RL I+

z = 0,
I+,0 + I+,

V0 + V+z = 0,
1+2RLz = 0

t 7 0.RL

z = 0
t = 0RL = 150 ÆV0 = 100 V

T = 1 msZ0 = 50 Æ

z � 0

Z0, T V0

t � 0 �

�

�

�

�

(a)

�

�

�

�

�

�

�

�

�

�

�

z � l

S

z = 0

V0 + V�RLRL

+

–

(b)

I�

FIGURE 6.43

(a) Transmission line charged initially to uniform voltage (b) For obtaining the voltage and
current associated with the transient wave resulting from the closure of the switch in (a).1+2

V0.
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6.5 Lines with Initial Conditions 403

them. Sketches of line voltage and current versus z for fixed values of t can be drawn from
these bounce diagrams in the usual manner. Sketches of line voltage and current versus t
for any fixed value of z also can be drawn from the bounce diagrams in the usual manner.
Of particular interest is the voltage across which illustrates how the line discharges
into the resistor. The time variation of this voltage is shown in Fig. 6.45.

It is also instructive to check the energy balance, that is, to verify that the energy dissipat-
ed in the resistor for is indeed equal to the energy stored in the line at 
since the line is lossless. To do this, we note that, in general, energy is stored in both electric
and magnetic fields in the line, with energy densities and respectively.Thus, for
a line charged uniformly to voltage and current the total electric and magnetic stored
energies are given, respectively, by

(6.66a)

 =
1
2

 cV0
2

 
12lc  T =

1
2

  

V0
2

Z0
 T

 We = 1
2 cV0

2 l = 1
2 cV0

2vp T

I0,V0

1
2 lI2,1

2 cV2

t = 0- ,t 7 0150-Æ

RL,

2 4 6

75

0
t, ms

[V]RL
, V

37.5
18.75 9.375

FIGURE 6.45

Time variation of voltage across for in
Fig. 6.43(a) for 

and T = 1 ms.RL = 150 Æ,
Z0 = 50 Æ,V0 = 100 V,

t 7 0RL
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FIGURE 6.44

Voltage-and current-bounce diagrams depicting the transient phenomenon for for the line
of Fig. 6.43 (a), for and T = 1 ms.V0 = 100 V, Z0 = 50 Æ, RL = 150 Æ,

t 7 0

Energy
balance
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404 Chapter 6 Transmission-Line Essentials for Digital Electronics

and

(6.66b)

Since for the example under consideration, and 
and Thus, the total initial stored energy in the line is Now,

denoting the power dissipated in the resistor to be we obtain the energy dissipated in
the resistor to be

which is exactly the same as the initial stored energy in the line, thereby satisfying the en-
ergy balance.

K6.5. Initial conditions;Arbitrary distribution; Uniform distribution; Bounce-diagram
technique.

D6.11. For the line of Fig. 6.39 with the initial voltage and current distributions as given
in the figure, find: (a) (b) (c) and
(d)
Ans. (a) 37.5 V; (b) 0.75 A; (c) 25 V; (d)

D6.12. In the system shown in Fig. 6.46, a line of characteristic impedance and
charged to 10 V is connected at to another line of characteristic imped-
ance and charged to 5 V. The one-way travel time T is equal to for
both lines. Find (a) the value of the voltage at the instant of time when both
lines are charged to the same voltage throughout their lengths; (b) the value of
the current to which the lines are charged at that instant of time; and (c) the en-
ergy stored in the system at any instant of time.
Ans. (a) 7 V; (b) 0.04 A; (c) 11/12 mJ.

1 ms50 Æ
t = 0

75 Æ
-0.5 A.

I1l>4, 1 ms2.
V1l>4, 1 ms2;I1l>2, 0.25 ms2;V1l>2, 0.25 ms2;
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FIGURE 6.46

For Problem D6.12.

RaoCh06v3.qxd  12/19/03  12:35 PM  Page 404



6.6 Interconnections Between Logic Gates 405

6.6 INTERCONNECTIONS BETWEEN LOGIC GATES

Thus far we have been concerned with time-domain analysis for lines with ter-
minations and discontinuities made up of linear circuit elements. Logic gates
present nonlinear resistive terminations to the interconnecting transmission
lines in digital circuits.The analysis is then made convenient by a graphical tech-
nique known as the load-line technique. We shall first introduce this technique
by means of an example.

Example 6.7 Load-line technique of analysis for a line terminated by a
nonlinear element

Let us consider the transmission-line system shown in Fig. 6.47, in which the line is ter-
minated by a passive nonlinear element having the indicated V-I relationship.We wish to
obtain the time variations of the voltages and at the source and load ends, respec-
tively, following the closure of the switch S at using the load-line technique.

With reference to the notation shown in Fig. 6.47, we can write the following equa-
tions pertinent to at 

(6.67a)

(6.67b)

where and are the voltage and current, respectively, of the wave set up imme-
diately after closure of the switch. The two equations (6.67a) and (6.67b) can be solved
graphically by constructing the straight lines representing them, as shown in Fig. 6.48,
and obtaining the point of intersection A, which gives the values of and Note in
particular that (6.67b) is a straight line of slope 1/50 and passing through the origin.

When the wave reaches the load end at a wave is set up. We
can then write the following equations pertinent to at 

(6.68a)

(6.68b)

 =
V+ - 1VL - V+2

50
=

2V+ - VL

50

 IL = I+ + I- =
V+ - V-

Z0

 VL = V+ + V-
 VL = 50IL ƒIL ƒ

z = l:t = T+
1-2t = T,z = l1+2

IS.VS

1+2I+V+

 IS = I+ =
V+

Z0
=

VS

50

 VS = V+
 50 = 200IS + VS

z = 0:t = 0+

t = 0,
VLVS

Load-line
technique

z � 0 z � l

Z0 � 50 	
T � 1 ms

t � 0

200 	 �

�

50 V

S

�

�

�

�

VL � 50IL  IL

Passive Nonlinear
VLVS

IS IL

FIGURE 6.47

Line terminated by a passive nonlinear element and driven by a constant-voltage source
in series with internal resistance.
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IL �
2V� � VL

50

IS �
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50

VL � 50IL  IL 

50 � 200IS + VS

FIGURE 6.48

Graphical solution for obtaining time variations of and for in the
transmission-line system of Fig. 6.47.

t 7 0VLVS

where and are the wave voltage and current, respectively. The solution for 
and is then given by the intersection of the nonlinear curve representing (6.68a) and
the straight line of slope corresponding to (6.68b). Noting from (6.68b) that for

we see that the straight line passes through point A. Thus, the so-
lution of (6.68a) and (6.68b) is given by point B in Fig. 6.48.

When the wave reaches the source end at it sets up a reflection.
Denoting this to be the wave, we can then write the following equations pertinent
to at 

(6.69a)

(6.69b)

where and are the wave voltage and current, respectively. Noting from
(6.69a) that for we see that (6.69b) represents a
straight line of slope 1/50 passing through B. Thus, the solution of (6.69a) and (6.69b) is
given by point C in Fig. 6.48.

Continuing in this manner, we observe that the solution consists of obtaining the
points of intersection on the source and load V-I characteristics by drawing successively
straight lines of slope and beginning at the origin (the initial state) and with
each straight line originating at the previous point of intersection, as shown in Fig. 6.48.
The points A, C, E, give the voltage and current at the source end for

whereas the points B, D, give the
voltage and current at the load end for Thus, for example,T 6 t 6 3T, 3T 6 t 6 5T, Á .

Á ,0 6 t 6 2T, 2T 6 t 6 4T, 4T 6 t 6 6T, Á ,
Á ,

-1>Z0,1>Z0

VS = V+ + V-, IS = 1V+ - V-2>50,
1- +2I-

 
+V-

 
+

 =
V+ - V- + 1VS - V+ - V-2

50
=

-2V- + VS

50

 IS = I+ + I- + I-
 
+ =

V+ - V- + V-
 
+

Z0

 VS = V+ + V- + V-
 
+

 50 = 200IS + VS

z = 0:t = 2T+
1- +2

t = 2T,z = 01-2
VL = V+, IL = V+>50,

-1>50
IL

VL1-2I-V-
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(a)

0 2 6

10

t, ms

VS

A

C
E

4

(b)

0 1 5

5

t, ms

VL

B
D

3

FIGURE 6.49

Time variations of (a) and (b) for the
transmission-line system of Fig. 6.47. The
voltage levels A, B, C, correspond to those
in Fig. 6.48.

Á

VL,VS

the time variations of and are shown in Figs. 6.49(a) and (b), respectively. Finally, it
can be seen from Fig. 6.48 that the steady-state values of line voltage and current are
reached at the point of intersection (denoted SS) of the source and load V-I characteristics.

Now, going back to Example 6.6, the behavior of the system for the uniform-
ly charged line can be analyzed by using the load-line technique, as an alternative
to the solution using the bounce diagram technique. Thus, noting that the termi-
nal voltage-current characteristics at the ends and of the system in
Fig. 6.43 are given by and respectively, and that
the characteristic impedance of the line is we can carry out the load-line
construction, as shown in Fig. 6.50, beginning at the point A (100 V, 0 A), and

50 Æ,
I = 0,V = -IRL = -150I

z = lz = 0

VLVS

0
50 Input 100

I, A

V, V

F

E

C

D

B

A

Output

Slope � � 1
50

�
1
3

� 2
3

Slope � 1
50

FIGURE 6.50

Load-line construction for the analysis of the system of Fig 6.43(a).
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FIGURE 6.51

(a) Transmission-line interconnection
between two logic gates. (b) Typical 
V-I characteristics for the logic gates.

drawing alternately straight lines of slope 1/50 and to obtain the points of
intersection B, C, D, The points B, D, F, give the line voltage and current
values at the end for intervals of beginning at 

whereas the points C, E, give the line voltage and current values at the
end for intervals of beginning at For example, the
time variation of the line voltage at provided by the load-line construc-
tion is the same as in Fig. 6.45.

We shall now apply the procedure for the use of the load-line technique for
a line with uniform initial distribution, just illustrated, to the analysis of the sys-
tem in Fig. 6.51(a) in which two transistor-transistor logic (TTL) inverters are
interconnected by using a transmission line of characteristic impedance and
one-way travel time T. As the name inverter implies, the gate has an output that
is the inverse of the input. Thus, if the input is in the HIGH (logic 1) range, the
output will be in the LOW (logic 0) range, and vice versa.Typical V-I characteris-
tics for a TTL inverter are shown in Fig. 6.51(b).As shown in this figure, when the
system is in the steady state with the output of the first inverter in the 0 state, the

Z0

z = 0
Á .3 ms,t = 1 ms,2 msz = l

ÁÁ ,
4 ms,2 ms,t = 0 ms,2 msz = 0

ÁÁ .
-1>50

Interconnec-
tion between
logic gates
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6.6 Interconnections Between Logic Gates 409

voltage and current along the line are given by the intersection of the output 0
characteristic and the input characteristic; when the system is in the steady state
with the output of the first inverter in the 1 state, the voltage and current along
the line are given by the intersection of the output 1 characteristic and the input
characteristic. Thus, the line is charged to 0.2 V for the steady-state 0 condition
and to 4 V for the steady-state 1 condition. We wish to study the transient phe-
nomena corresponding to the transition when the output of the first gate switches
from the 0 to the 1 state, and vice versa, assuming of the line to be 

Considering first the transition from the 0 state to the 1 state, and follow-
ing the line of argument in Example 6.7, we carry out the construction shown in
Fig. 6.52(a). This construction consists of beginning at the point corresponding
to the steady-state 0 (the initial state) and drawing a straight line of slope 1/30 to
intersect with the output 1 characteristic at point A, then drawing from point A

30 Æ.Z0

(a)

(b)

I, mA

V, V
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Input

Output 0 State

Output 1 State

Steady-State 0

Z0 � 30 	
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B D

T 3T

1

2

0
t

Vi, V

5T

1.55

3

4

0.2

2.6
2.95

FIGURE 6.52

(a) Construction based on the load-line
technique for analysis of the 0-to-1
transition for the system of Fig 6.51(a).
(b) Plot of versus t obtained from the
construction in (a).

Vi

Analysis 
of 0-to-1
transition

RaoCh06v3.qxd  12/18/03  4:26 PM  Page 409



410 Chapter 6 Transmission-Line Essentials for Digital Electronics
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Output 1 State
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FIGURE 6.53

(a) Construction based on the load-line
technique for analysis of the 1-to-0
transition for the system of Fig. 6.51(a).
(b) Plot of versus t obtained from the
construction in (a).

Vi

Analysis of 
1-to-0
transition

a straight line of slope to intersect the input characteristic at point B, and
so on. From this construction, the variation of the voltage at the input of the
second gate can be sketched as shown in Fig. 6.52(b), in which the voltage levels
correspond to the points in Fig. 6.52(a). The effect of the transients
on the performance of the system may now be seen by noting from Fig. 6.52(b)
that depending on the value of the minimum gate voltage that will reliably be
recognized as logic 1, a time delay in excess of T may be involved in the transi-
tion from 0 to 1. Thus, if this minimum voltage is 2 V, the interconnecting line
will result in an extra time delay of 2T for the input of the second gate to switch
from 0 to 1, since does not exceed 2 V until 

Considering next the transition from the 1 state to the 0 state, we carry out
the construction shown in Fig. 6.53(a), with the crisscross lines beginning at the

t = 3T+ .Vi

0, B, D, Á ,

Vi

-1>30
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6.7 Crosstalk on Transmission Lines 411

point corresponding to the steady-state 1. From this construction, we obtain the
plot of versus t, as shown in Fig. 6.53(b), in which the voltage levels correspond
to the points in Fig. 6.53(a). If we assume a maximum gate input
voltage that can be readily recognized as logic 0 to be 1 V, it can once again be
seen that an extra time delay of 2T is involved in the switching of the input of the
second gate from 1 to 0, since does not drop below 1 V until 

K6.6. Load-line technique; Interconnection between logic gates.
D6.13. Assume that in the system of Fig. 6.47 the values of the voltage source and its in-

ternal resistance are 12 V and respectively, and that of the line is
By using the load-line technique, find the approximate values of: (a)

at (b) at (c) at and (d) at 
Ans. (a) 2 V; (b) 9.3 V; (c) 5 V; (d) 8 V.

6.7 CROSSTALK ON TRANSMISSION LINES

When two or more transmission lines are in the vicinity of one another, a wave
propagating along one line, which we shall call the primary line, can induce a
wave on another line, the secondary line, due to capacitive (electric field) and
inductive (magnetic field) coupling between the two lines, resulting in the unde-
sirable phenomenon of crosstalk between the lines.An example is illustrated by
the arrangement of Fig. 6.54(a), which is a printed-circuit board (PCB) repre-
sentation of two closely spaced transmission lines. Figure 6.54(b) represents the
distributed circuit equivalent, where and are the coupling capacitance
and coupling inductance, respectively, per unit length of the arrangement.

lmcm

t = q .VLt = 4 ms;VLt = 3 ms;VSt = 2 ms;
VL100 Æ.

Z010 Æ,

t = 3T+ .Vi

1, B, D, Á ,
Vi

Primary Line

Secondary Line

PCB

Ground Plane

(a) (b)

    1 �z

    1 �z

    2 �z

    2 �z
    2 �z

    2 �z

    1 �z

    1 �z

    m �z

    m �z

    m �z

    m �z

FIGURE 6.54

(a) PCB representation of two closely spaced transmission lines. (b) Distributed equivalent circuit for (a).

Crosstalk
explained
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t � 0

z � 0 z � l

z � j
dj

S

Line 1
Z0, vp, T Z0

Z0

�
�

Vg(t)

Line 2
Z0, vp, T Z0Z0

z

FIGURE 6.55

Coupled transmission-line pair for analysis of crosstalk.

In this section, we shall analyze a pair of coupled transmission lines for
the determination of induced waves on the secondary line for a given wave on
the primary line. To keep the analysis simple, we shall consider both lines to be
of the same characteristic impedance, velocity of propagation, and length, and
terminated by their characteristic impedances, so that no reflections occur
from the ends of either line. It is also convenient to assume the coupling to be
weak, so that the effects on the primary line of waves induced in the secondary
line can be neglected. Thus, we shall be concerned only with the crosstalk from
the primary line to the secondary line and not vice versa. Briefly, as the 
wave propagates on the primary line from source toward load, each infinitesi-
mal length of that line induces voltage and current in the adjacent infinitesimal
length of the secondary line, which set up and waves on that line. The
contributions due to the infinitesimal lengths add up to give the induced volt-
age and current at a given location on the secondary line.

We shall represent the coupled-line pair, as shown in Fig. 6.55, with the
primary line as line 1 and the secondary line as line 2.Then, when the switch S is
closed at a wave originates at on line 1 and propagates toward
the load. Let us consider a differential length at the location of line 1
charged to the wave voltage and current and obtain its contributions to the
induced voltages and currents in line 2.

The capacitive coupling induces a differential crosstalk current flow-
ing into the nongrounded conductor of line 2, given by

(6.70a)¢Ic21j, t2 = cm ¢j  

0V11j, t2
0t

¢Ic2,

1+2 z = jdj
z = 01+2t = 0,

1-21+2

1+2

Weak
coupling
analysis

Modeling for
capacitive
coupling

RaoCh06v3.qxd  12/18/03  4:26 PM  Page 412



6.7 Crosstalk on Transmission Lines 413

where is the line-1 voltage. This induced current is modeled by an ideal
current source, connected in parallel with line 2 at on that line, as shown in
Fig. 6.56(a). The current source views the characteristic impedance of the line to
either side of so that the equivalent circuit is as shown in Fig. 6.56(b).Thus,
voltages of are produced to the right and left of and propagate as
forward-crosstalk and backward-crosstalk voltages, respectively, on line 2.

The inductive coupling induces a differential crosstalk voltage, which
is given by

(6.70b)

This induced voltage is modeled by an ideal voltage source in series with line 2
at on that line, as shown in Fig. 6.57(a). The polarity of the voltage source
is such that the current due to it in line 2 produces a magnetic flux, which op-
poses the change in the flux due to the current in line 1, in accordance with
Lenz’s law. The voltage source views the characteristic impedance of the line to
either side of it, so that the equivalent circuit is as shown in Fig. 6.57(b). Thus,

z = j

¢Vc21j, t2 = lm ¢j  

0I11j, t2
0t

¢Vc2,

z = j1
2 Z0 ¢Ic2

z = j,

z = j
V11j, t2

Line 2

(a) (b)

�IC2(j, t) Z0 �IC2

z � j z � jz

1
2 Z0 �IC2�IC2

1
2

�

�

�

�

FIGURE 6.56

(a) Modeling for capacitive coupling in crosstalk analysis. (b) Equivalent circuit for (a).

Line 2

(a) (b)

�VC 2 �VC 2

�VC2

z � j
z � jz

1
2 �VC2

1
2

�

�

�

�

� � � �

FIGURE 6.57

(a) Modeling for inductive coupling in crosstalk analysis. (b) Equivalent circuit for (a).

Modeling for
inductive
coupling

RaoCh06v3.qxd  12/18/03  4:26 PM  Page 413



414 Chapter 6 Transmission-Line Essentials for Digital Electronics

voltages of and are produced to the left and right of re-
spectively, and propagate as backward-crosstalk and forward-crosstalk voltages,
respectively, on line 2.

Combining the contributions due to capacitive coupling and inductive
coupling, we obtain the total differential voltages produced to the right and left
of to be

(6.71a)

(6.71b)

respectively. Substituting (6.70a) and (6.70b) into (6.71a) and (6.71b), we obtain

(6.72a)

(6.72b)

where we have substituted in accordance with the relationship be-
tween the voltage and current of a wave.

We are now ready to apply (6.72a) and (6.72b) in conjunction with super-
position to obtain the and wave voltages at any location on line 2, due to
a wave of voltage on line 1. Thus, noting that the effect of at

at a given time t is felt at a location on line 2 at time 
we can write

(6.73)

or

(6.74)

where we have defined

(6.75)

and the prime associated with denotes differentiation with time. The quantity
is called the forward-crosstalk coefficient. Note that the upper limit in the in-

tegral in (6.108) is z, because the line-1 voltage to the right of a given location z
Kf

V1

Kf =
1
2

 acm Z0 -
lm

Z0
b

V2
+1z, t2 = zKf Vœ

11t - z>vp2

 =
1
2

 acm Z0 -
lm

Z0
bL

z

0
  

0V11t - z>vp2
0t

 dj

 V2
+1z, t2 = L

z

0
 
1
2

 acm Z0 -
lm

Z0
b   

0
0t

  cV1 a t -
j

vp
-

z - j
vp
b d  dj

t + 1z - j2>vp,z 7 jz = j
V1V11t - z>vp21+2 1-21+2

1+2I1 = V1>Z0,

 ¢V2
-1j, t2 =

1
2

 acm Z0 +
lm

Z0
b   

0V11j, t2
0t

 ¢j

 =
1
2

 acm Z0 -
lm

Z0
b   

0V11j, t2
0t

 ¢j

 ¢V2
+1j, t2 = c1

2
 cm Z0  

0V11j, t2
0t

-
1
2

 lm  

0I11j, t2
0t

d  ¢j

 ¢V2
- = 1

2 Z0 ¢Ic2 + 1
2 ¢Vc2

 ¢V2
+ = 1
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voltage and
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6.7 Crosstalk on Transmission Lines 415

on that line does not contribute to the forward-crosstalk voltage on line 2 at that
same location. The result given by (6.74) tells us that the forward-crosstalk volt-
age is proportional to z and the time derivative of the primary line voltage.

To obtain we note that the effect of at at a given time t is
felt at a location on line 2 at time Hence,

(6.76)

or

(6.77)

where we have defined the backward-crosstalk coefficient

(6.78)

Note that the lower limit in the integral in (6.76) is z, because the line-1 voltage
to the left of a given location z on that line does not contribute to the backward-
crosstalk voltage on line 2 at that same location.

We shall now consider an example to illustrate the application of (6.74)
and (6.77) for a specified voltage in Fig. 6.55.

Example 6.8 Determination of induced wave voltages in the secondary
line of a coupled pair of lines

Let in Fig. 6.55 be the function shown in Fig. 6.58, where We wish
to determine the and wave voltages on line 2.

Noting that

and hence

Vœ
11t2 = eV0>T0 for 0 6 t 6 T0

0 for t 7 T0

V11t2 =
1
2

 Vg1t2 = e 1V0>T02t for 0 6 t 6 T0

V0 for t 7 T0

1-21+2
T0 6 T1=  l>vp2.Vg1t2

Vg1t2

Kb =
1
4

 vp acm Z0 +
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b

V2
-1z, t2 = Kb cV1 a t -

z
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2l
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b d
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4
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0
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416 Chapter 6 Transmission-Line Essentials for Digital Electronics

0 T0

2V0

t

Vg

FIGURE 6.58

Source voltage for the system of
Fig. 6.65 for Example 6.8.

and using (6.74), we can write the wave voltage on line 2 as

This is shown in the three-dimensional plot of Fig 6.59, in which the cross section in any
constant-z plane is a pulse of voltage for Note that
the pulse voltage is shown to be negative.This is because normally the effect of inductive
coupling dominates that of the capacitive coupling, so that is negative.

Using (6.77), the wave voltage can be written as

where

 = d V0

T0
 a t - 2T +

z

l
 Tb for a2T -
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+
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V0

t
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FIGURE 6.60

Determination of backward-crosstalk voltage for the system of Fig. 6.55, with
as in Fig. 6.58.Vg1t2

l

T T + T0T0
0

z

V�
2

t

lKfV0/T0

FIGURE 6.59

Three-dimensional depiction of
forward-crosstalk voltage for the system
of Fig. 6.55, with as in Fig. 6.58.Vg1t2
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418 Chapter 6 Transmission-Line Essentials for Digital Electronics

These two voltages and the wave voltage for a value of z for which 
are shown in Fig. 6.60. Figure 6.61 shows the three-dimensional

plot of in which the cross section in any given constant-z plane gives the
time variation of for that value of z. Note that as z varies from zero to l, the
shape of changes from a trapezoidal pulse with a height of at to a tri-
angular pulse of height and width at and then changes to
a trapezoidal pulse again but with a height continuously decreasing from to
zero at 

K6.7. Weak coupling analysis; Capacitive coupling; Inductive coupling; Forward
crosstalk; Backward crosstalk.

D6.14. In Example 6.8, assume that 
and for the line parameters in Fig. 6.55, and for in
Fig. 6.58. Find the following: (a) the forward-crosstalk coefficient; (b) the back-
ward-crosstalk coefficient; (c) (d) and (e)
Ans. (a) (b) 0.0508; (c) (d)
(e)

SUMMARY

In this chapter we introduced the parallel-plate transmission line by considering
a uniform plane wave propagating between two parallel perfectly conducting
plates.We showed that wave propagation on a transmission line can be discussed

0.0212V0.
-0.0083V0;0.0025V0;-0.01 ns>m;

V210.5l, 0.6T2.V21l, 1.1T2;V210,0.01T2;
Vg1t2T0 = 0.2Tcm = 4 pF>m

l = 0.9 mH>m, c = 40 pF>m, lm = 0.093 mH>m,

z = l.
Kb V0

z = 11 - T0>2T2l2T0Kb V0

z = 0Kb V0V2
-

V2
-

V2
-1z, t2,

T0 6 2T - 1z>l2T
1z>l2T +1-2

0

T

z

l

l
T0

T � T0

T0 T + T0/2

2T

2T

KbV0

V2
–

2T � T0

1 �

t

FIGURE 6.61

Three-dimensional depiction of backward-crosstalk voltage for the system of Fig. 6.55, with as in
Fig. 6.58.

Vg1t2
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Summary 419

in terms of voltage and current, which are related to the electric and magnetic
field, respectively, by deriving the transmission-line equations

(6.79a)

(6.79b)

which then led us to the concept of the distributed circuit.We learned that prop-
agation along a transmission line in the general case is characterized by trans-
verse electromagnetic waves, with the parameters and differing from one
line to another and derivable from static-field considerations. The solutions to
the transmission-line equations are

(6.80a)

(6.80b)

where is the characteristic impedance of the line, and 
is the velocity of propagation on the line.

We discussed the determination of and for the case of a line with ho-
mogeneous dielectric, as well as for the case of a line involving more than one
dielectric, an example being the microstrip line. For the former case,

(6.81a)

(6.81b)

where c, and are the relative permittivity of the dielectric, the velocity of
light in free space, and the capacitance per unit length of the line computed
from static field considerations, respectively. For the latter case, assuming non-
magnetic dielectrics,

(6.82a)

(6.82b)

where is the capacitance per unit length of the line with the dielectrics in
place, and is the capacitance per unit length with all dielectrics replaced by
free space, both computed from static field considerations. Note that (6.82a)
and (6.82b) reduce to (6.81a) and (6.81b), respectively, if all dielectrics are the
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420 Chapter 6 Transmission-Line Essentials for Digital Electronics

same, since then Based on (6.81a) and (6.81b), and using closed
form solutions obtained in Sections 5.3 and 5.4 for the capacitance per unit
length, we presented the analytical expressions for for some common types
of lines.

We then discussed time-domain analysis of a transmission line terminated
by a load resistance and excited by a constant voltage source in series
with internal resistance Writing the general solutions (6.80a) and (6.80b)
concisely in the manner

(6.83a)
(6.83b)

where

(6.84a)

(6.84b)

we found that the situation consists of the bouncing back and forth of transient
and waves between the two ends of the line. The initial wave volt-

age is All other waves are governed by the reflection coeffi-
cients at the two ends of the line, given for the voltage by

(6.85a)

and

(6.85b)

for the load and source ends, respectively. In the steady state, the situation is the
superposition of all the transient waves, equivalent to the sum of a single 
wave and a single wave. We discussed the bounce-diagram technique of
keeping track of the transient phenomenon and extended it to a pulse voltage
source.

We learned that when a wave is incident from, say, line 1 onto a junction
with line 2, reflection occurs just as though line 1 is terminated by a load resistor
equal to the characteristic impedance of line 2. A transmitted wave goes into
line 2 in accordance with the voltage and current transmission coefficients

(6.86a)tV = 1 + ≠

1-2 1+2

≠S =
Rg - Z0

Rg + Z0

≠R =
RL - Z0

RL + Z0

V+Z0>1Rg + Z02.
1+21-21+2

 I- = -  
V-

Z0

 I+ =
V+

Z0

 I = I+ + I-
 V = V+ + V-

Rg.
V0RL

Z0

c = c0er.
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Summary 421

and

(6.86b)

respectively, where is the voltage reflection coefficient. Applying this to a sys-
tem of three lines in cascade, we showed how to obtain the unit impulse response
of the system and from it obtain the frequency response. We then extended the
analysis to lines with discontinuities to discuss and illustrate by means of an ex-
ample the application of time-domain reflectometry, an important experimental
technique.

We then considered lines with reactive terminations and discontinuities,
where we learned that the reflection coefficient concept is not useful to study the
transient behavior. It is necessary to write the differential equations pertinent to
the boundary conditions at the terminations and/or discontinuities, and solve
them subject to the appropriate initial conditions; alternatively, the required volt-
ages and currents can be obtained from considerations of initial and final be-
haviors of the reactive element(s), and associated time constant(s).

As a prelude to the consideration of interconnections between logic gates,
we discussed time-domain analysis of lines with nonzero initial conditions. For
the general case, the initial voltage and current distributions V(z, 0) and I(z, 0)
are decomposed into and wave voltages and currents as given by

The voltage and current distributions for are then obtained by keeping
track of the bouncing of these waves at the two ends of the line. For the special
case of uniform distribution, the analysis can be performed more conveniently
by considering the situation as one in which a transient wave is superimposed
on the initial distribution and using the bounce-diagram technique. We then in-
troduced the load-line technique of time-domain analysis, and applied it to the
analysis of transmission-line interconnection between logic gates.

Finally, we studied the topic of crosstalk on transmission lines, by consid-
ering the case of weak coupling between two lines. We learned that for a given
wave on the primary line, the crosstalk consists of two waves, forward and back-
ward, induced on the secondary line and governed by the forward-crosstalk co-
efficient and the backward-crosstalk coefficient, respectively. We illustrated by
means of an example the determination of crosstalk voltages for a specified ex-
citation for the primary line.

t 7 0

 I-1z, 02 = -  
1

Z0
 V-1z, 02

 I+1z, 02 =
1

Z0
 V+1z, 02

 V-1z, 02 = 1
2 [V1z, 02 - Z0 I1z, 02]

 V+1z, 02 = 1
2 [V1z, 02 + Z0 I1z, 02]

1-21+2

≠

tC = 1 - ≠
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422 Chapter 6 Transmission-Line Essentials for Digital Electronics

REVIEW QUESTIONS

Q6.1. Describe the phenomenon of guiding of a uniform plane wave by a pair of par-
allel, plane, perfectly conducting sheets.

Q6.2. Discuss the derivation of the transmission-line equations from the field equa-
tions by considering the parallel-plate line.

Q6.3. Discuss the concept of the distributed circuit as compared to a lumped circuit.
Q6.4. Discuss the physical interpretation of the distributed circuit concept from ener-

gy considerations.
Q6.5. What is a transverse electromagnetic wave? Discuss the electric and magnetic

field distributions associated with a transverse electromagnetic wave.
Q6.6. Discuss the analogy between uniform plane wave parameters and transmission-

line parameters.
Q6.7. Explain why the product of and of a line is equal to the product of and 

of the dielectric of the line.
Q6.8. What is the significance of the characteristic impedance of a line? Why is it not

in general equal to the intrinsic impedance of the medium between the conduc-
tors of the line?

Q6.9. Discuss the geometry associated with the microstrip line and the determination
of its characteristic impedance and velocity of propagation.

Q6.10. Discuss the general solutions for the line voltage and current and the notation
associated with their representation in concise form.

Q6.11. What is the fundamental distinction between the occurrence of the response in
one branch of a lumped circuit to the application of an excitation in a different
branch of the circuit and the occurrence of the response at one location on a
transmission line to the application of an excitation at a different location on
the line?

Q6.12. Describe the phenomenon of the bouncing back and forth of transient waves on
a transmission line excited by a constant voltage source in series with internal
resistance and terminated by a resistance.

Q6.13. What is the nature of the formula for the voltage reflection coefficient? Discuss
its values for some special cases.

Q6.14. What is the steady-state equivalent of a line excited by a constant voltage
source? What is the actual situation in the steady state?

Q6.15. Discuss the bounce-diagram technique of keeping track of the bouncing back and
forth of the transient waves on a transmission line for a constant voltage source.

Q6.16. Discuss the bounce-diagram technique of keeping track of the bouncing back
and forth of the transient waves on a transmission line for a pulse voltage
source.

Q6.17. How are the voltage and current transmission coefficients at the junction be-
tween two lines related to the voltage reflection coefficient?

Q6.18. Explain how it is possible for the transmitted voltage or current at a junction be-
tween two lines to exceed the incident voltage or current.

Q6.19. Discuss the determination of the unit impulse response of a system of three
lines in cascade.

Q6.20. Outline the procedure for the determination of the frequency response of a sys-
tem of three lines in cascade from its unit impulse response.

emcl
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Problems 423

Q6.21. What is a radome? How is it analyzed by using transmission-line equivalent?
Q6.22. Describe the technique of locating discontinuities in a transmission-line system

by using a time-domain reflectometer.
Q6.23. Discuss the transient analysis of a line driven by a constant voltage source in se-

ries with a resistance equal to the of the line and terminated by an inductor.
Q6.24. Why is the concept of reflection coefficient not useful for studying the transient

behavior of lines with reactive terminations and discontinuities?
Q6.25. Discuss the determination of the transient behavior of lines with reactive termi-

nations and discontinuities without formally setting up the differential equa-
tions and solving them.

Q6.26. Discuss the determination of the voltage and current distributions on an initial-
ly charged line for any given time from the knowledge of the initial voltage and
current distributions.

Q6.27. Discuss with the aid of an example the discharging of an initially charged line
into a resistor.

Q6.28. Discuss the bounce-diagram technique of transient analysis of a line with uni-
form initial voltage and current distributions.

Q6.29. How do you check the energy balance for the case of a line with initial voltage
and/or current distribution(s) and discharged into a resistor?

Q6.30. Discuss the load-line technique of obtaining the time variations of the voltages
and currents at the source and load ends of a line from a knowledge of the ter-
minal V-I characteristics.

Q6.31. Discuss the analysis of transmission-line interconnection between two logic gates.
Q6.32. Discuss briefly the weak-coupling analysis for crosstalk between two transmis-

sion lines.
Q6.33. Discuss the modeling of capacitive and inductive couplings for crosstalk on

transmission lines.
Q6.34. Discuss and distinguish between the dependence of the forward- and backward-

crosstalk coefficients on the line parameters.
Q6.35. Outline the determination of the forward- and backward-crosstalk voltages in-

duced on a secondary line for a given excitation for the primary line.

PROBLEMS

Section 6.1

P6.1. Finding fields and power flow for a parallel-plate line for specified voltage along
the line. A parallel-plate transmission line is made up of perfect conductors of
width and lying in the planes and The medium
between the conductors is a nonmagnetic perfect dielectric. For a uni-
form plane wave propagating along the line, the voltage along the line is given by

Neglecting fringing of fields, find: (a) the electric field intensity of the
wave; (b) the magnetic field intensity of the wave; (c) the current I(z, t)
along the line; and (d) the power flow P(z, t) down the line.

Hy1z, t2
Ex1z, t2

V1z, t2 = 10 cos 13p * 108t - 2pz2 V

1m = m02,
x = 0.01 m.x = 0w = 0.1 m

Z0
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424 Chapter 6 Transmission-Line Essentials for Digital Electronics

P6.2. Computation of parameters for a parallel-plate line with two dielectrics in par-
allel. A parallel-plate transmission line consists of an arrangement of two per-
fect dielectrics, as shown by the transverse cross section in Fig. 6.62. Note that

so that the TEM waves propagating in the two dielectrics are in
phase at all points along the interface between the dielectrics. Neglect fringing of
fields and compute the values of and of the line.Z0l, c,

m1e1 = m2e2,

y
z

x

0.01 m

0.1 m 0.1 m

e1 � 4e0

m1 � m0

e2 = 2e0
m2 = 2m0

FIGURE 6.62

For Problem P6.2.

P6.3. Computation of parameters for a parallel-plate line with two dielectrics in series.
Repeat Problem P6.2 for a parallel-plate line having the cross section shown in
Fig. 6.63.

0.01 m

0.01 m

0.2 m

z

x

y
e1 � 9e0, m1 � m0

e2 � 3e0, m2 � 3m0

FIGURE 6.63

For Problem P6.3.

P6.4. Transmission-line equations and power flow from the geometry of a coaxial
cable. Derive the transmission-line equations by considering the special case of
two infinitely long coaxial cylindrical conductors.Also show that the power flow
along the line is equal to the product of the voltage between the conductors and
current along the conductors.

Section 6.2

P6.5. A transmission-line system involving two lines. In the system shown in Fig. 6.64,
assume that is a constant voltage source of 100 V and the switch S is closed at

Find and sketch: (a) the line voltage versus z for (b) the line cur-
rent versus z for (c) the line voltage versus t for and (d) the
line current versus t for z = -40 m.

z = 30 m;t = 0.4 ms;
t = 0.2 ms;t = 0.

Vg
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z � �300 m z = 300 mz � 0� z � 0�z

Z0 � 120 	
vp � 2 � 108 m/s

Z0 = 60 	
vp � 3 � 108  m/s

Vg

t � 0

120 	
60 	

60 	

S

�
�

z

FIGURE 6.64

For Problem P6.5.

(a)

(b)

Z0 � 100 	
T � l /vp

z � 0

t � 0

z � l

Rg

S

RL

V0

90

t, ms
2

100

0 4 6

[V ]z � 0, V [V ]z � l, V

(c)

75

t, ms
2

100

0 4 6

FIGURE 6.65

For Problem P6.6.

P6.6. Finding several quantities in a transmission-line system from given observations.
In the system shown in Fig. 6.65(a), the switch S is closed at The line volt-
age variations with time at and for the first are observed to be
as shown in Fig. 6.65(b) and (c), respectively. Find the values of and T.V0, Rg, RL,

5 msz = lz = 0
t = 0.

P6.7. Expressing the steady-state situation on a line as superposition of and 
waves. The system shown in Fig. 6.66 is in steady state. Find (a) the line voltage
and current, (b) the wave voltage and current, and (c) the wave voltage
and current.

1-21+2
(�)(�)
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426 Chapter 6 Transmission-Line Essentials for Digital Electronics

P6.8. Time-domain analysis of a transmission-line system using the bounce-diagram
technique. In the system shown in Fig. 6.67, the switch S is closed at As-
sume to be a direct voltage of 90 V and draw the voltage and current
bounce diagrams. From these bounce diagrams, sketch: (a) the line voltage and
line current versus t (up to ) at and and (b) the
line voltage and line current versus z for and t = 3.5 ms.t = 1.2 ms

z = l>2;z = 0, z = l,t = 7.25 ms

Vg1t2
t = 0.

t, ms
0.1

100

0 0.2 0.3

Vg, V

FIGURE 6.68

For Problem P6.9.

P6.9. Time-domain analysis of a transmission-line system for a triangular pulse
excitation. Repeat Problem P6.5 assuming to be a triangular pulse, as
shown in Fig. 6.68.

Vg

z � 0

t � 0

z � l

S

Vg(t)

Z0 � 60 	
T � 1 ms 180 	

90 	

�
�

FIGURE 6.67

For Problem P6.8.

Z0 � 75 	
T � 1 ms

z � 0 z � l

40 	
60 	

100 V

FIGURE 6.66

For Problem P6.7.

P6.10. Time-domain analysis of a transmission-line system for a rectangular pulse
excitation. For the system of Problem P6.8, assume that the voltage source is
of duration instead of being of infinite duration. Find and sketch the
line voltage and line current versus z for and 

P6.11. Time-domain analysis of a transmission-line system for a triangular pulse exci-
tation. In the system shown in Fig. 6.69, the switch S is closed at Find andt = 0.

t = 3.5 ms.t = 1.2 ms
0.3 ms
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sketch: (a) the line voltage versus z for (b) the line current versus z
for and (c) the line voltage at versus t up to t = 4 ms.z = lt = 2 

1
2 

 
ms;

t = 2 
1
2 

 
ms;

z � 0

t � 0

z � l

S

Z0 � 50 	
T � 1 ms

50 	

�
� 10 sin 106pt V

FIGURE 6.70

For Problem P6.12.

z � 0

t � 0

z � l

S

Vg(t)

Z0 � 60 	
T � 1 ms 20 	

30 	

t, ms
0.5

90

0 1.0 1.5 2.0

Vg(t), V

�
�

FIGURE 6.69

For Problem P6.11.

P6.12. Time-domain analysis of a transmission-line system for a sinusoidal excitation.
In the system shown in Fig. 6.70, the switch S is closed at Draw the volt-
age and current-bounce diagrams and sketch (a) the line voltage and line cur-
rent versus t for and and (b) the line voltage and line current versus
z for 9/4, 5/2, 11/4, and Note that the period of the source voltage is

which is equal to the two-way travel time on the line.2 ms,
3 ms.t = 2,

z = lz = 0

t = 0.

Section 6.3

P6.13. Reflection and transmission at a transmission-line discontinuity. In the system
shown in Fig. 6.71, an incident wave of voltage strikes the discontinuity from
the left, that is, from line 1. Find the reflected wave voltage and current into line
1 and the transmitted wave voltage and current into line 2.

V+
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428 Chapter 6 Transmission-Line Essentials for Digital Electronics

P6.14. Unit impulse response and frequency response for a system of three lines in
cascade. In the system shown in Fig. 6.72: (a) find the output voltage across
the resistor for and (b) find and sketch the amplitude of

versus for Vg1t2 = cos vt.vVo1t2
Vg1t2 = d1t2;300-Æ

Vo

A

t

A/152 A/154

�A/153

�A/15

2 ms

(a)

(b)

Medium 1
m0, e0

Medium 2
m0, e2

Medium 3
m0, 9e0

l

I O

Exi Exo

Hyi Hyo

FIGURE 6.73

For Problem P6.15.

P6.15. Finding unknown parameters for a system of three media from unit impulse
response. In Fig. 6.73 (a), the plane I is the input plane from which a uniform

Line 2
Z02 � 50 	

Line 1
Z01 � 100 	

(�)

R2 � 150 	

R1 � 100 	

FIGURE 6.71

For Problem P6.13.

�

�

Vo
�
�

50 	

300 	
Vg(t)

Z0 � 50 	
T � 1 ms

Z0 � 150 	
T � 1 ms

Z0 � 300 	
T � 1 ms

FIGURE 6.72

For Problem P6.14.
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plane wave is incident normally on the interface between medium 1 and medi-
um 2, and the plane O is the output plane in which the response of the system
is observed. For an incident wave of find the minimum value of
the thickness l and the corresponding value of the permittivity of medium 2
required to obtain the electric field in the output plane, as shown in
Fig. 6.84(b), in which the interval between successive impulses is Then find
the value of A, and sketch the reflected wave electric field in the plane I.

P6.16. Computing reflected and transmitted powers at a junction involving three lines.
In Fig. 6.74, a wave carrying power P is incident on the junction from
line 1. Find (a) the power reflected into line 1; (b) the power transmitted into
line 2; and (c) the power transmitted into line 3.

a-a¿1+2

2 ms.
Exo1t2

e2

Exi1t2 = d1t2,

Z0 � 50 	
 T � 1 ms

t � 0

50 	

50 	

100 V

S

Relay
Coil

IL

0.1 H

1 2

FIGURE 6.75

For Problem P6.18.

P6.17. Time-domain reflectometer system observations for a line with a given disconti-
nuity. In the system of Fig. 6.29, assume that the discontinuity at is a re-
sistor of value in series with the line, instead of the parallel resistor.
Find and sketch the waveform that the TDR system would measure up to

Section 6.4

P6.18. Line terminated with an inductive load. In the system shown in Fig. 6.75, the
switch S is closed at with no current in the relay coil and with the relay in
position 1.When the relay coil current reaches 1.73 A, the relay switches to po-
sition 2; when the current drops to 0.636 A, the relay switches back to position 1.
(a) Find the time at which the relay switches to position 2. (b) Find the time at
which the relay switches back to position 1.

t2t1

IL

t = 0

t = 200 ns.

120-Æ40 Æ
z = 4 m

Line 2
Z02 � 100 	

Line 1
Z01 � 100 	

Line 3
Z03 � 50 	

a

a


FIGURE 6.74

For Problem P6.16.
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430 Chapter 6 Transmission-Line Essentials for Digital Electronics

P6.19. Line terminated with a capacitive load. In the system shown in Fig. 6.76, the
switch S is closed at with the voltage across the capacitor equal to zero.
(a) Obtain the differential equation for at (b) Find the solution for
V-1l, t2.

z = l.V-
t = 0,

P6.20. A transmission-line system with inductive discontinuity. In the system shown in
Fig. 6.77, the switch S is closed at with the lines uncharged and with zero
current in the inductor. Obtain the solution for the line voltage versus time at
z = l+ .

t = 0,

Z0, T 

Z0

Z0

C

V0

t � 0

S

z � 0 z � l

FIGURE 6.76

For Problem P6.19.

Z0

z � 0

Z0, T

Z0

V0

Z0L

t � 0

S

z � l� z � l�z z

FIGURE 6.77

For Problem P6.20.

P6.21. Using observations to find the parameters for a transmission line with a dis-
continuity. In the system shown in Fig. 6.78(a), the network N consists of a sin-
gle circuit element (R, L, or C). The system is initially uncharged. The switch S
is closed at and the line voltage at is observed to be as shown in
Fig. 6.78(b). (a) Determine whether the circuit element is R, L, or C. (b) Find
the value of Z02>Z01.

z = 0t = 0,
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Section 6.5

P6.22. Discharging of an initially charged line into a passive nonlinear element. In the
system shown in Fig. 6.79, a passive nonlinear element having the indicated volt-
ampere characteristic is connected to an initially charged line at Find the
voltage across the nonlinear element immediately after closure of the switch.

t = 0.

P6.23. Bounce-diagram technique and checking energy balance for an initially charged
line. In the system shown in Fig. 6.80, steady-state conditions are established with
the switch S closed.At the switch is opened. (a) Find the sketch the voltage
across the resistor for with the aid of a bounce diagram. (b) Show
that the total energy dissipated in the resistor after opening the switch is
exactly the same as the energy stored in the line before opening the switch.

150-Æ
t Ú 0,150-Æ

t = 0,

(a)

Z02

z � 0

Z01, T1

Z01

V0

Z02

t � 0

S

V0

0.5 V0

0.25 V0

2T1
(b)

0
t

[V ]z � 0

N

FIGURE 6.78

For Problem P6.21.

z � 0

Z0 � 50 	 V � 50 I I

t � 0�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

z � l

S

I

10 V

FIGURE 6.79

For Problem P6.22.
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432 Chapter 6 Transmission-Line Essentials for Digital Electronics

P6.24. An initially charged transmission-line system. In the system shown in Fig. 6.81,
steady-state conditions are established with the switch S closed. At the
switch is opened. (a) Sketch the voltage and current along the system for

(b) Find the total energy stored in the lines for (c) Find and
sketch the voltages across the two resistors for (d) From your sketches of
part (c), find the total energy dissipated in the resistors for t 7 0.

t 7 0.
t = 0- .t = 0- .

t = 0,

P6.25. An initially charged line connected to an inductor. In the system shown in
Fig. 6.82, steady-state conditions are established with the switch S open and no
current in the inductor. At the switch is closed. (a) Obtain the expres-
sions for the line voltage and current versus t at (b) Sketch the line volt-
age and current versus z for t = T>2.

z = l.
t = 0,

Z0 � 50 	
T � 1 ms

z � 0

t � 0

z � l

50 	
150 	

100 V

S

FIGURE 6.80

For Problem P6.23.

z � �l z � lz � 0

t � 0

60 	 100 V

60 	

120 	

S

Z0 � 60 	
T � 1 ms

Z0 � 60 	
T � 1 ms

FIGURE 6.81

For Problem P6.24.

Z0, T L

Z0

V0

z � 0

t � 0

z � l

S

FIGURE 6.82

For Problem P6.25.

Section 6.6

P6.26. Application of load-line technique for a line with linear resistive terminations.
For the system of Problem P6.8, use the load-line technique to obtain and plot
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line voltage and line current versus t (up to ) at and 
Also obtain the steady-state values of line voltage and current from the load-
line construction.

P6.27. Application of load-line technique for an initially charged line. For the system
of Problem P6.22, use the load-line technique to obtain and plot line voltage
versus t from up to at and 

P6.28. Analysis of transmission-line interconnection between two logic gates. For the
example of interconnection between logic gates of Fig. 6.51(a), repeat the load-
line constructions for and draw graphs of versus t for both 0-to-1
and 1-to-0 transitions.

P6.29. Analysis of transmission-line interconnection between two logic gates. For the
example of interconnection between logic gates of Fig. 6.51(a), find (a) the min-
imum value of such that for the transition from 0 to 1, the voltage reaches
2 V at and (b) the minimum value of such that for the transition from
1 to 0, the voltage reaches 1 V at 

Section 6.7

P6.30. Determination of induced wave voltages in the secondary line of a coupled pair
of lines. In Example 6.8, assume that is the function shown in Fig. 6.83, in-
stead of as in Fig. 6.58. Find and sketch the following: (a) (b)
and (c) V2

-10.8l, t2.
V2

-10, t2;V2
+1l, t2;

Vg1t2

t = T+ .Vi

Z0t = T+
ViZ0

ViZ0 = 50 Æ

z = l.z = 0t = 7l>vpt = 0

z = l.z = 0t = 5.25 ms

P6.31. Determination of induced wave voltages in the secondary line of a coupled pair
of lines. In Example 6.8, assume that

Find and sketch the following: (a) (b) (c)

P6.32. Determination of induced wave voltages in the secondary line of a coupled pair
of lines. In Example 6.8, assume that and Find and
sketch the following: (a) (b) and (c)

REVIEW PROBLEMS

R6.1. Circuit equivalents for transmission-line equations. Show that two alternative
representations of the circuit equivalent of the transmission line equations
(6.12a) and (6.12b) are as shown in Figs. 6.84(a) and 6.84 (b).

V21z, 1.1T2.V2
-1z, 1.1T2;V2

+1z, 1.1T2;
T0 = 0.2T.Kb>Kf = -25vp

V2
-10.75l, t2.V2

-10, t2;V2
+1l, t2;

Vg1t2 = e2V0 sin2 pt>T for 0 6 t 6 T

0 otherwise

t
0.1T

2V0

0 0.4T 0.5T

Vg

FIGURE 6.83

For Problem P6.30.
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434 Chapter 6 Transmission-Line Essentials for Digital Electronics

R6.2. A system of three transmission lines excited by a pulse voltage source. In the
system shown in Fig. 6.85, the voltage source is a pulse of amplitude 10 V and
duration from to and the switch S is closed at (a) Find
and sketch the voltage across the load resistor as a function of time for 
(b) Find and sketch the voltage across the internal resistance of the voltage
source as a function of time for (c) Show that the total energy supplied by
the voltage source is equal to the sum of the total energy dissipated in and the
total energy dissipated in Rg.

RL

t 7 0.
Rg

t 7 0.RL

t = 0.t = 1 ms,t = 01 ms
Vg

1
2     �z 1

2     �z     �z

    �z

�z
2z � z �z

2z � �z
2z � z �z

2z �

(a) (b)

1
2     �z

FIGURE 6.84
For Problem R6.1.

t � 0

S

Vg

Z0 � 100 	
vp � 3 � 108 m/s

Z
0  � 100 	

v
p  � 3 � 10 8 m/s

Z 0 �
 100 	

v p �
 3 � 10

8  m/s

Rg � 100 	

RL � 100 	

�
�

300 m

300 m

150 m

FIGURE 6.85

For Problem R6.2.
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R6.3. Uniform plane-wave impulse response and transparency of a dielectric slab. In
Fig. 6.86 the plane I is the input plane from which a uniform plane wave is inci-
dent normally on the interface between medium 1 and medium 2, and the plane
O is the output plane in which the response of the system is observed. (a) For an
incident wave of a unit impulse, find and sketch the sequence of
impulses for the electric field in the output plane. (b) If consists of
a periodic sequence of unit impulses of frequency f, show that there exists a
minimum value of f for which consists of a periodic sequence of unit im-
pulses of the same frequency f, and find that value of f.

Exo1t2
Exi1t2Exo1t2

Exi1t2 = d1t2,

Medium 1
m0, e0

Medium 2
m0, 9e0

Medium 3
m0, e0

5 cm

Plane I Plane O

Exi Exo

Hyi Hyo

FIGURE 6.86

For Problem R6.3.

R6.4. A system of three lines with a resistive network at the junction. In the system
shown in Fig. 6.87, a wave carrying power P is incident on the junction 
from line 1. (a) Find the value of R for which there is no reflected wave into line
1. (b) For the value of R found in (a), find the power transmitted into each of
lines 2 and 3.

a-a¿1+2

Line 1
Z01 � 100 	

Line 2
Z02 � 100 	

Line 3
Z03 � 100 	

R R

R

FIGURE 6.87

For Problem R6.4.

R6.5. An initially charged transmission-line system with capacitive discontinuity. In
the system shown in Fig. 6.88, steady-state conditions are established with the
switch S closed. At the switch S is opened. (a) Find the energy stored in
the system at (b) Obtain the solutions for the voltages across and

for (c) Show that the total energy dissipated in and for 
is equal to the energy stored in the system at t = 0- .

t 7 0RL2RL1t 7 0.RL2

RL1t = 0- .
t = 0,
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436 Chapter 6 Transmission-Line Essentials for Digital Electronics

R6.6. Transmission-line interconnection between two logic gates. For the example of
interconnection between logic gates in Section 6.6, find the value of for
which the voltage reached at for the transition from 0 to 1 is the same as
that reached for the transition from 1 to 0. What is the value of this voltage?

R6.7. A coupled line pair excited by a sinusoidal source in the primary line. In exam-
ple 6.8, assume that Show that for the ratio of
the amplitude of to the amplitude of is equal to and the
ratio of the amplitude of to is equal to pfl ƒKf ƒ .V0V21l, t2

Kb,Vg1t2,V0,V210, t2
f = 1>4T,Vg1t2 = V0 cos 2pft.

t = T+
Z0

Z0, T � CZ0 2Z0, T � CZ0
Z0

V0

t � 0S

RL1 � Z0 RL2 � 2Z0

C

FIGURE 6.88

For Problem R6.5.
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In Chapter 6, we introduced the transmission line and studied propagation and
bouncing of waves along a line, a topic applicable to digital electronics. In this
chapter, we are concerned with the steady-state analysis of transmission-line
systems excited by sinusoidally time-varying sources, a topic that is generally
applicable to communication systems. We recall from Chapter 6 that the phe-
nomenon on a transmission line excited by a source connected to the line at a
certain instant of time, say, consists of the transient bouncing of and

waves along the line for In the steady state, the situation is equiva-
lent to the superposition of one wave, which is the sum of all the transient

waves, and one wave, which is the sum of all the transient waves.
Thus, the general solutions for the line voltage and line current in the sinu-
soidal steady state are superpositions of voltages and currents, respectively,
of sinusoidal and waves. We shall first write these general solutions
and then discuss several topics pertinent to sinusoidal steady-state analysis of
transmission-line systems.

We introduce the standing-wave concept by first considering the particu-
lar case of a short-circuited line and then the general case of a line terminated
by an arbitrary load. We discuss several techniques of transmission-line match-
ing. In this connection, we introduce the Smith chart, a useful graphical aid in
the solution of transmission-line problems. Finally, we extend our treatment of
sinusoidal steady-state analysis to lossy lines and also consider two special cases
of pulses on lossy lines.

Although the concepts and techniques discussed in this chapter are based
on the analysis of transmission-line systems, many of these are also applicable to
the analysis of other, analogous systems. Examples are uniform plane wave
propagation involving multiple media, as in Section 4.7, and discontinuities in
waveguides, considered in Chapters 8 and 9.

1-21+2

1-21-21+2 1+2t 7 0.1-2 1+2t = 0,

439
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Communications
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440 Chapter 7 Transmission Lines for Communications

7.1 SHORT-CIRCUITED LINE

From (6.20a) and (6.20b), we write the general solutions for the line voltage and
line current in the sinusoidal steady state to be

(7.1a)

(7.1b)

The corresponding expressions for the phasor line voltage and phasor line cur-
rent are

(7.2a)

(7.2b)

where and and we have substituted for For sinu-
soidal steady-state problems, it is convenient to use a distance variable d that in-
creases as we go from the load toward the generator as opposed to z, which
increases from the generator toward the load, as shown in Fig. 7.1. The wave
that progresses away from the generator is still denoted as the wave, and
the wave that progresses toward the generator is still denoted as the wave.
In terms of d, the solutions for and are then given by

(7.3a)

(7.3b)

Let us now consider a lossless line short circuited at the far end as
shown in Fig. 7.2. We shall assume that sinusoidally time-varying traveling
waves exist on the line due to a source that is not shown in the figure and that
conditions have reached steady state. We wish to determine the characteristics

d = 0,

 I
 –1d2 =

1
Z0

 1V+ejbd - V-e-jbd2
 V1d2 = V+ejbd + V-e-jbd

IV
1-21+2

v>vp.bV- = BejfV+ = Aeju

 I
 –1z2 = 1

Z0
 1V+e-jbz - V-ejbz2

 V1z2 = V+e-jbz + V-ejbz

 I1z, t2 =
1

Z0
 eA cos cva t -

z
vp
b + u d - B cos cva t +

z
vp
b + f d f

 V1z, t2 = A cos cva t -
z
vp
b + u d + B cos cva t +

z
vp
b + f d

General
solution in
the sinusoidal
steady state

FIGURE 7.1

For illustrating the distance variable d used for sinusoidal steady state analysis
of traveling waves.

Generator
(�) Wave

(�) Wave

z

d

Load

RaoCh07v3.qxd  12/18/03  4:57 PM  Page 440



7.1 Short-Circuited Line 441

I(d)

d d � 0

Z0, b V(d)

FIGURE 7.2

Transmission line short circuited at the far end.

of the waves satisfying the boundary condition at the short circuit. Since the
voltage across a short circuit has to be always equal to zero, this boundary con-
dition is given by

(7.4)

Applying it to the general solution for given by (7.3a), we obtain

or

(7.5)

Thus, we find that the short circuit gives rise to a or reflected wave whose
voltage is exactly the negative of the or incident wave voltage, at the short
circuit.

Substituting (7.5) into (7.3a) and (7.3b), we get the particular solutions for
the complex voltage and current on the short-circuited line to be

(7.6a)

(7.6b)

The real voltage and current are then given by

(7.7a)

(7.7b)

 = 2 
ƒV+ ƒ
Z0

  cos bd cos 1vt + u2

 = Rea2 
ƒV+ ƒ
Z0

 eju cos bd ejvtb
 I1d, t2 = Re[I

 –1d2ejvt]

 = -2 ƒV+ ƒ  sin bd sin1vt + u2
 = Re12ejp>2 ƒV+ ƒeju sin bd ejvt2

 V1d, t2 = Re[V1d2ejvt]

 I1d2 =
1

Z0
 1V+ejbd + V+e-jbd2 = 2 

V+

Z0
  cos bd

 V1d2 = V+ejbd - V+e-jbd = 2jV+ sin bd

1+2 1-2
V- = -V+

V102 = V+ejb102 + V-e-jb102 = 0

V1d2
V102 = 0
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442 Chapter 7 Transmission Lines for Communications

where we have replaced by and j by The instantaneous power
flow down the line is given by

(7.7c)

These results for the voltage, current, and power flow on the short-circuited
line are illustrated in Fig. 7.3, which shows the variation of each of these quantities
with distance from the short circuit for several values of time. The numbers

beside the curves in Fig. 7.3 represent the order of the curves corre-
sponding to values of equal to From (7.7a), (7.7b),
and (7.7c) and from the sketches of Fig. 7.3, we can infer the following:

1. The line voltage is zero for or or 
for all values of time. If we short circuit the line at these values of d,

there will be no effect on the voltage and current at any other value of d.
2. The line current is zero for or or

for all values of time. If we open circuit the line at
these values of d, there will be no effect on the voltage and current at any
other value of d.

3. The power flow is zero for or or
for all values of time.

Thus, the phenomenon on the short-circuited line is one in which the volt-
age, current, and power flow oscillate sinusoidally with time with different ampli-
tudes at different locations on the line, unlike in the case of traveling waves in
which a given point on the waveform progresses in distance with time. Since there
is no feeling of wave motion down the line, these waves are known as standing
waves. In particular, they represent complete standing waves in view of the zero
amplitudes of the voltage, current, and power flow at certain locations on the line,
as just discussed and as shown in Fig. 7.3. Complete standing waves are the result
of and traveling waves of equal amplitudes. Whatever power is incident
on the short circuit by the wave is reflected entirely in the form of the 
wave since the short circuit cannot absorb any power. Although there is instanta-
neous power flow at values of d between the voltage and current nodes, there is
no time-average power flow for any value of d, as can be seen from

 = 0

 =
v

2p
  
ƒV+ ƒ2
Z0

  sin 2bdL
2p>v

t = 0
 sin 21vt + u2 dt

 8P9 =
1
TL

T

t = 0
P1d, t2 dt =

v

2pL
2p>v

t = 0
 P1d, t2 dt

1-21+21-21+2

d = 0, l>4, l>2, Á ,
2bd = 0, p, 2p, Á ,sin 2bd = 0,

d = l>4, 3l>4, 5l>4, Á ,
bd = p>2, 3p>2, 5p>2, Á ,cos bd = 0,

l, Á ,
d = 0, l>2,bd = 0, p, 2p, Á ,sin bd = 0,

0, p>4, p>2, Á , 2p.1vt + u21, 2, 3, Á , 9

 = -  
ƒV+ ƒ2
Z0

  sin 2bd sin 21vt + u2
 = -  

4 ƒV+ ƒ2
Z0

  sin bd cos bd sin1vt + u2 cos1vt + u2
 P1d, t2 = V1d, t2I1d, t2

ejp>2.ƒV+ ƒejuV+
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FIGURE 7.3

Time variations of voltage, current, and power flow associated with standing waves on a short-
circuited transmission line.
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From (7.6a) and (7.6b) or (7.7a) and (7.7b), or from Figs. 7.3(a) and 7.3(b),
we find that the amplitudes of the sinusoidal time variations of the line voltage
and line current as functions of distance along the line are

(7.8a)

(7.8b)

Sketches of these quantities versus d are shown in Fig. 7.4. These are known as
the standing-wave patterns. They are the patterns of line voltage and line cur-
rent one would obtain by connecting an ac voltmeter between the conductors
of the line and an ac ammeter in series with one of the conductors of the line
and observing their readings at various points along the line. Alternatively, one
can sample the electric and magnetic fields by means of probes. Standing-wave
patterns should not be misinterpreted as the voltage and current remaining
constant with time at a given point. On the other hand, the voltage and current
at every point on the line vary sinusoidally with time, as shown in the insets of
Fig. 7.4, with the amplitudes of these sinusoidal variations equal to the magni-
tudes indicated by the standing-wave patterns. Since the distance between suc-
cessive nodes of voltage or current is equal to a measurement of this
distance provides the knowledge of the wavelength. Furthermore, if the phase
velocity in the line is known, the frequency of the source can be computed, and
vice versa, since vp = lf.

l>2,

 ƒ I –1d2 ƒ =
2 ƒV+ ƒ

Z0
 ƒcos bd ƒ =

2 ƒV+ ƒ
Z0
` cos  

2p
l

 d `

 ƒV1d2 ƒ = 2 ƒV+ ƒ ƒsin bd ƒ = 2 ƒV+ ƒ ` sin  
2p
l

 d `
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Standing-wave patterns for voltage and current on a short-circuited line. The
insets show time variations of the voltage at points along the line.
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7.1 Short-Circuited Line 445

Since there is no power flow across a voltage node or a current node of the
standing-wave patterns, a constant amount of total energy is locked up in every

section between two such adjacent nodes with exchange of energy taking
place between the electric and magnetic fields. Thus, once the line is excited by
applying a source of energy, then each section of the line between the voltage
and current nodes acts as a resonator entirely independent of the remainder of
the line. In fact, the section can be removed from the line by cutting it, that is,
open circuiting it, at the current node and short circuiting it at the voltage node,
and still be made to maintain forever the oscillations of voltage and current.
Such oscillations are called natural oscillations. Similarly, sections of lengths
equal to multiples of can be removed by always cutting the line at current
nodes and short circuiting it at voltage nodes, without disturbing the oscillations.

For a fixed physical length of the line, its electrical length, that is, its length
in terms of wavelength, depends on the frequency.Thus, a line of length equal to
one-quarter wavelength at one frequency behaves as a line of length equal to a
different multiple of a wavelength at a different frequency. Let us now consider
a line of length l, one end of which is open-circuited and the other end short-
circuited, and assume that some energy is stored in this line. Suppose we now pose
the question: “What are all the possible standing-wave patterns on this line?” To
answer this, we note that the voltage across the short circuit must always be
zero, and, hence, the current there must have maximum amplitude. Similarly, the
current at the open-circuited end must always be zero, and, hence, the voltage
there must have maximum amplitude.We also know that the standing-wave pat-
terns are sinusoidal with the distance between successive nodes corresponding
to a half sine wave. Thus, the least possible variation is a quarter cycle of a sine
waveform. This corresponds to a wavelength, say, equal to 4l, and the corre-
sponding standing-wave patterns are shown in Fig. 7.5(a).

It is not possible to have a standing-wave pattern for which the wave-
length is greater than 4l since then the pattern on the line of length l will be less
than a quarter cycle of a sine wave. On the other hand, it is possible to have a
pattern for which the wavelength is less than 4l as long as the conditions of zero
voltage (maximum current) at the short circuit and zero current (maximum
voltage) at the open circuit are satisfied. Obviously, the next largest wavelength

less than for which this condition is satisfied corresponds to the patterns
shown in Fig. 7.5(b). For these patterns, or The next largest
wavelength, less than corresponds to the patterns shown in Fig. 7.5(c). For
these patterns, or 

We can continue in this manner and see that any standing-wave pattern for
which the length of the line is an odd multiple of one-quarter wavelength, that is,

(7.9)

is a valid standing-wave pattern. Alternatively, the wavelengths correspond-
ing to the valid standing-wave patterns, are given by

(7.10)ln =
4l

2n - 1
 n = 1, 2, 3, Á

ln,

l =
12n - 12ln

4
 n = 1, 2, 3, Á

l3 = 4l>5.l = 5l3>4,
l2,l3,

l2 = 4l>3.l = 3l2>4,
l1,l2,

l1,

l>4

l>4
l>4

l>4
Natural
oscillations
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446 Chapter 7 Transmission Lines for Communications

The corresponding frequencies are

(7.11)

where is the phase velocity. These frequencies are known as the natural fre-
quencies of oscillation.The standing-wave patterns are said to correspond to the
different natural modes of oscillation. The lowest frequency (corresponding to
the longest wavelength) is known as the fundamental frequency of oscillation,
and the corresponding mode is known as the fundamental mode. The quantity n
is called the mode number. In the most general case of nonsinusoidal voltage
and current distributions on the line, the situation corresponds to the superposi-
tion of some or all of the infinite number of natural modes.

Considerations similar to those for the line open-circuited at one end and
short-circuited at the other end apply to natural oscillations on lines short-
circuited at both ends or open-circuited at both ends.

Returning now to the expressions for the phasor line voltage and the pha-
sor line current given by (7.6a) and (7.6b), respectively, we define the ratio of

vp

fn =
vp

ln
=
12n - 12vp

4l
 n = 1, 2, 3, Á

Input
impedance

Voltage

VoltageVoltage

Current

CurrentCurrent

Open 
Circuit

Short
Circuit

l

ll

(a)

(b) (c)

l1

l3l2

FIGURE 7.5

Standing-wave patterns corresponding to (a) one-quarter cycle, (b) three-quarters cycle, and (c) five-
quarters cycle of a sine wave for the voltage and current amplitude distributions for a line of length l
open-circuited at one end and short-circuited at the other end.
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FIGURE 7.6

Variation of the input reactance
of a short-circuited transmission
line with frequency.

these two quantities as the line impedance at that point seen looking to-
ward the short circuit. Thus,

(7.12)

In particular, the input impedance of a short-circuited line of length l is
given by

(7.13)

We note from (7.13) that the input impedance of the short-circuited line is purely
reactive. As the frequency is varied from a low value upward, the input reac-
tance changes from inductive to capacitive and back to inductive, and so on, as
illustrated in Fig. 7.6. The input reactance is zero for values of frequency equal
to multiples of These are the frequencies for which l is equal to multiples
of so that the line voltage is zero at the input and hence the input sees a
short circuit. The input reactance is infinity for values of frequency equal to odd
multiples of These are the frequencies for which l is equal to odd multi-
ples of so that the line current is zero at the input and hence the input sees
an open circuit.

These properties of the input impedance of a short-circuited line (and,
similarly, of an open-circuited line) have several applications. We shall here dis-
cuss two of these applications.

1. Determination of the location of a short circuit (or open circuit) in a line.
The principle behind this lies in the fact that as the frequency of a generator

l>4,
vp>4l.

l>2,
vp>2l.

Z
 –

in = jZ0 tan bl = jZ0 tan 
2pf

vp
 l

Z
 –

in

Z
 –1d2 =

V1d2
I
 –1d2 =

2jV+ sin bd

21V+>Z02 cos bd
= jZ0 tan bd

Z
 –1d2

Location of
short circuit
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448 Chapter 7 Transmission Lines for Communications

connected to the input of a short-circuited (or open-circuited) line is varied con-
tinuously upward, the current drawn from it undergoes alternatively maxima
and minima corresponding to zero input reactance and infinite input reactance
conditions, respectively. Since the difference between a pair of consecutive fre-
quencies for which the input reactance values are zero and infinity is as
can be seen from Fig. 7.6, it follows that the difference between successive fre-
quencies for which the currents drawn from the generator are maxima and min-
ima is As a numerical example, if for an air–dielectric line, it is found that
as the frequency is varied from 50 MHz upward, the current reaches a minimum
for 50.01 MHz and then a maximum for 50.04 MHz, then the distance l of the
short circuit from the generator is given by

Since it follows that

Alternatively, if the length l is known, we can compute for the dielectric of
the line, from which the permittivity of the dielectric can be found, provided
that the value of (usually equal to ) is known.

2. Construction of resonant circuits at microwave frequencies. The princi-
ple behind this lies in the fact that the input reactance of a short-circuited line of
a given length can be inductive or capacitive, depending on the frequency, and
hence, two short-circuited lines connected together form a resonant system. To
obtain the characteristic equation for the resonant frequencies of such a system,
let us consider the system shown in Fig. 7.7, which is made up of two short-
circuited line sections of characteristic impedances and lengths and

and phase velocities and Denoting the voltages and currents just to thevp2.vp1l2,
l1Z02,Z01

m0m

vp

l =
3 * 108

4 * 3 * 104 = 2500 m = 2.5 km

vp = 3 * 108 m>s,

vp

4l
= 150.04 - 50.012 * 106 = 0.03 * 106 = 3 * 104

vp>4l.

vp>4l,

Resonant
system

V1

l1 l2

I1 I2

Y1

Z01, vp1 Z02, vp2V2
Y2

�

�

�

�

FIGURE 7.7

Resonant system formed by connecting together two short-circuited line sections.

RaoCh07v3.qxd  12/18/03  4:57 PM  Page 448



7.1 Short-Circuited Line 449

left and just to the right of the junction to be and and and respective-
ly, as shown in the figure, we write the boundary conditions at the junction as

(7.14a)

(7.14b)

Combining the two, we have

or

(7.15)

where and are the input admittances of the sections to the left and to the
right, respectively, of the junction and seen looking toward the short circuits.
Equation (7.15) is the condition for resonance of the system. To express it in
terms of the line parameters, we note that

(7.16a)

(7.16b)

Substituting (7.16a) and (7.16b) into (7.15) and simplifying, we obtain the char-
acteristic equation for the resonant frequencies to be

(7.17)

We shall illustrate the computation of the resonant frequencies by means of an
example.

Example 7.1 Finding the resonant frequencies for a transmission-line
resonant system

For the system of Fig. 7.7, let us assume and
and obtain the four lowest resonant frequencies of the system.

Substituting the numerical values of the parameters into the characteristic equa-
tion (7.17), we obtain

tan  
0.2pf

c
+

1
2

  tan  
0.08pf

c
= 0

vp1 = vp2 = c>2,
Z01 = 2Z02 = 60 Æ, l1 = 5 cm, l2 = 2 cm,

Z01 tan  
2pf

vp1
l1 + Z02 tan  

2pf

vp2
l2 = 0

 Y2 =
1

Z
 –

2
=

1
jZ02 tan b2 l2

=
1

jZ02 tan 12pf>vp22l2

 Y1 =
1

Z
 –

1
=

1
jZ01 tan b1 l1

=
1

jZ01 tan 12pf>vp12l1

Y2Y1

 Y1 + Y2 = 0

 
I
 –

1

V1
+

I
 –

2

V2
= 0

 I
 –

1 + I
 –

2 = 0

 V1 = V2

I
 –

2,V2I
 –

1V1
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450 Chapter 7 Transmission Lines for Communications

This equation is of the form

where and In general, an equation of this type can be
solved by plotting tan kx and tan x to scale versus x and finding the points of inter-
section. Alternatively, a programmable calculator or a computer can be used. Thus, the
first four solutions are x equal to and 

From the values of x obtained from the computer program, we obtain the lowest
four resonant frequencies to be and

Hz, or 1.1869, 2.0861, 3.1324, and 4.3676 GHz.

K7.1. Phasor line voltage and line current; General solutions; Short-circuited line;
Complete standing waves; Standing-wave patterns; Natural oscillations; Input
impedance; Resonant systems.

D7.1. For each of the following characteristics of standing waves on a lossless short-
circuited line, find the frequency of the source exciting the line: (a) the distance
between successive nodes of voltage amplitude is 50 cm and the dielectric is air;
(b) the distance between successive nodes of current amplitude is 50 cm and the
dielectric is nonmagnetic with and (c) the distance between successive
nodes of instantaneous power flow is 50 cm and the dielectric is air.
Ans. (a) 300 MHz; (b) 100 MHz; (c) 150 MHz.

D7.2. A lossless coaxial cable of characteristic impedance and having a nonmag-
netic perfect dielectric of permittivity is short-circuited at
the far end. Find the minimum length of the line for which the input impedance
is equal to the impedance of each of the following at (a) an in-
ductor of value equal to (b) an inductor of value equal to the induc-
tance per unit length of the line; and (c) an inductor of value equal to the
inductance of the line.
Ans. (a) 44.98 cm; (b) 40.19 cm; (c) 143.03 cm.

D7.3. A lossless transmission line of length characteristic impedance
and having a nonmagnetic perfect dielectric is short-cir-

cuited at its far end. A variable frequency voltage source in series with an inter-
nal impedance is connected at its input and the line voltage and line current
at the input terminals are monitored as the source frequency is varied. It is
found that the voltage reaches a maximum amplitude of 10 V at 157.5 MHz and
then the current reaches a maximum amplitude of 0.2 A at 165 MHz. Find the
following: (a) the maximum amplitude of the current in the standing-wave
pattern on the line at 157.5 MHz; (b) the maximum amplitude of the voltage in
the standing-wave pattern on the line at 165 MHz; (c) the magnitude of and
(d) the permittivity of the dielectric of the line.
Ans. (a) 0.1 A; (b) 20 V; (c) (d)

7.2 LINE TERMINATED BY ARBITRARY LOAD

We devoted the preceding section to the short-circuited line. In this section, we
consider a line terminated by an arbitrary load impedance as shown in Fig. 7.8.Z

 –
R,

4e0.50 Æ;

Z
 –

g;

Z
 –

g

1m = m02,Z0 = 100 Æ,
l = 5 m,

0.5 mH;
f = 100 MHz:

e = 2.25e01m = m02,
50 Æ

e = 9e0;

4.3676 * 109
1.1869 * 109, 2.0861 * 109, 3.1324 * 109,

1.1647p.0.3165p, 0.5563p, 0.8353p,

-m
x = 0.08pf>c.k = 2.5, m = 0.5,

tan kx + m tan x = 0
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FIGURE 7.8

Line terminated by a
complex load impedance.

Then starting with the general solutions for the complex line voltage and line cur-
rent given by

(7.18a)

(7.18b)

and using the boundary condition at given by

(7.19)

we obtain

or

Thus, the ratio of the reflected wave voltage at the load, to the incident
wave voltage at the load, that is, the voltage reflection coefficient at the load, de-
noted by is given by

(7.20)

The solutions for and can then be written as

(7.21a)

(7.21b) I
 –1d2 =

1
Z0

 1V+ejbd - ≠R V+e-jbd2
 V1d2 = V+ejbd + ≠R V+e-jbd

I1d2V1d2

≠R =
V-

V+ =
Z
 –

R - Z0

Z
 –

R + Z0

≠R,

V+,V-,

V- = V+
 

Z
 –

R - Z0

Z
 –

R + Z0

V+ + V- =
Z
 –

R

Z0
 1V+ - V-2

V102 = Z
 –

RI
 –102

d = 0,

 I
 –1d2 =

1
Z0

 1V+ejbd - V-e-jbd2
 V1d2 = V+ejbd + V-e-jbd
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452 Chapter 7 Transmission Lines for Communications

We now define the generalized voltage reflection coefficient, that is,
the voltage reflection coefficient at any value of d, as the ratio of the reflected
wave voltage to the incident wave voltage at that value of d. From (7.21a), we
see that

(7.22)

so that

(7.23a)

and

(7.23b)

where is the phase angle of Thus, the magnitude of the generalized reflec-
tion coefficient remains constant along the line and equal to its value at the
load, whereas the phase angle varies linearly with d. In terms of we can
write the solutions for and as

(7.24a)

(7.24b)

To study the standing-wave patterns corresponding to (7.24a) and (7.24b),
we look at the magnitudes of and These are given by

(7.25a)

(7.25b)

To sketch and it is sufficient if we consider the quantities
and since is simply a constant, determined by

the boundary condition at the source end. Each of these quantities consists of
two complex numbers, one of which is a constant equal to and the other
of which has a constant magnitude but a variable phase angle To1u - 2bd2.ƒ ≠R ƒ

11 + j02
ƒV+ ƒƒ1 - ≠R e-j2bd ƒ ,ƒ1 + ≠R e-j2bd ƒ

ƒ I –1d2 ƒ ,ƒV1d2 ƒ

 =
ƒ V+ ƒ
Z0

 ƒ 1 - ≠R e-j2bd ƒ

 ƒ I –1d2 ƒ =
ƒV+ ƒ
Z0

 ƒejbd ƒ ƒ1 - ≠1d2 ƒ
 = ƒV+ ƒ ƒ1 + ≠R  e

-j2bd ƒ

 ƒV1d2 ƒ = ƒV+ ƒ ƒejbd ƒ ƒ1 + ≠1d2 ƒ
I
 –1d2.V1d2

 =
V+

Z0
 ejbd[1 - ≠1d2]

 I
 –1d2 =

V+

Z0
 ejbd11 - ≠R e-j2bd2

 = V+ejbd[1 + ≠1d2]
 V1d2 = V+ejbd11 + ≠R e-j2bd2

I
 –1d2V1d2 ≠1d2,

≠R.u

l≠1d2 = l≠R + le-j2bd = u - 2bd

ƒ ≠1d2 ƒ = ƒ≠R ƒ ƒe-j2bd ƒ = ƒ≠R ƒ

≠1d2 =
≠RV+e-jbd

V+ejbd = ≠R e-j2bd

≠1d2,Generalized
reflection
coefficient
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FIGURE 7.9

plane diagrams for sketching the voltage and current standing-wave patterns for the system
of Fig. 7.8.
≠

evaluate and we make use of the constructions in
the complex as shown in Fig. 7.9(a) and (b), respectively. In both dia-
grams, we draw circles with centers at the origin and having radii equal to For

the complex number is equal to or which is represent-
ed by point A in Fig. 7.9(a). To add and we simply draw a line from
the point to the point A. The length of this line gives which is
proportional to the amplitude of the voltage at As d increases, point A,
representing moves around the circle in the clockwise direction.The line
joining to the point A whose length is executes the motion
of a crank. To subtract from we locate point B in Fig. 7.9(b), which
is diametrically opposite to point A in Fig. 7.9(a), and draw a line from 
to point B. The length of the line gives which is proportional to the
amplitude of the current at As d increases, B moves around the circle in
the clockwise direction following the movement of A in Fig. 7.9(a). The line
joining to the point B whose length is executes the mo-
tion of a crank. From these constructions and assuming we note
the following facts:

1. Point A lies along the positive real axis and point B lies along the negative
real axis for or 
where Hence, at these values of d, the voltage amplitude is
maximum and equal to whereas the current amplitude is
minimum and equal to The voltage and current are in
phase.

2. Point A lies along the negative real axis and point B lies along the positive
real axis for or 

where Hence, at these values of d, the volt-
age amplitude is minimum and equal to whereas the currentƒV+ ƒ11 - ƒ≠R ƒ2,

n = 1, 2, 3, 4, Á .12n - 12p],
d = 1l>4p2[u +  1u - 2bd2 = -p, -3p, -5p, -7p, Á ,

1 ƒV+ ƒ>Z0211 - ƒ≠R ƒ2.
ƒV+ ƒ11 + ƒ≠R ƒ2,

n = 0, 1, 2, 3, Á .
d = 1l>4p21u + 2np2,1u - 2bd2 = 0, -2p, -4p, -6p, Á ,

-p … u 6 p,
ƒ1 - ≠R e-j2bd ƒ1-1, 02

d = 0.
ƒ1 - ≠R ƒ ,

1-1, 02
11 + j02,≠R

ƒ1 + ≠R e-j2bd ƒ1-1, 02
≠R e-j2bd,

d = 0.
ƒ1 + ≠R ƒ ,1-1, 02

≠R,11 + j02 ƒ ≠R ƒeju,≠R≠R e-j2bdd = 0,
ƒ ≠R ƒ .

≠-plane,
ƒ1 - ≠R e-j2bd ƒ ,ƒ1 + ≠R e-j2bd ƒ
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FIGURE 7.10

Voltage and current standing wave patterns for the system of Fig. 7.8. The insets show time
variations of voltage at points along the line.

amplitude is maximum and equal to The voltage and
current are in phase.

3. Between maxima and minima, the voltage and current vary in accordance
with the lengths of the line joining to the points A and B, respec-
tively, as they move around the circles. These variations are not sinusoidal
with distance. The variations near the minima are sharper than are those
near the maxima; hence, the minima can be located more accurately than
can the maxima. Also, the voltage and current are not in phase.

From the preceding discussion, we now sketch the standing-wave patterns
for the line voltage and current, as shown in Fig. 7.10.These patterns correspond
to partial standing waves, as compared to complete standing waves in the case
of the short-circuited line.There are three parameters associated with the stand-
ing-wave patterns as follows.

1. The standing-wave ratio, abbreviated as SWR. This is the ratio of the maxi-
mum voltage amplitude to the minimum voltage amplitude in
the standing-wave pattern. Thus

(7.26)SWR =
Vmax

Vmin
=

ƒV+ ƒ11 + ƒ≠R ƒ2
ƒV+ ƒ11 - ƒ≠R ƒ2 =

1 + ƒ≠R ƒ
1 - ƒ≠R ƒ

VminVmax

1-1, 02

1 ƒV+ ƒ>Z0211 + ƒ≠R ƒ2.

Standing-
wave
parameters

RaoCh07v3.qxd  12/18/03  4:57 PM  Page 454



7.2 Line Terminated by Arbitrary Load 455

Note also that SWR is equal to the ratio of the maximum current ampli-
tude to the minimum current amplitude in the standing-wave pat-
tern, since

The SWR is a measure of standing waves on the line. It is an easily mea-
surable parameter. We note the following special cases:

(a) For and the standing-wave pattern is simply a line
representing constant amplitude.This is the case for a semi-infinitely
long line or for a line terminated by its characteristic impedance.

(b) For and the standing-wave pattern possesses
perfect nulls. This is the case for complete standing waves.

2. The distance of the first voltage minimum from the load, denoted by
The voltage minimum nearest to the load occurs when the phase angle of

is equal to that is, for equal to Thus,

(7.27)

or

(7.28)

where If which occurs when is purely real and
greater than and a voltage maximum exists right at the
load. If which occurs when is purely real and less than

and a voltage minimum exists right at the load.
3. The wavelength Since the distance between successive voltage minima

is equal to the wavelength is twice the distance between successive
voltage minima.

For a numerical example involving a complex let us consider 
and Then

 = 0.593e-j0.74p

 = 0.593l -133.16°

 =
-7 - j4

13 - j4
=

8.06l -150.26°

13.60l -17.10°

 ≠R =
Z
 –

R - Z0

Z
 –

R + Z0
=
115 - j202 - 50

115 - j202 + 50

Z0 = 50 Æ.115 - j202 Æ
Z
 –

R =  Z
 –

R,

l>2,
l.

Z0, dmin = 0
Z
 –

Ru = -p,
Z0, dmin = l>4 Z

 –
Ru = 0,-p … u 6 p.

dmin =
u + p

2b
=
l

4p
 1u + p2

u - 2bdmin = -p

-p.1u - 2bd2-p,≠1d2 = ≠R e-j2bd

dmin.

ƒ ≠R ƒ = 1, SWR = q

≠R = 0, SWR = 1

Imax

Imin
=
1 ƒV+ ƒ>Z0211 + ƒ≠R ƒ2
1 ƒV+ ƒ>Z0211 - ƒ≠R ƒ2 =

1 + ƒ≠R ƒ
1 - ƒ≠R ƒ

IminImax
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456 Chapter 7 Transmission Lines for Communications

Conversely to the computation of standing-wave parameters for a given
load impedance, an unknown load impedance can be determined from stand-
ing-wave measurements on a line of known characteristic impedance. An appli-
cation in practice is the determination of the input impedance of an antenna by
making standing-wave measurements on the line feeding the antenna. To out-
line the basis, we note that by rearranging (7.26) and (7.28), we obtain

(7.29)

and

(7.30)

Thus, the measurement of SWR, and provides both the magnitude and
phase angle of Then, since from (7.20)

(7.31)

we can compute the value of 
A traditional method of performing standing-wave measurements in the

laboratory is by using a slotted line. The slotted line is essentially a rigid coaxial
line with air dielectric and having a length of about 1 meter (or at least a half-
wavelength long).The center conductor is supported by dielectric inserts.A nar-
row longitudinal slot is cut in the outer conductor, as shown in Fig. 7.11(a). The

Z
 –

R.

Z
 –

R = Z0 

1 + ≠R

1 - ≠R

≠R.
ldmin,

u =
4pdmin

l
- p

ƒ ≠R ƒ =
SWR - 1
SWR + 1

 = 0.065l

 dmin =
l

4p
 1u + p2 =

l

4p
 1-0.74p + p2

 SWR =
1 + ƒ≠R ƒ
1 - ƒ≠R ƒ

=
1 + 0.593
1 - 0.593

= 3.914

Slotted-line
measure-
ments

(a) (b)

Outer
Conductor

Slot

Inner
Conductor

To Detector
Probe

FIGURE 7.11

(a) Slotted line. (b) Cross-
sectional view of the
slotted-line illustrating the
probe arrangement.

Determination
of unknown
load 
impedance
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7.2 Line Terminated by Arbitrary Load 457

width of the slot is so small that it has negligible influence on the current flow
on the outer conductor and, hence, on the field configurations between the con-
ductors. A probe of small length, shown in Fig. 7.11(b), intercepts a portion of
the electric field between the inner and outer conductors, and a small voltage
proportional to the line voltage at the probe’s location is developed between
the probe and the outer conductor.The signal frequency voltage thus developed
is detected by some sort of detector, and the resulting output is used as an indi-
cator of the amplitude of the line voltage at the probe’s location.The amount of
energy picked up by the probe is small enough not to disturb appreciably the
fields within the line. The probe and the associated detector components are
mounted on a carriage arranged to slide mechanically along the longitudinal
slot. As the probe is moved along the slot, the detector indication provides a
measure of the variation of the voltage as a function of position on the line.
Since the SWR is the ratio of to the quantity of interest is the ratio of
the two readings rather than the absolute values of the readings themselves.
Therefore, absolute calibration of the detector is not required, provided that the
detector response is linear in the range of voltages to be measured.

Since it is not always possible to measure the distances of the standing-
wave pattern minima from the location of the load, the following procedure is
employed. First, the line is terminated by a short circuit in the place of the load.
One of the nulls in the resulting standing-wave pattern is taken as the reference
point, as shown in Fig. 7.12(a).This establishes that the location of the load is an
integral multiple of half-wavelengths from the reference point. Next, the short
circuit is removed and the load is connected. The voltage minimum then shifts
away from the reference point, as shown in Fig. 7.12(b). By measuring this shift,
either away from the load or toward the load, the value of can be established.
If the shift away from the load is measured, then we can see from Fig. 7.12(b)da

dmin

Vmin,Vmax

Reference
Point Load

l/2

l/2

da dt dmin

(a)

(b)

FIGURE 7.12

For illustrating the procedure employed for the determination of the distance of
the first voltage minimum of the standing-wave pattern from the load, by making
measurements away from the load.

dmin,
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458 Chapter 7 Transmission Lines for Communications

that is simply equal to On the other hand, if the shift toward the load
is measured, then is equal to where is given by the distance
between consecutive nulls either in the case of short circuit or with the un-
known load as the termination.

We shall illustrate the computation of from standing-wave measure-
ments by means of an example.

Example 7.2 Finding the load impedance for a transmission line from
standing-wave measurements

Let us assume that measurements performed on a slotted line of characteristic imped-
ance provided the following data. First, with the short circuit as the termina-
tion, voltage minima were found to be 20 cm apart. Next, with one of the minima marked
as the reference point and the short circuit replaced by the unknown load, the SWR was
found to be 3.0 and a voltage minimum was found to be at 5.80 cm from the reference
point on the side toward the load. We wish to compute the value of the unknown load
impedance.

From the value of the SWR, we obtain by using (7.29)

Since the distance between successive voltage minima is 20 cm, is equal to 20 cm, or
is equal to 40 cm. Since the voltage minimum shifted toward the load from the refer-

ence point, is equal to minus the shift, or Then, from (7.30),
we get

Thus

Finally, using (7.31), we compute the value of the load impedance to be

 = 137.45 + j48.3652 Æ
 = 61.17l52.248°

 = 50  
1.2242l23.303°

1.0007l -28.945°

 = 50  
1.1243 + j0.4843

0.8757 - j0.4843

 Z
 –

R = 50  
1 + 0.5ej0.42p

1 - 0.5ej0.42p

≠R = 0.5ej0.42p

u =
4p
40

* 14.2 - p = 0.42p

20 - 5.8 = 14.2 cm.l>2dmin

l

l>2
ƒ ≠R ƒ =

3 - 1
3 + 1

= 0.5

Z0 = 50 Æ

Z
 –

R

l>2l>2 - dt,dmin

dtda.dmin
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7.2 Line Terminated by Arbitrary Load 459

Line
impedance

Returning now to the solutions for the complex line voltage and current
given by (7.24a) and (7.24b), respectively, we find that the line impedance

that is, the impedance at any value of d seen looking toward the load, is
given by

(7.32)

The following properties of the line impedance are of interest:

1. At the location of a voltage maximum of the standing-wave pattern,
and are purely real and equal to their maximum and

minimum magnitudes and respectively. Hence, is
purely real and maximum, say, equal to 
or (SWR).

2. At the location of a voltage minimum of the standing-wave pattern,
and are purely real and equal to their minimum and

maximum magnitudes and respectively. Hence, is
purely real and minimum, say, equal to or

3. Between voltage maxima and minima, and are both
complex and out of phase. Hence, is complex, with magnitude lying
between (SWR) and 

4. Since 
repeats at intervals of and hence, repeats at intervals of 

5. The product of the line impedances at two values of d separated by is
given by

 = Z0
2 c1 + ≠1d2

1 - ≠1d2 d c
1 - ≠1d2
1 + ≠1d2 d

 = Z0
2 c1 + ≠1d2

1 - ≠1d2 d c
1 + ≠1d2e � jp

1 - ≠1d2e � jp d

 = Z0
2 c1 + ≠1d2

1 - ≠1d2 d c
1 + ≠1d2e � j2bl>4
1 - ≠1d2e � j2bl>4 d

 [Z
 –1d2] cZ –ad �

l

4
b d = cZ0  

1 + ≠1d2
1 - ≠1d2 d cZ0  

1 + ≠1d � l>42
1 - ≠1d � l>42 d

l>4
l>2.Z

 –1d2l>2,≠1d2 n = 1, 2, 3, Á ,≠1d � nl>22 = ≠1d2e � j2bnl>2 = ≠1d2e � j2np = ≠1d2,
Z0>1SWR2.Z0

Z
 –1d2 1 - ≠1d21 + ≠1d2

Z0>1SWR2.
Z0[11 - ƒ≠R ƒ2>11 + ƒ≠R ƒ2],Rmin,

Z
 –1d21 + ƒ≠R ƒ ,1 - ƒ≠R ƒ

1 - ≠1d21 + ≠1d2
Z0

Z0[11 + ƒ≠R ƒ2>11 - ƒ≠R ƒ2],Rmax,
Z
 –1d21 - ƒ≠R ƒ ,1 + ƒ≠R ƒ

1 - ≠1d21 + ≠1d2

 = Z0 
1 + ≠1d2
1 - ≠1d2

 Z
 –1d2 =

V1d2
I
 –1d2 =

V+ejbd[1 + ≠1d2]
1V+>Z02ejbd[1 - ≠1d2]

Z
 –1d2,
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ZR � (30 � j40) �

Zg � (10 � j10) �

Vg � 100   0   V

Z0 � 50 �

0.725l

d � l d � 0

�
�

FIGURE 7.13

Transmission-line system for illustrating the computation of power flow from input
impedance considerations.

or

(7.33)

This is a useful property, as we shall learn in the following section.
For a line of length l, as in Fig. 7.8, the input impedance is given from

(7.32) by

(7.34)

The input impedance is a useful parameter, because, for a given generator
voltage and internal impedance, the power flow down the line can be com-
puted by considering the line voltage and current at any value of d, since the
line is lossless; in particular, it is convenient to do this at the input end of the
line from input impedance considerations. We shall illustrate this by means of
an example.

Example 7.3 Finding the power delivered to the load from
considerations of line input impedance

Let us consider the system shown in Fig. 7.13, and find the time-average power delivered
to the load from input impedance considerations.

We proceed with the solution in the following step-by-step manner:

(a) Compute the reflection coefficient at the load.

≠R =
Z
 –

R - Z0

Z
 –

R + Z0
=
130 + j402 - 50

130 + j402 + 50
= 0.5l90°

Z
 –

in = Z
 –1l2 = Z0  

1 + ≠1l2
1 - ≠1l2

[Z
 –1d2] cZ –ad �

l

4
b d = Z0

2

Input
impedance
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�
�

Zin � (39.86 � j50.54) �

Zg � (10 � j10) �

Vg

Ig

d � l

FIGURE 7.14

Equivalent circuit at the input end
for the system of Fig. 7.13.d = l

(b) Compute the reflection coefficient at the input end 

(c) Compute the input impedance.

(d) We now have the equivalent circuit at the input, as shown in Fig. 7.14, from which
we compute the current drawn from the generator. Thus, we obtain

(e) The voltage across the input impedance is then given by

 = 100.159l -12.624° V

 = 64.361l -51.738° * 1.5562l39.114°

 V1l2 = Z
 –

inI
 –1l2

 = 1.5562l39.114° A

 =
100l0°

49.86 - j40.54
=

100l0°

64.261l -39.114°

 I
 –1l2 = I

 –
g =

Vg

Z
 –

g + Z
 –

in
=

100l0°

110 + j102 + 139.86 - j50.542

I
 –

g = I
 –1l2,

 = 139.86 - j50.542 Æ
 = 50  

1.2486l -22.385°

0.970l29.353°
= 64.361l -51.738°

 = 50  
1 + 0.5l -72°

1 - 0.5l -72°
= 50  

1 + 10.1545 - j0.47552
1 - 10.1545 - j0.47552

 Z
 –

in = Z
 –1l2 = Z0 

1 + ≠1l2
1 - ≠1l2

 = 0.5l -72°
 = 0.5l90° * 1l -162°

 = 0.5l90° * e-j14p>l210.725l2
 ≠1l2 = ≠R e-j2bl

d = l.≠1l2
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462 Chapter 7 Transmission Lines for Communications

(f) Finally, the time-average power delivered to the input, and hence to the load, is
given by

Returning to (7.32), we now define the normalized line impedance as
the ratio of the line impedance to the line characteristic impedance. Thus,

(7.35)

Conversely,

(7.36)

Finally, the line admittance is given by

or

(7.37)

where is the characteristic admittance of the line. The normalized
line admittance is

(7.38)

and, conversely,

(7.39)

We shall use these relationships in the following sections.

≠1d2 =
1 - y1d2
1 + y1d2

y1d2 =
Y1d2

Y0
=

1 - ≠1d2
1 + ≠1d2

Y0 = 1>Z0

Y1d2 = Y0  

1 - ≠1d2
1 + ≠1d2

Y1d2 =
1

Z
 –1d2 =

1
Z0

  

1 - ≠1d2
1 + ≠1d2

≠1d2 =
z1d2 - 1

z1d2 + 1

z1d2 =
Z
 –1d2

Z0
=

1 + ≠1d2
1 - ≠1d2

z1d2

 = 48.26 W

 = 1
2 * 100.159 * 1.5562 *  cos 51.738°

 = 1
2 Re[100.159l -12.624° * 1.5562l -39.114°]

 8P9 = 1
2 Re[V1l2I –*1l2]

Normalized
impedance
and
admittance
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7.3 Transmission-line matching 463

K7.2. Arbitrary load; Generalized reflection coefficient; Partial standing waves;
Standing-wave ratio; Standing-wave parameters; Standing-wave measure-
ments; Line impedance; Power flow; Normalized line impedance; Normalized
line admittance.

D7.4. A line of characteristic impedance is terminated by a load consisting of the
series combination of and Find the values
of SWR and for each of the following radian frequencies of the source:
(a) (b) and (c)
Ans. (a) 2, 0; (b) (c)

D7.5. Standing-wave measurements are performed on a line of characteristic imped-
ance terminated by a load For each of the following sets of standing-
wave data, find (a) a voltage minimum right at the load;
(b) two successive voltage minima at 3 cm and 9 cm from the
load; and (c) two successive voltage minima at 3 cm and 7 cm
from the load.
Ans. (a) (b) (c)

D7.6. An air-dielectric line of characteristic impedance is terminated by a
load impedance Find the input impedance of the line for each of
the following pairs of values of the frequency f and the length l of the line:
(a) (b) and (c)

Ans. (a) (b) (c)

7.3 TRANSMISSION-LINE MATCHING

In the preceding section, we discussed standing waves on a line terminated by
an arbitrary load. In the presence of standing waves, that is, when the load im-
pedance is not equal to the characteristic impedance, it follows from (7.34) that
the input impedance of the line will vary with frequency, because the electrical
length of the line and, hence, changes. This sensitivity to fre-
quency increases with the electrical length of the line. To show this, let the
length of the line be If the frequency is changed by an amount then
the change in n is given by

(7.40)

Thus the change in the number of wavelengths corresponding to the line
length, is proportional to n. The variation of the input impedance with frequency
puts a limitation on the performance of a transmission-line system from the point
of view of communication. For this and other reasons pertaining to power flow, it
is desirable to eliminate standing waves on the line by connecting a matching
device near the load such that the line views an effective impedance equal to its
own characteristic impedance on the generator side of the matching device as
shown in Fig. 7.15. The matching device should not at the same time absorb any
power. It should be noted that matching, as referred to here, is not related to max-
imum power transfer since the condition for maximum power transfer is that the

¢n,

¢n = ¢ a l

l
b = ¢ a lf

vp
b =

l
vp

 ¢f =
nl
vp

 ¢f = n  

¢f

f

¢f,l = nl.

≠1l2 = ≠R e-j2bl,

1225 + j02 Æ.145 + j602 Æ;145 - j602 Æ;
l = 5 m.

f = 37.5 MHz,f = 50 MHz, l = 3 m;f = 15 MHz, l = 5 m;

145 + j602 Æ.
Z0 = 75 Æ
148 + j362 Æ.1180 + j02 Æ;140 + j02 Æ;

SWR = 2.0,
SWR = 3.0,

SWR = 1.5,Z
 –

R:
Z
 –

R.60 Æ

3.324, 0.115l.14.94, 0.309l;
v = 0.8 * 108.v = 2 * 108;v = 108;

dmin

C = 100 pF.R = 30 Æ, L = 1 mH,
60 Æ
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�R

ZR
Z2Z1

Z0 Zq Z0

dql/4

FIGURE 7.16

For illustrating the quarter-wave transformer matching technique.

line input impedance must be the complex conjugate of the generator internal
impedance. In the following, we discuss three techniques of matching.

A. Quarter-Wave Transformer Matching

The quarter-wave transformer, or QWT, matching technique makes use of a sec-
tion of length of a line of characteristic impedance different from that of
the main line, as shown in Fig. 7.16.The principle is based on the property of line
impedance given by (7.33). With reference to the notation of Fig. 7.16, we first
note that to achieve a match, must be equal to Then, since, from (7.33),

must be purely real. We recall from the dis-
cussion of line impedance in Section 7.2 that the line impedance is purely real at
locations of voltage maxima and minima of the standing-wave pattern. There-
fore, within the first half-wavelength from the load, there are two solutions for

and hence for 
If we choose a voltage minimum for the first solution, then from (7.28)

(7.41)dq
112 =

l

4p
 1u + p2

Zq.dq

Z
 –

1Z
 –

2 = Zq
2, Z

 –
2 = Zq

2>Z –1 = Zq
2>Z0

Z0.Z
 –

1

Zql>4

Matching
Device

Z0 Z0
Z0

Source

Load

FIGURE 7.15

For illustrating the principle behind transmission-line matching.

Quarter-wave
transformer
matching
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7.3 Transmission-line matching 465

where is the phase angle of and the superscript (1) refers to solution 1.The
value of the line impedance is Hence, the value of 
is given by

or

(7.42)

For the second solution, the value of corresponds to the location of a voltage
maximum that occurs at from the location of the voltage minimum. Thus,

(7.43)

whichever is positive and less than The corresponding line impedance is
so that

(7.44)

B. Single-Stub Matching

Another technique of transmission-line matching known as stub matching con-
sists of connecting small sections of short-circuited lines (stubs) of appropriate
lengths in parallel with the line, at appropriate distances from the load. In the
single-stub matching technique, one stub is used and a match is achieved by
varying the location of the stub and the length of the stub. We shall assume the
characteristic impedance of the stub to be the same as that of the line and use
the notation shown in Fig. 7.17, in which is the normalized load impedance,
and are the normalized line admittances just to the left and just to the right,
respectively, of the stub, and b is the normalized input susceptance of the stub.
The solution to the single-stub matching problem then consists of finding the
values of and for a given value of and hence of 

First, we observe that to achieve a match, must be equal to 
Then proceeding to the right of the stub, we can write the following steps:

(7.45a)

(7.45b) ≠œ
1 =

1 - yœ
1

1 + yœ
1

=
jb

2 - jb

 yœ
1 = 1 - jb

11 + j02.y1

≠R.zRlsds

yœ
1

y1zR

Zq
122 = Z0 B1 + ƒ≠R ƒ

1 - ƒ≠R ƒ

Z011 + ƒ≠R ƒ2>11 - ƒ≠R ƒ2,
l>2.

dq
122 = dq

112 ;
l

4

;l>4 dq

Zq
112 = Z0B1 - ƒ≠R ƒ

1 + ƒ≠R ƒ

Z0 – Z0 

1 - ƒ≠R ƒ
1 + ƒ≠R ƒ

= Zq
2

ZqZ011 - ƒ≠R ƒ2>11 + ƒ≠R ƒ2.
≠R,u

Single-stub
matching
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(7.45c)

where n is an integer (positive or negative). Thus,

(7.46a)

(7.46b)

so that

(7.47)

(7.48)

Thus, two solutions are possible for b as given by (7.47) and the corresponding
solutions for are given by (7.48), where the integer value for n is chosen such
that Finally, to find the solutions for the stub length, we note0 … ds 6 l>2.

ds

 ds =
l

4p
 au <

p

2
- tan-1

  
b

2
- 2npb for b 	 0

 b = ;  

2 ƒ ≠R ƒ21 - ƒ≠R ƒ2

 u = ;
p

2
+ tan-1

 
b

2
+ 2bds + 2np for b 	 0

 ƒ ≠R ƒ =
ƒb ƒ24 + b2

 =
ƒb ƒ24 + b2

  ej1;p>2 + tan-1b>2 + 2bds + 2np2 for b 	 0

 ≠R = ≠1
¿  ej2bds =

jb

2 - jb
 ej2bds

�1
 �R

ls

ds

jb

zRy1 y1


FIGURE 7.17

For illustrating the single-
stub matching technique.
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Double-stub
matching

�R

l2

jb2 jb1

zR

y2 y2


�2
 �1

l1

y1 yRy1


Stub 2 Stub 1

d12 d1

FIGURE 7.18

For illustrating the double-stub matching technique.

from (7.13) that the normalized input impedance of a short-circuited line of
length is j tan so that

(7.49)

C. Double-Stub Matching

In the single-stub matching technique, it is necessary to vary the distance between
the stub and the load, as well as the length of the stub, in order to achieve a
match for different loads or for different frequencies. This can be inconve-
nient for some arrangements of lines. When two stubs are used, it is possible
to fix their locations and achieve a match for a wide range of loads by adjust-
ing the lengths of the stubs. To discuss the principle behind this double-stub
matching technique, we make use of the notation shown in Fig. 7.18, in which
all admittances and susceptances are normalized quantities with respect to
the characteristic admittance of the line. The solution to the double-stub

ls = d l2p  c tan-1 a -  
1
b
b d +

l

2
 for b 7 0

l

2p
 ctan-1 a -  

1
b
b d   for b 6 0

 tan bls = -  
1
b

 
1
jb

= j tan bls

bls,ls
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468 Chapter 7 Transmission Lines for Communications

matching problem then consists of finding the values of and for a given set
of values of (and hence, of ), and 

First, we observe that to achieve a match, must be equal to 
Then proceeding to the right in a step-by-step manner, we obtain an expression
for in terms of and as follows:

(7.50a)

(7.50b)

(7.50c)

(7.50d)

(7.50e)

For given values of and can be computed in the usual manner,
and the real and imaginary parts can be equated to the real and imaginary parts,
respectively, on the right side of (7.50e). Noting that does not appear in the
real part expression, we can first compute by solving the equation for the real
parts. Thus, letting the real part of as computed from and to be we
have

(7.51)

Rearranging and solving for we obtain

or

(7.52)b2 =
cos bd12 ; 21>g¿ - sin2 bd12

sin bd12

b2 =
sin 2bd12 ; 2sin2 2bd12 - 411 - 1>g¿2 sin2 bd12

2 sin2 bd12

b2,

1

1 - b2 sin 2bd12 + b2
2 sin2 bd12

= g¿

g¿,d1zRyœ
1

b2

b1

d1, y
œ
1zR

+ ja b2
2 sin 2bd12 - 2b2 cos 2bd12

2 - 2b2 sin 2bd12 + 2b2
2 sin2 bd12

- b1b

 =
1

1 - b2 sin 2bd12 + b2
2 sin2 bd12

 yœ
1 = y1 - jb1

 =
4 - j14b2 cos 2bd12 - 2b2

2 sin 2bd122
4 - 4b2 sin 2bd12 + 4b2

2 sin2 bd12

 y1 =
1 - ≠1

1 + ≠1

 ≠1 = ≠œ
2 ej2bd12 =

jb2

2 - jb2
 ej2bd12

 ≠œ
2 =

1 - yœ
2

1 + yœ
2

=
jb2

2 - jb2

 yœ
2 = y2 - jb2 = 1 - jb2

d12b1, b2,yœ
1

11 + j02.y2

d12.d1,≠RzR

l2l1
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TABLE 7.1 Solutions for Transmission-Line Matching Example

Technique Solution Number Solution

QWT 1
QWT 2

Single stub 1
Single stub 2

Double stub 1
Double stub 2 l1 = 0.05614l, l2 = 0.05996l

l1 = 0.13483l, l2 = 0.32726l

ds = 0.04167l, ls = 0.11359l
ds = 0.20833l, ls = 0.38641l

dq = 0.375l, Zq = 86.60254 Æ
dq = 0.125l, Zq = 28.86751 Æ

We now see that a solution does not exist for if and
hence, it is not possible to achieve a match for loads that result in the real
part of being greater than A simple way to get around this prob-
lem is to increase by (see Problem 7.24). Assuming that the condition

is achieved, we then compute two possible values for as
given by (7.52). From the equation for the imaginary parts of the corre-
sponding values of are then given by

(7.53)

where is the imaginary part of as computed from and Finally, the
lengths of the two stubs are computed from and as in the case of the single-
stub matching technique.

To consider a numerical example for the solution of all three types of
matching techniques, let and for the double-stub
matching case, and Then the solutions obtained by using
the appropriate equations for the three techniques are listed in Table 7.1.

Note that is an odd multiple of Values of odd multiples
of are commonly used for Also, if the specified value of is such that

then the value of is increased by and the double-stub
matching is continued.

For any transmission-line matched system, the match is disturbed as the
frequency is varied from that at which the various electrical lengths and dis-
tances are equal to the computed values for achieving the match. For example,
in the QWT matched system, the electrical length of the QWT departs from
one-quarter wavelength as the frequency is varied from that at which the match
is achieved, and the system is no longer matched even if the load does not vary
with frequency. A plot of the SWR in the main line to the left of the QWT ver-
sus frequency is typically of the shape shown in Fig. 7.19, where is the design
frequency at which the system is matched, and hence the frequency at which the
SWR is unity. One can then specify a tolerable value of SWR, say, S, so that
there exists an acceptable bandwidth of operation, Similar considera-
tions apply to the single-stub and double-stub matched systems.

f2 - f1.

f0

l>4d1g¿ 7 1>sin2 bd12,
ZRd12.l>8 l>8.d12 = 0.375l

d12 = 0.375l.d1 = 0
RL = 30 Æ, XL = -40 Æ,

b2b1

d1.zRyœ
1b¿

b1 =
b2

2 sin 2bd12 - 2b2 cos 2bd12

2 - 2b2 sin 2bd12 + 2b2
2 sin2 bd12

- b¿

b1

yœ
1,

b2g¿ 6 1>sin2 bd12

l>4d1

1>sin2 bd12.yœ
1

g¿ 7 1>sin2 bd12,b2

Bandwidth
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470 Chapter 7 Transmission Lines for Communications

To discuss a procedure by means of which the SWR versus frequency
curve can be computed for all three types of matching techniques discussed, let
us consider a transmission-line system having n discontinuities, as shown for

in Fig. 7.20. At each discontinuity, there can exist a stub and a change in
characteristic impedance.We shall consider a specification of zero for the length
of the stub to mean no stub is present instead of a stub of zero length. This does
not result in a conflict, since, for any matched system using short-circuited stubs,
values of zero cannot be obtained for stub lengths, because then the value of
SWR would be infinity. With this understanding, Fig. 7.20 can be used to repre-
sent all three types of matching systems by specifying values for the various
parameters, as shown in Table 7.2.

n = 2

SWR versus
frequency
computation

Bandwidth

SWR

f0f1 f2
1

S

f

FIGURE 7.19

The SWR versus frequency curve illustrating the bandwidth
between the two frequencies and on either side of the
design frequency at which the SWR is a specified value
S 1712.

f0,
f2,f1

l2

ZR

l1

Z02Z0 Z01

Z0 Z0

d2 d1

Section 1Section 2

FIGURE 7.20

Transmission-line system for computing the SWR versus frequency curve for QWT, single-stub,
and double-stub matched systems.
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7.3 Transmission-line matching 471

Then to compute the SWR in the main line at a given frequency, we first
note that, since the electrical length of a line section or of a stub is pro-
portional to f. Thus, at a frequency f, the electrical length is equal to times
its value at For a given the procedure consists of starting at the load and
computing in succession the line admittance to the left of the stub at each dis-
continuity, from a knowledge of the line admittance at the output of the line sec-
tion to the right of that stub, until the line admittance to the left of the last
discontinuity is found and used to compute the required SWR. In carrying out
this procedure, we observe the following:

1. To compute the normalized admittance, say, at the input (left) end of a
line section of length l from the normalized admittance, say, at the out-
put (right) end of that section, we use the formula

or

(7.54)

where and are the reflection coefficients at the input and output
ends, respectively.

2. To compute the line admittance to the left of a stub, we add the input ad-
mittance of the stub to the line admittance to the right of the stub.

The computation of SWR versus can be done by using a computer
program. For values of the input parameters pertinent to the first of the two so-
lutions for the double-stub matching case in Table 7.1, the computed values of
SWR are listed in Table 7.3.The frequency variation of is taken into account
by assuming to be the series combination of a single resistor and a single re-
active element.

ZR

ZR

f>f0

≠o≠i

yi =
j sin bl + yo cos bl

cos bl + j yo sin bl

 =
1 - [11 - yo2>11 + yo2]e-j2bl

1 + [11 - yo2>11 + yo2]e-j2bl

 yi =
1 - ≠i

1 + ≠i
=

1 - ≠o e-j2bl

1 + ≠o e-j2bl

yo,
yi,

f>f0,f0.
f>f0

l r 1>f,

TABLE 7.2 Values of Parameters for Using the System of Fig. 7.20 for Three
Different Cases

System n

QWT 2 1/4
Single stub 1 — — —
Double stub 2

Value of zero means no stub present.a

l2d12Z0l1d1Z0

lsdsZ0

0aZq0adqZ0

l2d2Z02l1d1Z01
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472 Chapter 7 Transmission Lines for Communications

1P. H. Smith, “Transmission-Line Calculator,” Electronics, January 1939, pp. 29–31.
2See, for example, M. Felton, “Moving the Smith Chart to a Low-Cost Computer,” Microwave Jour-
nal, October 1983, pp. 131–133, and N. N. Rao, “PC-Assisted Instruction of Introductory Electro-
magnetics,” IEEE Transactions on Education, February 1990, pp. 51–59.

K7.3. Matching; Quarter-wave transformer; Single stub; Double stub; Bandwidth.
D7.7. For a line of characteristic impedance find the location nearest to the load

and the characteristic impedance of a quarter-wave transformer required to
achieve a match for each of the following values of (a) 1/9; (b) and
(c) j1/3.
Ans. (a) 0; (b) (c)

D7.8. For each of the following values of terminating a line of characteristic im-
pedance find the lowest value of and the corresponding smallest value
of the length of a single short-circuited stub of characteristic impedance 
required to achieve a match between the line and the load: (a) and
(b)
Ans. (a) (b)

D7.9. For each of the following sets of values of and associated with the
double-stub matching technique, determine whether or not it is possible to
achieve a match between the line and the load: (a)

(b) and (c)

Ans. (a) Yes; (b) yes; (c) no.

7.4 THE SMITH CHART: 1. BASIC PROCEDURES

In the preceding section, we considered transmission-line matching techniques
and computer solutions of matching problems. In this section, we discuss some
basic procedures using the Smith chart. Introduced in 1939 by P. H. Smith,1 the
Smith chart continues to be a popular graphical aid in the solution of transmission-
line problems, including simulation on personal computers.2

zR = 2.5 - j5.0.
d1 = l>4, d12 = 5l>8,d1 = l>8, d12 = 3l>8, zR = 0.5;0.3 + j0.4;

zR =d1 = 0, d12 = 3l>8,

zR,d1, d12,
0, 0.074l.0.098l, 0.348l;

ZR = 112 - j242 Æ.
Z
 –

R = 30 Æ
60 Æls

ds60 Æ,
Z
 –

R

106.07 Æ, 0.125l.43.30 Æ, 0.125l;83.85 Æ,

-j0.5;≠R:

75 Æ,

TABLE 7.3 Computed Values of SWR
Versus Frequency

SWR

0.90 1.9249
0.92 1.7124
0.94 1.5117
0.96 1.325
0.98 1.1543
1.00 1.0006
1.02 1.1583
1.04 1.3459
1.06 1.5663
1.08 1.8236
1.10 2.1216

f>f0
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7.4 The Smith Chart: 1. Basic Procedures 473

ConstructionThe Smith chart is a transformation from the complex (or )
to the complex To discuss the basis behind the construction of the Smith
chart, we begin with the relationship for the reflection coefficient in terms of the
normalized line impedance as given by

(7.55)

Letting we have

and

for positive values of r. Thus, for the passive line impedances, the reflection co-
efficient lies inside or on the circle of unit radius in the We will here-
after call this circle the unit circle. Conversely, each point inside or on the unit
circle represents a possible value of reflection coefficient corresponding to a
unique value of passive normalized line impedance. Hence, all possible values
of passive normalized line impedances can be mapped onto the region bounded
by the unit circle.

To determine how the normalized line impedance values are mapped onto
the region bounded by the unit circle, we note that

so that

(7.56a)

(7.56b)

Let us now discuss different cases:

1. is purely real; that is, Then

Purely real values of are represented by points on the real axis. For exam-
ple, and are represented by and 1, respec-
tively, as shown in Fig. 7.21(a).

≠ = -1, -1
2, 0, 12qr = 0, 13, 1, 3,

z

Re1≠2 =
r - 1
r + 1
 and Im1≠2 = 0

x = 0.z

 Im1≠2 =
2x

1r + 122 + x2

 Re1≠2 =
r2 - 1 + x2

1r + 122 + x2

≠ =
r + jx - 1

r + jx + 1
=

r2 - 1 + x2

1r + 122 + x2 + j 
2x

1r + 122 + x2

≠-plane.

ƒ ≠1d2 ƒ = c 1r - 122 + x2

1r + 122 + x2 d
1>2

… 1

≠1d2 =
r + jx - 1

r + jx + 1
=
1r - 12 + jx

1r + 12 + jx

z1d2 = r + jx,

≠1d2 =
z1d2 - 1

z1d2 + 1

≠-plane.
Y-planeZ

 –
-plane
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Im �

Re �
r � 0 311/3 �

(a)

Im �

Re �
x � 0 x � � 

x � 1

x � �1

(b)

Im �

Re �
r � 0 311/3

(c)

311/3

1/2
1

2

0

�1/2
�1

�2

�

(e)

Im �

Re �
x � 0

x � 1/2

x � �1/2

x � 1

x � �1

x � 2

x � �2

x � �

(d)

FIGURE 7.21

Development of the Smith chart by transformation from to ≠.z

2. is purely imaginary; that is, Then

and

l≠ = tan-1
  

2x

x2 - 1

ƒ ≠ ƒ = ` x2 - 1

x2 + 1
+ j 

2x

x2 + 1
` = 1

r = 0.z
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7.4 The Smith Chart: 1. Basic Procedures 475

Purely imaginary values of are represented by points on the unit circle.
For example, and are represented by 

and respectively, as shown in Fig. 7.21(b).

3. is complex, but its real part is constant. Then

This is the equation of a circle with center at and
and radius equal to Thus, loci of constant r are cir-

cles in the with centers at and radii For
example, for and the centers of the circles are (0, 0),

and (1, 0), respectively, and the radii are and 0,
respectively. These circles are shown in Fig. 7.21(c).

4. is complex, but its imaginary part is constant. Then

This is the equation of a circle with center at and 
and radius equal to Thus, loci of constant x are circles in the 
with centers at (1, 1/x) and radii equal to For example, for 

and the centers of the circles are 
and (1, 0), respectively, and the radii are and 0, respec-

tively. Portions of these circles that fall inside the unit circle are shown in
Fig. 7.21(d). Portions that fall outside the unit circle represent active
impedances.

Combining Figs. 7.21(c) and (d), we obtain the chart of Fig. 7.21(e). In a
commercially available form shown in Fig. 7.22, the Smith chart contains cir-
cles of constant r and constant x for very small increments of r and x, respec-
tively, so that interpolation between the contours can be carried out accurately.
We now consider an example to illustrate some basic procedures using the
Smith chart.

q , 2, 1, 12,11, ;1
22,

11, ;12,11, ;22,11, q2,; q ,;2,;1,
x = 0, ;1

2,1> ƒx ƒ .
≠-plane1> ƒx ƒ .

Im1≠2 = 1>xRe1≠2 = 1

= c r2 - 1 + x2

1r + 122 + x2 - 1 d2 + c 2x

1r + 122 + x2 -
1
x
d2 = a 1

x
b2

[Re1≠2 - 1]2 + cIm1≠2 -
1
x
d2

z

1, 34, 12, 14,114, 02, 112, 02, 134, 02,
q ,r = 0, 13, 1, 3,

1>1r + 12.[r>1r + 12, 0]≠-plane
1>1r + 12.Im1≠2 = 0

Re1≠2 = r>1r + 12

 = c r2 - 1 + x2

1r + 122 + x2 -
r

r + 1
d2 + c 2x

1r + 122 + x2 d
2

= a 1
r + 1

b2

 cRe1≠2 -
r

r + 1
d2 + [Im1≠2]2

z

1l2p,1lp>2, 1l0°, 1l - p>2,
≠ = 1lp,- qx = 0, 1, q , -1,

z
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476 Chapter 7 Transmission Lines for Communications

Example 7.4 For illustrating several basic procedures using the Smith
chart

A transmission line of characteristic impedance is terminated by a load impedance
It is desired to find the following quantities by using the Smith chart.

1. Reflection coefficient at the load
2. SWR on the line
3. Distance of the first voltage minimum of the standing-wave pattern from the load
4. Line impedance at 
5. Line admittance at 
6. Location nearest to the load at which the real part of the line admittance is equal

to the line characteristic admittance

d = 0.05l
d = 0.05l
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FIGURE 7.22

The Smith chart. (Copyrighted by and reproduced with the permission of Kay Elemetrics Corp., Pine
Brook, N.J.)

Some basic
procedures
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1.2

0.185lConstant
SWR Circle

Unit Conductance
Circle

0.26
0.3

–0.09

–0.4
0.325l

0.435l

0.485l

0.5l

0.6
3.4 4

O
C

D

A G

B
E

F

227

Toward
Generator

FIGURE 7.23

For illustrating the various procedures to be followed in using the Smith chart.

We proceed with the solution of the problem in the following step-by-step manner
with reference to Fig. 7.23.

(a) Find the normalized load impedance.

(b) Locate the normalized load impedance on the Smith chart at the intersection of
the 0.3 constant normalized resistance circle and constant normalized reac-
tance circle (point A).

(c) Locating point A actually amounts to computing the reflection coefficient at the
load since the Smith chart is a transformation in the The magnitude of the
reflection coefficient is the distance from the center (O) of the Smith chart (origin
of the ) to the point A based on a radius of unity for the outermost circle.
For this example, The phase angle of is the angle measured from the
horizontal axis to the right of O (positive real axis in the ) to the line OA in
the counterclockwise direction. This angle is indicated on the chart along its cir-
cumference. For this example, Thus,

(d) To find the SWR, we recall that at the location of a voltage maximum, the line im-
pedance is purely real and given by

(7.57)Rmax = Z01SWR2

≠R = 0.6ej1.261p

l≠R = 227°.

≠-plane
≠Rƒ ≠R ƒ = 0.6.

≠-plane

≠-plane.

-0.4

zR =
Z
 –

R

Z0
=

15 - j20

50
= 0.3 - j0.4
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478 Chapter 7 Transmission Lines for Communications

Thus, the normalized value of is equal to the SWR. We therefore move along
the line to the location of the voltage maximum, which involves going around the
constant circle to the point on the positive real axis. To do this on the Smith
chart, we draw a circle passing through A and with center at O.This circle is known
as the constant SWR circle, since, for points on the circle, and, hence,

are constants. Impedance values along this circle are normal-
ized line impedances as seen moving along the line. In particular, since point B
(the intersection of the constant SWR circle with the horizontal axis to the right of
O) corresponds to voltage maximum, the normalized impedance value at point B,
which is purely real and maximum, is equal to the SWR. Thus, for this example,

(e) Just as point B represents the position of a voltage maximum on the line, point C
(intersection of the constant SWR circle with the horizontal axis to the left of O,
i.e., the negative real axis of the ) represents the location of a voltage min-
imum. Hence, to find the distance of the first voltage minimum from the load, we
move along the constant SWR circle starting at point A (load impedance) toward
the generator (clockwise direction on the chart) to reach point C. Distance moved
along the constant SWR circle in this process can be determined by recognizing
that one complete revolution around the chart ( diagram) constitutes
movement on the line by However, it is not necessary to compute in this
manner since distance scales in terms of are provided along the periphery of the
chart for movement in both directions. For this example, the distance from the
load to the first voltage Conversely, if the
SWR and the location of the voltage minimum are specified, we can find the load
impedance by following the foregoing procedures in reverse.

(f) To find the line impedance at we start at point A and move along the
constant SWR circle toward the generator (in the clockwise direction) by a dis-
tance of to reach point D. This step is equivalent to finding the reflection co-
efficient at knowing the reflection coefficient at and then
computing the normalized line impedance by using (7.35). Thus, from the coordi-
nates corresponding to point D, the normalized line impedance at is

and hence the line impedance at is or

(g) To find the line admittance at we recall that

so that

or

(7.58)y1d2 = zad +
l

4
b

[z1d2] czad +
l

4
b d = 1

[Z
 –1d2] cZ –ad +

l

4
b d = Z0

2

d = 0.05l,
113 - j4.52 Æ.

5010.26 - j0.092d = 0.05l10.26 - j0.092,
d = 0.05l

d = 0d = 0.05l
0.05l

d = 0.05l,

minimum = 10.5 - 0.4352l = 0.065l.

l

0.5l.
≠-plane

≠-plane

SWR = 4.

11 + ƒ≠ ƒ2>11 - ƒ≠ ƒ2
SWR =  ƒ ≠ ƒ

ƒ≠ ƒ

Rmax
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7.5 The Smith Chart: 2. Applications 479

Thus, the normalized line admittance at point D is the same as the normalized line
impedance at a distance from it. Hence, to find we start at point D
and move along the constant SWR circle by a distance to reach point E (we
note that this point is diametrically opposite to point D) and read its coordinates.
This gives We then have 

(h) Relationship (7.58) permits us to use the Smith chart as an admittance chart in-
stead of as an impedance chart. In other words, if we want to find the normalized
line admittance at a point Q on the line, knowing the normalized line admit-
tance at another point P on the line, we can simply locate by entering
the chart at coordinates equal to its real and imaginary parts and then moving
along the constant SWR circle by the amount of the distance from P to Q in the
proper direction to obtain the coordinates equal to the real and imaginary parts of

Thus, it is not necessary first to locate diametrically opposite to 
on the constant SWR circle, then move along the constant SWR circle to locate

and then find diametrically opposite to To find the location near-
est to the load at which the real part of the line admittance is equal to the line char-
acteristic admittance, we first locate at point F, diametrically opposite to
point A, which corresponds to We then move along the constant SWR circle
toward the generator to reach point G on the circle corresponding to constant real
part equal to unity. (We call this circle the unit conductance circle.) Distance
moved from F to G is read off the chart as This is the
distance closest to the load at which the real part of the normalized line admit-
tance is equal to unity and, hence, the real part of the line admittance is equal to
line characteristic admittance.

K7.4. Unit circle; Transformation from (or ) to Smith chart; Constant
SWR circle; Unit conductance circle.

D7.10. Find the values of in polar form onto which the following normalized imped-
ances are mapped: (a) (b) (c) (d)
Ans. (a) (b) (c) (d)

D7.11. Find the following using the Smith chart: (a) the normalized input impedance of
a line of length and terminated by a normalized load impedance 
(b) the normalized input admittance of a short-circuited stub of length 
and (c) the shortest length of an open-circuited stub having the normalized
input admittance j0.4.
Ans. (a) (b) (c)

7.5 THE SMITH CHART: 2. APPLICATIONS

In the preceding section, we introduced the Smith chart and discussed some
basic procedures. In this section, we first consider by means of examples graph-
ical solutions of transmission-line matching problems using the Smith chart and
then discuss further applications.

0.06l.-j0.55;1.4 - j1.1;

0.17l;
12 + j12;0.1l

1.414l45°.0.721l19.44°;1l233.13°;0.6l180°;
-1 + j2.3 + j3;0 - j0.5;0.25 + j0;

≠

≠;yz≠-plane;

10.325 - 0.1852l = 0.14l.

z102.
y102

z1Q2.y1Q2z1Q2,
y1P2z1P2y1Q2.

y1P2y1P2
y1Q2

13.4 + j1.22 * 1>50 = 10.068 + j0.0242 S.
Y10.05l2 = y10.05l2 * Y0 =  y10.05l2 = 13.4 + j1.22.
l>4

y10.05l2,l>4
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480 Chapter 7 Transmission Lines for Communications

Example 7.5 Solution of a single-stub matching problem by using the
Smith chart

Let us consider a transmission line of characteristic impedance terminated by
a load impedance and illustrate the solution of the single-stub
matching problem by using the Smith chart, assuming of the stub to be 

With reference to the notation in Fig. 7.17, we recall that to achieve a match, the
stub must be located at a point on the line at which the real part of the normalized line
admittance is equal to unity; the imaginary part of the line admittance at that point is
then canceled by appropriately choosing the length of the stub. Hence, we proceed with
the solution in the following step-by-step manner with reference to Fig. 7.24.

(a) Find the normalized load impedance.

Locate the normalized load impedance on the Smith chart at point A.
(b) Draw the constant SWR circle passing through point A. This is the locus of the

normalized line impedance as well as the normalized line admittance. Starting at
point A, go around the constant SWR circle by half a revolution to reach point B
diametrically opposite to point A. Point B corresponds to the normalized load
admittance.

(c) Starting at point B, go around the constant SWR circle toward the generator
until point C on the unit conductance circle is reached. This point corresponds

zR =
Z
 –

R

Z0
=

30 - j40

50
= 0.6 - j0.8

50 Æ.Z0

Z
 –

R = 130 - j402 Æ,
Z0 = 50 ÆSingle-stub

matching
solution

–0.8
–1.16

0.363l

0.3335l

0.125l 0.137l

0.1665l

0.25l

C

D

A

G

B

E

F

Toward
Generator

�
0.6 1

1.16

0

FIGURE 7.24

Solution of single-stub matching problem by
using the Smith chart.
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Double-stub
marching
solution

to the normalized line admittance having the real part equal to unity; hence, it
corresponds to the location of the stub. The distance moved from point B to
point C (not from point A to point C) is equal to the distance from the load at
which the stub must be located. Thus, the location of the stub from the 

(d) Read off the Smith chart the normalized susceptance value corresponding to point
C. This value is 1.16 and it is the imaginary part of the normalized line admittance
at the location of the stub. The imaginary part of the line admittance is equal to

The input susceptance of the stub must therefore be
equal to 

(e) This step consists of finding the length of a short-circuited stub having an input
susceptance equal to We can use the Smith chart for this purpose
since this simply consists of finding the distance between two points on a line (the
stub in this case) at which the admittances (purely imaginary in this case) are
known. Thus, since the short circuit corresponds to a susceptance of infinity, we
start at point D and move toward the generator along the constant SWR circle
through D (the outermost circle) to reach point E corresponding to which
is the input admittance of the stub normalized with respect to its own characteris-
tic admittance. The distance moved from D to E is the required length of the stub.
Thus, length of the short-circuited 

(f) The results obtained for the location and the length of the stub agree with one of
the solutions found analytically in Section 7.3. The second solution can be ob-
tained by noting that in step (c), we can go around the constant SWR circle from
point B until point F on the unit conductance circle is reached, instead of stopping
at point C. The stub location for this solution is The
required input susceptance of the stub is (1.16/50) S. The length of the stub is the
distance from point D to point G in the clockwise direction. This is 

These values are the same as the second solution obtained in
Section 7.3.

Example 7.6 Solution of a double-stub matching problem by using the
Smith chart

For the line of characteristic impedance and load impedance 
of Example 7.5, it is desired to solve the double-stub matching problem by

using the Smith chart and assuming of both stubs to be the first stub to be lo-
cated at the load, and distance between stubs equal to 

With reference to the notation of Fig. 7.18, we first note that to achieve a match,
must fall on the unit conductance circle. Now since and correspond to

locations at the end points of the line section between the stubs, for a given can be
obtained by drawing the constant SWR circle through and going toward the generator
(clockwise direction) by the distance from Conversely, to obtain for a given 
we start at and go toward the load (counterclockwise direction) by the distance 
along the constant SWR circle. Hence, for to fall on the unit conductance circle,
must fall on a circle that is obtained by pivoting the unit conductance circle at the center
of the Smith chart (point O) and rotating it toward the load by the distance as shown
in Fig. 7.25 for We shall call this circle the auxiliary circle. Thus, the auxiliary
circle is the locus of for possible match.y1

d12 = 3l>8.
d12,

y1y2
œ

d12y2
œ

y2
œ ,y1y1.d12

y1

y1, y2
œ

y1y2
œy2

œ = 1 - jb2

0.375l.
50 Æ,Z0

j402 Æ
Z
 –

R = (30 -Z0 = 50 Æ

0.252l = 0.387l.
10.137 +

10.3335 - 0.1252l = 0.2085l.

stub = 10.363 - 0.252l = 0.113l.

-j1.16,

-11.16>502 S.

-11.16>502 S.
1.16 * Y0 = 11.16>502 S.

10.1665 - 0.1252l = 0.0415l.
load =  
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482 Chapter 7 Transmission Lines for Communications

The matching procedure consists of first locating on the Smith chart and then
moving along the constant SWR circle through toward the generator by the distance

between the load and the first stub, thereby locating The right amount of suscep-
tance is then added to to reach a point on the auxiliary circle. This point corresponds
to and determines a new constant SWR circle. By going along this new constant SWR
circle toward the generator by the distance is located on the unit conductance cir-
cle.The amount of susceptance added to is the required normalized input susceptance
of the first stub, whereas the negative of the imaginary part of is the required normal-
ized input susceptance of the second stub.

Considering now the numerical values of 
and we proceed with the solution in the following step-by-step

manner with reference to Fig. 7.26.

(a) Locate at point A and draw the constant SWR circle through A.
(b) Locate point B on the constant SWR circle and diametrically opposite to point A.

This point corresponds to Since is equal to zero, it also corresponds to If
is not equal to zero, then has to be located by going along the constant SWR

circle toward the generator by the distance from point B.
(c) Draw the auxiliary circle, which is the circle obtained by pivoting the unit conduc-

tance circle at the center of the chart and rotating it by the distance 
toward the load.

d12 = 0.375l

d1

y1
œd1

y1
œ .d1yR.

zR = 10.6 - j0.82

d12 = 0.375l,d1 = 0,
zR = 130 - j402>50 = 10.6 - j0.82,

y2
œ

y1
œ

d12, y2
œ

y1

y1
œ

y1
œ .d1

yR

yR

d12

d12

O

d12
d12

3l
8

Auxiliary
Circle

Unit
Conductance

Circle
Toward

Load

FIGURE 7.25

Rotation of the unit conductance circle by toward the load about O
for illustrating the construction of the auxiliary circle, that is, the locus of for
possible match for the double-stub matching arrangement of Fig. 7.18.

y1

d121=  3l>82
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C

D


D

A

B

Auxiliary
Circle

Toward
GeneratorC 


0.6

� 0.09

� 0.53

� 0.8

�1.92

2.5

0.8

FIGURE 7.26

Solution of the double-stub matching problem by using the Smith chart.

(d) This step consists of adding the right amount of susceptance to to get to a point
on the auxiliary circle. Hence, starting at point B, go along the constant conduc-
tance circle to reach point C on the auxiliary circle. This point corresponds to 
The required normalized input susceptance of the first stub can now be found by
noting that and, hence,

(e) Starting at point C, go along the constant SWR circle through C toward the genera-
tor by to reach point D on the unit conductance circle. This point cor-
responds to Note that the SWR on the portion of the line between the stubs is
different from the SWR to the right of the first stub because of the discontinuity in-
troduced by the stub.The required normalized input susceptance of the second stub
can now be found by reading the imaginary part of and taking its negative. Thus,

(f) This step consists of finding the lengths of the two stubs having the normalized
input susceptances found in steps (d) and (e), by using the procedure discussed in
Example 7.5. Thus, we obtain

which agree with one of the solutions found analytically in Section 7.3.

 l2, length of second stub = 10.077 + 0.252l = 0.327l
 l1, length of first stub = 10.385 - 0.252l = 0.135l

jb2 = -j[Im1y2
œ2] = j0.53

y2
œ

y2
œ .

d12 = 0.375l

jb1 = y1 - y1
œ = 10.6 - j0.092 - 10.6 + j0.82 = -j0.89

y1 = y1
œ + jb1,

y1.

y1
œ
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y1

Y1 Y2Yd

�1 �2

y2

Line 1
Y01

Line 2
Y02

FIGURE 7.27

Transmission-line system for deriving the transformation of across a discontinuity.≠

(g) Finally, the second solution can be obtained by going from point B to point on
the auxiliary circle and then to point on the unit conductance circle, and com-
puting and as in steps (d) and (e). Thus, we obtain

giving us

These values are the same as the second solution obtained in Section 7.3.

Before proceeding further, we recall from Section 7.3 that in the double-
stub matching technique, it is not possible to achieve a match for loads that
result in the real part of being greater than For 

and a match cannot be achieved if the real part of is greater
than 2. This is easily evident from the Smith chart construction in Fig. 7.26,
since if point B falls inside the shaded region (real part ), it is not possible
to reach a point on the auxiliary circle by moving on the constant conductance
circle through B. The shaded region is therefore called the forbidden region of

for possible match. As pointed out in Section 7.3, a solution to the problem
is to increase by This effectively rotates the forbidden region by 180°
about the center of the chart, thereby making possible a match.

To illustrate the application of the Smith chart further, we shall now dis-
cuss a very useful property of the reflection coefficient and, hence, of the
Smith chart. This has to do with the transformation of the reflection coefficient
from one side of a discontinuity to the other side of the discontinuity. Let us, for
example, consider the system shown in Fig. 7.27, which consists of a junction

l>4.d1

y1
œ

7 2

y1
œ1>sin2 bd12 = 2,

d12 = 3l>8,1>sin2 bd12.y1
œ

 l2 = 10.31 - 0.252l = 0.06l

 l1 = 10.306 - 0.252l = 0.056l

 jb2 = -j2.5

 jb1 = 10.6 - j1.922 - 10.6 + j0.82 = -j2.72

jb2jb1

D¿
C¿

Transforma-
tion across a
discontinuity
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7.5 The Smith Chart: 2. Applications 485

between two lines of characteristic admittances and and in addition, an
admittance connected across the junction. If then the system reduces
to a simple junction between two lines. If then the system reduces to
an admittance discontinuity in the same line.

Let and be the normalized admittances to the left
and to the right, respectively, of the junction, and let the corresponding reflec-
tion coefficients be and respectively, as shown in Fig. 7.27. Then, since

we have

(7.59)

where is the ratio of the characteristic admittances of the two lines
and is the normalized value of with respect to Substituting
for and in (7.59) in terms of and respectively, we have

(7.60)

Rearranging (7.60), we obtain

(7.61)

Equation (7.61) is of the form of the so-called bilinear transformation
between two complex planes, a property of which is that circles in one plane
are transformed into circles in the second plane. Consequently, loci of 
which are circles in the are mapped on to loci of which are also
circles in the and vice versa. Since the Smith chart is a transforma-
tion (also bilinear) from or to this means that loci of which are cir-
cles, are mapped on to loci of which are also circles. Since a circle is
defined completely by three points, it is therefore sufficient if we use any
three points on the locus of and find the corresponding three points for 
By locating the center at the intersection of the perpendicular bisectors of
lines joining any two pairs of these three points, we can then draw the circle
passing through these points, that is, the locus of Although we have
demonstrated this property by considering the discontinuity of the form
shown in Fig. 7.27, it can be shown that the property holds for the case of any

y1.

y1.y2

y1,
y2,≠,yz

≠-plane,
≠1,≠-plane,

≠2,

≠1 =
11 + a - ayd2≠2 + 11 - a - ayd2
11 - a + ayd2≠2 + 11 + a + ayd2

1 - ≠1

1 + ≠1
= aa1 - ≠2

1 + ≠2
+ ydb

≠2,≠1y2y1

Y02.Ydyd = Yd>Y02

a = Y02>Y01

 = a1y2 + yd2
 =

Y02

Y01
 a Y2

Y02
+

Yd

Y02
b

 y1 =
Y1

Y01
=

Y2

Y01
+

Yd

Y01

Y1 = Y2 + Yd,
≠2,≠1

y2 = Y2>Y02y1 = Y1>Y01

Y01 = Y02,
Yd = 0,Yd

Y02Y01
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yR � 0.6 � j0.8

y1 y2

jb � j0.8

FIGURE 7.28

Transmission-line system in which a susceptance of fixed value sliding along the
line forms a discontinuity.

linear, passive, bilateral network serving as the discontinuity. We shall now
consider an example.

Example 7.7 Application of the Smith chart to transformation across a
discontinuity

Let us consider the system shown in Fig. 7.28, in which a line is terminated by a normal-
ized admittance and a normalized susceptance of value con-
nected between the two conductors of the line forms the discontinuity. We wish to find
the locus of the normalized admittance to the left of the discontinuity as the suscep-
tance slides along the line, and then determine the location, nearest to the load, of the
susceptance for which the SWR to the left of it is minimized.

To construct the locus of we first locate on the Smith chart
at point A and draw the constant SWR circle passing through A, as shown in Fig. 7.29.
This circle is the locus of the normalized admittance just to the right of the discon-
tinuity as the distance between the load and the discontinuity is varied, that is, as the
susceptance slides along the line. We then choose any three points on the locus of 
and locate the corresponding three points for Here, we choose the
points A, B, and C. Following the constant conductance circles through these points
by the amount of normalized susceptance we obtain the points D, E, and F,
respectively. We then draw the circle passing through these points to obtain the locus
of 

Proceeding further, we note that each point on the locus of corresponds to a
value of SWR to the left of the susceptance, obtained by following the constant SWR cir-
cle through that point to the r value at the point. In particular, it can be seen that
minimum SWR is achieved to the left of the susceptance for lying at point G, which is
the closest point to the center of the chart, and the minimum SWR value is 1.35. The dis-
tance from the load at which the susceptance must be connected to achieve this mini-
mum SWR can be found by locating the corresponding to the at G by following the
constant conductance circle through G by the amount to reach point H. The dis-
tance from point A to point H toward the generator is the required distance. It is equal to

or 0.221l.10.346 - 0.1252l,
-0.8

y1y2

y1

Vmax

y1

y1.

+0.8,

y1 = y2 + j0.8.
y2

y2,

yR = 10.6 + j0.82y1,

y1

b = 0.8yR = 10.6 + j0.82
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Toward
Generator

Locus of
y1

0.8 0.125l

0.346l

1.6

1.350.6

�0.8

A

B

C

D

EF

G

H

Locus of
y2

FIGURE 7.29

Construction of the locus of for the system of Fig. 7.28 as the susceptance b
slides along the line and determination of the minimum SWR that can be achieved
to the left of the susceptance and the location of the susceptance to achieve the
minimum SWR.

y1

Together with the basic procedures discussed in the previous section, the
methods that we have discussed in this section can be extended to solve many
other problems using the Smith chart.We include some of these in the problems.

K7.5. Single-stub matching; Double-stub matching; Auxiliary circle; Forbidden region
of for possible match; Transformation of across a discontinuity.

D7.12. A line of characteristic impedance is terminated by a load of impedance
Find the following using the Smith chart: (a) the SWR on the

line; (b) the minimum SWR that can be achieved on the line by connecting a
stub in parallel with the line at the load; and (c) the minimum SWR that can be
achieved on the line by connecting a stub in series with the line at the load.
Ans. (a) 3.0; (b) 1.33; (c) 2.0.

150 + j652 Æ.
100 Æ

≠y1
œ
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488 Chapter 7 Transmission Lines for Communications

D7.13. A line of characteristic impedance is terminated by a load of impedance
Find the following by using the Smith chart: (a) the minimum

distance at which a reactance of value must be connected in parallel with
the line to minimize the SWR to the left of the reactance and the minimum
SWR achieved; (b) the minimum length of a line section of characteristic im-
pedance between the main line and the load required to minimize the
SWR on the main line and the minimum SWR achieved; and (c) the character-
istic impedance of a section of line inserted between the main line and the
load to minimize the SWR on the main line and the minimum SWR achieved.
Ans. (a) 1.63; (b) 1.30; (c) 2.42.

7.6 THE LOSSY LINE

Thus far, we have been concerned with lossless lines. We learned in Section 6.1
that the distributed equivalent circuit for a lossless line consists of series induc-
tors and shunt capacitors, representing energy storage in magnetic and electric
fields, respectively. A lossy line is characterized by imperfect but good conduc-
tors and imperfect dielectric giving rise to power dissipation, thereby modifying
the distributed equivalent circuit. The power dissipation in the conductors is
taken into account by a resistance in series with the inductor, whereas the
power dissipation in the dielectric is taken into account by a conductance in
parallel with the capacitor. In addition, the magnetic field inside the conductors
is taken into account by an additional inductance in the series branch. Thus, the
distributed equivalent circuit for the lossy line is as shown in Fig. 7.30, where 
includes the additional inductance just mentioned. Note that the notation for
the series resistance and for the shunt conductance is not to be confused to
mean that is the reciprocal of 

To discuss wave propagation on a lossy line, we first obtain the transmission-
line equations by applying Kirchhoff’s voltage and current laws to the circuit of
Fig. 7.30. Thus, we have

(7.62a)

(7.62b) I1z + ¢z, t2 - I1z, t2 = -g ¢z V1z, t2 - c ¢z 

0V1z, t2
0t

 V1z + ¢z, t2 - V1z, t2 = -r ¢z I1z, t2 - l ¢z 

0I1z, t2
0t

r.g
g

r
l

83.7 Æ,0.338l,0.204l,

l>4
100 Æ

50 Æ
1100 + j1002 Æ.

50 Æ

Distributed
equivalent
circuit

Transmission-
line equations
and solution

I(z, t)

V(z, t) V(z � �z, t)

I(z � �z, t)

z � �zz

    �z     �z

    �z     �z

�

�

�

�
FIGURE 7.30

Distributed equivalent circuit for a
lossy transmission line.
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Dividing both sides of (7.62a) and (7.62b) by and letting we obtain
the transmission-line equations

(7.63a)

(7.63b)

The corresponding equations in terms of phasor voltage and current are

or

(7.64a)

(7.64b)

where and are understood to be functions of z.
Combining the two transmission-line equations (7.64a) and (7.64b) by

eliminating we obtain the wave equation

or

(7.65)

where

(7.66)

The solution for is given by

(7.67)V1z2 = A
 –

e-g
q

z + B
 –

egqz

V1z2
 = 21r + jvl21g + jvc2

 g = a + jb

02V

0z2 = g2V

 = 1r + jvl21g + jvc2V
 
02V

0z2 = -  1r + jvl2 

0 I
 –

0z

I
 –

,

I
 –

V

 
0 I

 –

0z
= -1g + jvc2V

 
0V

0z
= -1r + jvl2I –

 
0 I

 –1z2
0z

= -gV1z2 - jvcV1z2

 
0V1z2

0z
= -rI

 –1z2 - jvlI
 –1z2

 
0I1z, t2

0z
= -gV1z, t2 - c 

0V1z, t2
0t

 
0V1z, t2

0z
= -rI1z, t2 - l 

0I1z, t2
0t

¢z : 0,¢z
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where and are arbitrary constants. It then follows that

Noting that the first and second terms on the right side correspond to waves
propagating in the respectively, we write (7.67) as

(7.68)

where the superscripts and denote and waves, respectively. The
quantity which is the imaginary part of is, of course, the phase constant,
that is, the rate of change of phase with z for a fixed time, for either wave. The
quantity which is the real part of is the attenuation constant, denoting that
the waves get attenuated by the factor per unit distance as they propagate in
their respective directions. Thus, the quantity is the propagation
constant associated with the wave. We recall that the units of are nepers per
meter. Proceeding further, we obtain the corresponding solution for the phasor
line current by substituting (7.68) into one of the transmission-line equations.
Thus, using (7.64a), we obtain

or

(7.69)

where

(7.70)

is the characteristic impedance of the line, which is now complex.
Equations (7.68) and (7.69) are the general solutions for the phasor line

voltage and current, respectively, with the associated propagation constant and
characteristic impedance given by (7.66) and (7.70), respectively. Although it is
possible to obtain explicit expressions for and as well as for the real and
imaginary parts of in terms of and such expressions are often
not meaningful since and are themselves functions of frequency.
Hence, in practice, these quantities are obtained from experimental determination

cr, l, g,
c,v, r, l, gZ

 –
0

b,a

Z
 –

0 = Ar + jvl
g + jvc

I
 –1z2 =

1
Z0

 1V+e- g
q

z - V-egqz2

 = -  
1

r + jvl
 [-gV+e-g

q
z + g V-egqz]

 I
 –1z2 = -  

1
r + jvl

  
0V

0z

a

g1=  a + jb2ea
g,a,

g,b,
1-21+2-+

V1z2 = V+e- g
q

z + V-egqz

-z-directions,+z-and

 = Ae-az cos 1vt - bz + u2 + Beaz cos 1vt + bz + f2
 V1z, t2 = Re[Aejue-aze-jbzejvt + Bejfeazejbzejvt]

B
 – = BejfA

 – = Aeju

Low-loss line
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Experimental
determination
of and gZ

 –
0

of characteristic impedance and propagation constant. However, for the special
case of the low-loss line, that is, for and we have

so that

(7.71a)

(7.71b)

(7.71c)

Similarly,

(7.71d)

Thus, for the low-loss line, the expressions for and are essentially the
same as those for a lossless line. Note that the low-loss conditions and

are valid for very high frequencies or for very small values of and 
at lower frequencies.

As already pointed out, for the general case it is more convenient to de-
termine experimentally the values of and than it is to compute them ana-
lytically.The experimental technique is based on the measurements of the input

gZ
 –

0

grvc 
 g
vl 
 r

Z
 –

0b

 L Alc L Alc  c1 +
1
2

 a r
jvl

-
g

jvc
b d

 L BlcBa1 +
r

jvl
-
g

jvc
b

 L BlcBa1 +
r

jvl
b a1 -

g

jvc
b

 Z
 –

0 = Bjvl11 + r>jvl2
jvc11 + g>jvc2

 vp =
v

b
L

12lc b L v2lc a L
1
2

 arAcl + gAlc b
 L

1
2

 arAcl + gAlc b + jv2lc L jv2lc c1 +
1
2

 a r
jvl

+
g

jvc
b d

 L jv2lcA1 +
r

jvl
+
g

jvc

 g = Bjvla1 +
r

jvl
bjvca1 +

g

jvc
b

vc 
 g,vl 
 r
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impedance of the line for two values of load impedance. To obtain the expres-
sion for the input impedance, we first write the general solutions for the phasor
line voltage and current given by (7.68) and (7.69), respectively, in terms of the
distance variable d, measured from the load toward the generator, as opposed
to z, measured from the generator toward the load. Thus, we have

(7.72a)

(7.72b)

or

(7.73a)

(7.73b)

where

(7.74)

is the voltage reflection coefficient at any value of d, and is the voltage re-
flection coefficient at the load.

The line impedance is given by

(7.75)

The input impedance of a line of length l terminated by a load impedance as
shown in Fig. 7.31, is then given in terms of by

 = Z
 –

0  

Z
 –

R cosh gl + Z
 –

0 sinh gl

Z
 –

R sinh gl + Z
 –

0 cosh gl

 = Z
 –

0  

1Z –R + Z
 –

02 + 1Z –R - Z
 –

02e-2
q
gl

1Z –R + Z
 –

02 - 1Z –R - Z
 –

02e-2
q
gl

 = Z
 –

0  

1 + [1Z –R - Z
 –

02>1Z –R + Z
 –

02]e-2
q
gl

1 - [1Z –R - Z
 –

02>1Z –R + Z
 –

02]e-2
q
gl

 Z
 –

in = Z
 –1l2 = Z

 –
0  

1 + ≠R e-2
q
gl

1 - ≠R e-2
q
gl

Z
 –

R

Z
 –

R,

 = Z
 –

0  

1 + ≠R e-2
q
gd

1 - ≠R e-2
q
gd

 Z
 –1d2 =

V1d2
I
 –1d2 = Z

 –
0  

1 + ≠1d2
1 - ≠1d2

≠R

 = ≠R e-2
q
gd = ≠R e-2ade-j2bd

 ≠1d2 =
V-1d2
V+1d2 =

V-e -g
q

d

V+egqd

 I
 –1d2 =

V+

Z
 –

0
 egqd[1 - ≠1d2]

 V1d2 = V+egqd[1 + ≠1d2]

 I
 –1d2 =

1
Z
 –

0
 1V+egqd - V-e-g

q
d2

 V1d2 = V+egqd + V-e-gqd
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7.6 The Lossy Line 493

or

(7.76)

Let us now consider two values of in particular, and 
corresponding to a short circuit and an open circuit, respectively.Then, denoting
the corresponding input impedances to be and respectively, we have
from (7.76),

(7.77a)

(7.77b)

from which we obtain

(7.78)

and

(7.79)

To illustrate the computation of and by means of a numerical exam-
ple, let us assume that at a certain frequency, measurements indicated

Then from (7.78),

Z
 –

0 = 2130 - j402130 + j402 = 50 Æ

 Z
 –

in
o = 130 + j402 Æ

 Z
 –

in
s = 130 - j402 Æ

gZ
 –

0

tanh gl = CZ
 –

in
s

Z
 –

in
o

Z
 –

0 = 2Z
 –

in
s Z

 –
in
o

 Z
 –

in
o = Z

 –
0 coth gl

 Z
 –

in
s = Z

 –
0 tanh gl

Z
 –

in
o ,Z

 –
in
s

Z
 –

R = q ,Z
 –

R = 0Z
 –

R;

Z
 –

in = Z
 –

0  

Z
 –

R + Z
 –

0 tanh gl

Z
 –

R tanh gl + Z
 –

0

ZRZ0, gZin

d � l d � 0d

FIGURE 7.31

Lossy line of length 1 terminated
by ZR.
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494 Chapter 7 Transmission Lines for Communications

From (7.79),

Using the identity

we then have

Thus,

whereas

where is ruled out since it gives negative value for Note that can
only be determined to within However, if the approximate value of is
known, then the correct value of n, and hence of can be determined.

In practice, since a perfect open-circuited termination can often be diffi-
cult to achieve, it may be desirable to consider the second value of to be ar-
bitrary instead of being equal to Denoting the corresponding input
impedance to be we then have from (7.76) and (7.77a)

(7.80)Zin = Z0
2

  

ZR + Zin
s

ZRZin
s + Z0

2

Zin,
q .

ZR

b,
bnp.
bb.n = 0

bl = np - p>4 n = 1, 2, Á

 a = 0.3466>l
 al = 0.3466

 = 0.3466 + j1np - p>42 n = 0, 1, 2, Á

 =
1
2

 [ln 2 + j12np - p>22]
 =

1
2

  ln  2l -90° =
1
2

  ln [2ej12np-p>22]

 gl =
1
2

  ln  
1.6 - j0.8

0.4 + j0.8
=

1
2

  ln  
1.789l -26.565°

0.894l63.435°

tanh-1 x =
1
2

 ln 
1 + x

1 - x

 gl = tanh-110.6 - j0.82
 = 1l -53.13° = 0.6 - j0.8

 tanh gl = A30 - j40

30 + j40
= B50l -53.13°

50l53.13°
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7.6 The Lossy Line 495

and hence

(7.81)

Knowing the value of from (7.81), we can then compute the value of by
using (7.77a).

We shall conclude this section with a discussion of power flow down the line.
From (7.73a) and (7.73b), the time-average power flow down the line is given by

or

(7.82)

where

is the characteristic admittance of the line. For a given source voltage and im-
pedance, we can compute the value of from line impedance and power flow
considerations at the input end of the line and use that value for further compu-
tations. We shall illustrate this by means of an example.

Example 7.8 Computation of power flow and power dissipated for a
lossy line

Let us consider the low-loss line system shown in Fig. 7.32, and compute the time-aver-
age power delivered to the input of the line, the time-average power delivered to the
load, and the time-average power dissipated in the line.

We proceed with the solution in a step-by-step manner as follows:

(a) The reflection coefficient at the load end is given by

≠R =
Z
 –

R - Z
 –

0

Z
 –

R + Z
 –

0
=

150 - 50
150 + 50

= 0.5

ƒV+ ƒ

Y0 =
1

Z
 –

0
= G0 + jB0

8P9 = 1
2 ƒV+ ƒ2e2ad5G0[1 - ƒ≠1d2 ƒ2] + 2B0 Im ≠1d26

 =
1
2

  Re5 ƒV+ ƒ2Y0
*e2ad[1 - ƒ≠1d2 ƒ2 + j2 Im ≠1d2]6

 =
1
2

  Ree ƒV+ ƒ2

Z
 –

0*
 e2ad[1 - ƒ≠1d2 ƒ2 + ≠1d2 - ≠*1d2] f

 =
1
2

  ReeV+egqd[1 + ≠1d2] 

1V+2*
Z
 –

0*
 egq*d[1 - ≠*1d2] f

 8P9 =
1
2

 Re[V1d2I*1d2]

gZ
 –

0

Z
 –

0 = C Z
 –

RZ
 –

in
s Z

 –
in

Z
 –

R + Zin
s - Z

 –
in

Power flow

RaoCh07v3.qxd  12/18/03  4:58 PM  Page 495



496 Chapter 7 Transmission Lines for Communications

(b) Noting that is specified in nepers per wavelength, we obtain the reflection coef-
ficient at the input end as

(c) The input impedance of the line is given by

(d) The current drawn from the voltage generator can be obtained as

(e) The voltage at the input end of the line is given by

 = 35.143l15.238° V
 = 26.33l -29.937° * 1.3347l45.175°

 V1l2 = Z
 –

inI
 –1l2

 = 1.3347l45.175° A

 =
100l0°

52.817 - j53.140
=

100l0°

74.923l -45.175°

 I
 –1l2 =

Vg

Z
 –

g + Z
 –

in
=

100l0°

130 - j402 + 122.817 - j13.1402

I
 –

g = I
 –1l2

 = 122.817 - j13.1402 Æ
 = 50  

0.7117l -19.708°

1.3515l10.229°
= 26.33l -29.937°

 = 50  

1 + 0.4077l -144°

1 - 0.4077l -144°
= 50  

1 + 1-0.33 - j0.242
1 - 1-0.33 - j0.242

 Z
 –

inZ
 –1l2 = Z

 –
0 

1 + ≠1l2
1 - ≠1l2

 = 0.4077l -144°
 = 0.5e-

 
0.204e-j40.8p

 ≠1l2 = ≠R e-2g
q

l = ≠R e-2ale-j2bl

d = l
a

ZR � 150 �

Zg � (30 � j40) �

Vg � 100  0   V

 Z0 = 50 �
  a � 10�2 Np/l

10.2l

d � l d � 0d

�
�

FIGURE 7.32

Lossy transmission-line system for illustrating the computation of power
flow at the two ends of the line and the power dissipated in the line.
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7.6 The Lossy Line 497

(f) The time-average power flow at the input end of the line is given by

(g) Noting that we then obtain the value of by applying (7.82) to 
Thus,

(h) The time-average power delivered to the load is then given by

(i) Finally, the time-average power dissipated in the line is

K7.6. Distributed equivalent circuit; Transmission-line equations; Complex propaga-
tion constant; Complex characteristic impedance; Input impedance; and 
from input impedance considerations; Power flow; Power dissipation.

D7.14. For a lossy line of length and characterized by and 
find the input impedance for each of the following values of 

(a) (b) and (c)

Ans. (a) (b) (c)

D7.15. A lossy line of length and characterized by and
is terminated by a load impedance If a time-average

power of 10 W is to be delivered to the load, determine how much time-aver-
age power should be delivered to the input terminals of the line for each of
the following values of (a) (b) and (c)

Ans. (a) 12.214 W; (b) 15.436 W; (c) 13.556 W.

300 Æ.
Z
 –

R =  Z
 –

R = 20 Æ;Z
 –

R = 100 Æ;Z
 –

R:

Z
 –

R.a = 10-2 Np>l
Z
 –

0 = 100 Æl = 10l

173.17 - j11.392 Æ.120.67 + j17.382 Æ;1102.04 - j85.772 Æ;

Z
 –

R = 136 + j02 Æ.Z
 –

R = q ;Z
 –

R = 0;
Z
 –

R:0.02 Np>l,
a =Z

 –
0 = 60 Æl = 16.3l

gZ
 –

0

 = 5.41 W
 = 20.32 - 14.91

 8Pd9 = 8P1l29 - 8P1029

 = 14.91 W

 = 1
2 * 44.582 * 0.0211 - 0.252

 8P1029 = 1
2 ƒV+ ƒ2G011 - ƒ≠R ƒ22

 = 44.58 V

 = C2 * 20.32 * e-0.204

0.0211 - 0.407722

 ƒV+ ƒ = C 28P1l29e-2al

G0[1 - ƒ≠1l2 ƒ2]

d = l.ƒV+ ƒB0 = 0,

 = 20.32 W

 = 1
2 * 35.143 * 1.3347 *  cos 29.937°

 = 1
2 Re[35.143l15.238° * 1.3347l -45.175°]

 8P1l29 = 1
2 Re[V1l2I –*1l2]
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498 Chapter 7 Transmission Lines for Communications

7.7 PULSES ON LOSSY LINES

In the previous section, we considered the sinusoidal steady state analysis of
lossy lines. We learned that as the waves propagate down the line, they get at-
tenuated in addition to undergoing phase shift. Since and are in general
functions of frequency, the different frequency components of an arbitrarily
time-varying signal undergo different amounts of attenuation and different
amounts of phase shift. Hence, as the signal propagates down the line, it gets dis-
torted. For the general case, the analysis can be performed by employing Fouri-
er techniques. There are, however, two special cases of importance that permit
solution without the use of Fourier techniques: distortionless transmission and
diffusion. We shall consider these two cases in this section.

A. Distortionless Transmission

As the name implies, for this case the propagation along the lossy line is distor-
tionless—although it is characterized by attenuation, as shown in Fig. 7.33. As
the signal propagates down the line, its shape versus time remains the same, but
it diminishes in magnitude. The situation arises for the condition

(7.83)

Substituting (7.83) in (7.66), we observe that

 = Bra1 + j 
vl

r
bga1 + j 

vc

g
b

 g = 21r + jvl21g + jvc2

r

l
=
g

c

vpa

0 t

[V ]z � 0

t0 (� 0) t

[V ]z � z0 (� 0)

z � 0 z

Distortionless Line

FIGURE 7.33

For illustrating pulse propagation along a lossy, but distortionless, line.

Distortionless
line
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7.7 Pulses on Lossy Lines 499

so that

(7.84a)

(7.84b)

(7.84c)

Thus, and are both independent of frequency, provided, of course, that
and are independent of frequency. Hence, the signal propagates dis-

tortionless. Furthermore

(7.84d)

so that is also independent of frequency. Note that the expressions
(7.84a)–(7.84d) are exact; that is, they do not involve any approximations as in
the case of the corresponding expressions [Eqs. (7.71a)–(7.71d)] for the low-loss
line, which also exhibits the same approximate frequency behavior. Hence, the
present expressions are valid in any frequency range for which the condition
(7.83) holds and in which and are constants.

Example 7.9 Pulse propagation along a lossy, but distortionless,
transmission-line system

Let us consider the distortionless line system shown in Fig. 7.34, in which the switch S is
closed at thereby applying the voltage source pulse of duration, in series
with the internal resistance, to the line. We wish to find and sketch (a) the voltage

across the load resistor as a function of time, (b) the line voltage as a function of z at
and (c) the line voltage as a function of z at 

We proceed with the solution in the following manner.

(a) Initially, the voltage source views an impedance of at hence, the line 

voltage at is equal to Thus, a voltage pulse of amplitude 50 V and duration 
1
2

 Vg.z = 0

z = 0;50 Æ

t = 1.5 ms.t = 0.5 ms,
VR

50 Æ
0.1 mst = 0,

cr, l, g,

Z
 –

0

 = Arg = Alc Z0 = Ar + jvl
g + jvc

= Ar11 + jvl>r2
g11 + jvc>g2

cr, l, g,
vpa

 vp =
v

b
=

12lc b = v2lc a = 2rg
 = 2rg + jv2lc = 2rg + jvl Acl = 2rg + jvl Agr = 2rga1 + jv 

l

r
b
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500 Chapter 7 Transmission Lines for Communications

travels toward the load undistorted in shape but attenuated in accordance with
Since the one-way travel time on the line is 

the leading edge of the pulse reaches the load end at and sets up a reflection
with reflection coefficient equal to or 1/3. Hence, the voltage 

across the load is or 4/3 times the incident voltage. Thus, noting that the 

attenuation in a distance of 100 m is we obtain the voltage to be a 

pulse of amplitude and duration from 1 to as
shown in Fig. 7.35(a).

(b) To find the line voltage versus z for we observe that the leading edge of
the incident voltage pulse will have reached at that time, whereas the
trailing edge will have traveled to only Since the attenuation undergone
in 50 m is whereas the attenuation undergone in 40 m is only

the line voltage distribution is a pulse stretching from 40 m to 50
m and having a value at 40 m but only at 50 m,
as shown in Fig. 7.35(b).The slightly downward-curved shape of the pulse between
the two edges can be understood by noting, for example, that at 45 m, the voltage
is 

(c) At the line voltage consists entirely of the reflected wave voltage,
which is 1/3 of the incident wave voltage. The leading edge will have reached 

with a value of whereas the trailing edge 

occupies the location with a value of as 

shown in Fig. 7.35(c). The slightly downward-curved shape of the pulse between

the two edges can once again be understood by noting that the line voltage at 

is 

Finally, the nonrectangular shapes of the voltage distributions with z should not be
misunderstood as distortion, because at every value of z, the individual wave voltage
variation with time is a rectangular pulse of duration, with amplitude determined
by the attenuation undergone and the reflection coefficient(s).

0.1-ms

1
3

* 50e-1 * e-0.45 = 3.91 V.z = 55 m

1
3

* 50e-1 * e-0.4 = 4.11 V,z = 60 m

1
3

* 50e-1 * e-0.5 = 3.72 V,z = 50 m

t = 1.5 ms,
50e-0.01 * 45 = 50e-0.45 = 31.88 V.

50e-0.5 = 30.33 V50e-0.4 = 33.52 V
e-0.01 * 40 = e-0.4,

e-0.01 * 50 = e-0.5,
z = 40 m.

z = 50 m
t = 0.5 ms,

1.1 ms,50 * e-1 *
4
3

= 24.53 V

VRe-0.01 * 100 = e-1,

a1 +
1
3
b

1100 - 502/1100 + 502,
t = 1 ms

100/108 = 10-6 s = 1 ms,e-az = e-0.01z.
0.1 ms

100

0 0.1 t, ms

�
�

50 �

100 �

S

t � 0

z � 0 z � 100 m

a � 10�2 Np/m, vp � 108 m/sVg

Vg, V

Z0 � 50 �

z

FIGURE 7.34

A distortionless transmission line system.
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7.7 Pulses on Lossy Lines 501

B. Diffusion

This case pertains to the historically important noninductive, leakage-free cable
first investigated by Lord Kelvin in 1855, but is also relevant to modern lines
with large skin-effect losses and to many other physical phenomena, such as
heat flow.

The noninductive, leakage-free cable is characterized by so
that the distributed equivalent circuit consists simply of series resistors and
shunt capacitors, as shown by one section in Fig. 7.36. Setting in thel = g = 0

l = g = 0

30

30

0 0.5

100

100

40

500 60

50

1.0 1.1

24.53

t, ms

z, m

z, m

33.52

3.91

3.72
4.11

30.33

31.88[V ]t � 0.5 ms, V

[V ]t � 1.5 ms, V

30

VR, V

(a)

(b)

(c)

FIGURE 7.35

(a) Time-variation of the voltage across the load, and (b) and (c)
distance variations of line voltage for and 
respectively, for the distortionless line system of Fig. 7.34.

t = 1.5 ms,t = 0.5 ms
VR

Noninductive,
leakage-free
cable
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502 Chapter 7 Transmission Lines for Communications

transmission-line equations in time-domain form given by (7.63a) and (7.63b),
we then obtain

(7.85a)

(7.85b)

Differentiating (7.85a) with respect to z and using (7.85b), we obtain the differ-
ential equation for the line voltage to be

(7.86)

This equation is of the type

(7.87)

which is known as the diffusion equation. Its solution is of the form

(7.88)

where A and B are arbitrary constants to be evaluated from boundary condi-
tions, and Y is a dummy variable. Thus the general solution for (7.86) is

(7.89)

Let us now consider an initially quiescent cable extending from to
and excited at by a constant voltage source of value connectedV0z = 0z = q

z = 0

V1z, t2 = AL
12rc>4t2z

0
e-Y2

 dY + B

t = AL
121>4Dt2z

0
e-Y2

 dY + B

02t

0z2 =
1
D

  
0t
0t

02V

0z2 = rc 
0V

0t

 
0I1z, t2

0z
= -c 

0V1z, t2
0t

 
0V1z, t2

0z
= -rI1z, t2

z z � �z

r�z

    �z

FIGURE 7.36

One section of distributed equivalent circuit for a
noninductive, leakage-free cable.
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7.7 Pulses on Lossy Lines 503

at as shown in Fig. 7.37, and find the solutions for the line voltage and
current for The boundary conditions for the line voltage are

(7.90a)

(7.90b)

Substituting these boundary conditions into (7.89), we have, from (7.90a),

or

and then from (7.90b)

or

 A = -  

2V02p A 
2p

2
+ V0 = 0

AL
q

0
e-Y2

 dY + V0 = 0

B = V0

AL
0

0
e-Y2

 dY + B = V0

 V1q , t2 = 0 for t 7 0

 V10, 0+2 = V0

t 7 0.
t = 0,

z

z � 0

t � 0

S

V0 to �
Leakage-free,
Noninductive
r,     

FIGURE 7.37

Semi-infinitely long, noninductive, leakage-free cable, excited by a constant
voltage source.
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504 Chapter 7 Transmission Lines for Communications

Thus the particular solution for V(z, t) for the system of Fig. 7.37 is

(7.91)

The second term inside the parentheses is the well-known error function (erf)
having the argument Hence, (7.91) can be written as

(7.92)

where erfc is the complementary error function. Substituting (7.91) into (7.85a),
we obtain the corresponding solution for I(z, t) to be

(7.93)

Note that the boundary conditions of no current anywhere on the line for 
that is, before the voltage source is connected to the line, and no current at

for all t, are satisfied by (7.93).
To discuss the solution for the line voltage given by (7.92), we sketch

(7.94)

as shown in Fig. 7.38. Since the argument involves both z and t in the manner
this sketch represents the shape of the line voltage variation with z

for any fixed value of t. In fact, the scale for the abscissa can be converted to one
12RC>4t2z,

V1z, t2
V0

= erfcaArc4t
 zb

z = q

t = 0,

 = V0 A c

prt
 e-1rc>4t2z2

 I1z, t2 = -   
1
r

  

0V1z, t2
0t

 = V0 erfc12rc>4tz2
 V1z, t2 = V0[1 - erf12rc>4tz2]
12rc>4t2z.

 = V0a1 -
22pL12rc>4t2z

0
e-Y2

 dYb

 V1z, t2 = -   

2V02pL12rc>4t2z

0
e-Y2

 dY + V0

A

B

C
D E

0 0.5 1.0 1.5 2.0
0

0.5

1.0

V/V0

r    /4t z

FIGURE 7.38

Sketch of the complementary
error function depicting the
solution for for the
system of Fig. 7.37.

V1z, t2>V0
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A

B

C
D E

A

B

C

0 1 2 3 4
0

0.5

1.0

V/V0

t � 4r    z0
2

t � r    z0
2

z/z0

(a)

B

C C

EE

A

B

0 4 8 12 16
0

0.5

1.0

V/V0

t/t0

(b)

t0/rz � 2

t0/rz � 4

FIGURE 7.39
(a) Line voltage variations with distance for two values of time, and 
(b) line voltage variations with time for two values of distance, for the
system of Fig. 7.37. The points A, B, C, D, and E correspond to the points
A, B, C, D, and E, respectively, in Fig. 7.38.

for z by multiplying the numbers by Thus, we note that, immediately
after closure of the switch, there is voltage everywhere on the line. This corre-
sponds to the phenomenon of diffusion—as distinguished from propagation,
which is characterized by a well-defined velocity.As t increases, a given point on
the sketch corresponds to larger and larger values of z, indicating that as time
progresses, the line voltage at all values of z increases. For example, since the
values of z are doubled as t is quadrupled, the voltage at a given distance from
the source and at a particular time after closure of the switch is the same as the
voltage at half that distance and at one-fourth of that time. This is depicted in
Fig. 7.39(a) for two values of time and where is any value of

The points A, B, C, D, and E correspond to the points A, B, C, D, and E,
respectively, in Fig. 7.38. The sketch of Fig. 7.38 can also be used to obtain the
time-variations of the line voltage for fixed values of z, by noting that for a fixed
z, the numbers on the abscissa can be converted to values of time.This is depict-
ed in Fig. 7.39(b) for two values of z, which are and where

is any value of Again, the points A, B, C, and E correspond to the points
A, B, C, and E, respectively, in Fig. 7.38.

t 7 0.t0

42t0>rc,22t0>rc

z 7 0.
z04rcz0

2,rcz0
2

24t>rc.
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506 Chapter 7 Transmission Lines for Communications

Finally, let us consider the voltage source in the system of Fig. 7.40 to be a
rectangular pulse of amplitude and duration Then according to superposi-
tion, the rectangular pulse is equivalent to the sum of two constant voltages, one
of value connected at and the second of value connected at 
Applying the result of Fig. 7.39(b) to each constant voltage source and using su-
perposition, we can find the response to the rectangular pulse.Thus, the time vari-
ations of the line voltage for the two values of z equal to and 
are as shown in Fig. 7.40. Note the difference in the vertical scales between Figs.
7.39(b) and 7.40. It can be seen from Fig. 7.40 that, as the value of z is increased,
the attainment of the maximum of the pulse is delayed and the value of the max-
imum is reduced.

K7.7. Distortionless line; Noninductive, leakage-free cable; Diffusion
D7.16. Assume that the duration of the source voltage pulse in Example 7.9 is 

instead of Find the value of the line voltage at for each of the
following values of z: (a) 50 m; (b) 75 m; and (c) 100 m.
Ans. (a) 34.05 V; (b) 28.39 V (c) 24.53 V

SUMMARY

In this chapter, we began our study of sinusoidal steady-state analysis of lossless
transmission lines by expressing the general solutions for the phasor line voltage

t = 1.5 ms,0.1 ms.
1.0 ms,

42t0>rc22t0>rc

t = t0.-V0t = 0V0

t0.V0

Input pulse

0 41 8 12 16
0

0.1

0.2

1.0

V/V0

t/t0

t0/rz � 4

t0/rz � 2

FIGURE 7.40

Line voltage variations with time for two values of distance for the system of Fig. 7.37,
excited by a rectangular pulse of duration also shown in the figure.t0,
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Summary 507

and line current in terms of the distance variable d, measured from the load to-
ward the source. These solutions are

By applying these general solutions to the case of a line short-circuited at the far
end and obtaining the particular solutions for that case, we discussed the stand-
ing-wave phenomenon resulting from the complete reflection of waves by the
short circuit. We introduced the concept of a standing-wave pattern and dis-
cussed the phenomenon of natural oscillations. We examined the frequency be-
havior of the input impedance of a short-circuited line of length l, given by

and illustrated (1) its application in a technique for locating a short circuit in a
line and (2) the computation of resonant frequencies for a system formed by
connecting together short-circuited line sections.

Next we considered the general case of a line terminated by an arbitrary
load and introduced the concept of the generalized voltage reflection coeffi-
cient, as the ratio of the phasor reflected wave voltage at any value of d to the
phasor incident wave voltage at that value of d. It is given by

where

is the voltage reflection coefficient at the load. We then expressed the solutions
for the line voltage and line current in terms of and discussed the con-
struction of standing-wave patterns from the solutions. We learned that togeth-
er with the property that distance between successive voltage minima of the
standing-wave patterns is the quantities

and

constitute an important set of parameters associated with the standing waves.
The SWR, which is the ratio of the maximum voltage amplitude to the mini-
mum voltage amplitude in the standing-wave pattern, and which is thedmin,

dmin =
l

4p
 1u + p2

SWR =
1 + ƒ≠R ƒ
1 - ƒ≠R ƒ

l>2,

≠1d2

≠R = ƒ≠R ƒeju =
Z
 –

R - Z0

Z
 –

R + Z0

≠1d2 = ≠Re-j2bd

Z
 –

R

Z
 –

in = jZ0 tan bl

 I
 –1d2 =

1
Z0

 1V+ejbd - V-e-jbd2
 V1d2 = V+ejbd + V-e-jbd

RaoCh07v3.qxd  12/18/03  4:58 PM  Page 507



508 Chapter 7 Transmission Lines for Communications

distance of the first voltage minimum of the standing-wave pattern from the
load, are easily measurable quantities. We then defined the ratio of the com-
plex line voltage to the complex line current at a given value of d to be the line
impedance given by

and discussed its several properties as well as the computation of power flow
along the line from considerations of input impedance of the line.

We then turned our attention to the topic of transmission-line matching,
which consists of eliminating standing waves by connecting a matching device
near the load such that the line views an effective impedance equal to its own
characteristic impedance, on the generator side of the matching device. We dis-
cussed the need for matching and three techniques of matching: (1) quarter-wave
transformer, (2) single stub, and (3) double stub. The quarter-wave transformer
technique is based on a property of the line impedance that

whereas the stub-matching techniques make use of the property that the input
impedance of a lossless line short-circuited (or open-circuited) at the far end is
purely reactive. We also discussed the departure of SWR from unity as the fre-
quency is varied from that at which the match is achieved, and we illustrated a
procedure for computation of the SWR versus frequency.

Next we introduced the Smith chart, a popular graphical aid in the solu-
tion of transmission-line problems. We learned that the Smith chart is based
on the transformation from the to the in accordance with the
relationship

where

is the normalized line impedance. We discussed the construction of the Smith
chart, some basic procedures, and the solution of transmission-line matching
problems. We also discussed a useful property associated with the transforma-
tion of the reflection coefficient across a discontinuity and illustrated its appli-
cation by means of an example.

Finally, we extended our analysis of lossless lines briefly to lossy lines,
with the discussion of (1) the distributed equivalent circuit, (2) computation of

z1d2 =
Z
 –1d2

Z0

≠1d2 =
z1d2 - 1

z1d2 + 1

≠-planez-plane

[Z
 –1d2] cZ –ad +

l

4
b d = Z0

2

Z
 –1d2 = Z0 

1 + ≠1d2
1 - ≠1d2

Z
 –1d2,
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Review Questions 509

characteristic impedance and propagation constant from input impedance
measurements, (3) computation of power flow at the generator and load ends of
the line, and power dissipated on the line, and (4) two special cases, distortion-
less propagation and diffusion, of pulses on lossy lines.

REVIEW QUESTIONS

Q7.1. Discuss the general solutions for the line voltage and line current in terms of the
distance variable d in the sinusoidal steady state.

Q7.2. State the boundary condition at a short circuit on a line. For an open-circuited
line, what is the boundary condition to be satisfied at the open circuit?

Q7.3. What is a standing wave? How do complete standing waves arise? Discuss their
characteristics.

Q7.4. What is a standing-wave pattern? Discuss the voltage and current standing-
wave patterns for a short-circuited line.

Q7.5. Explain the phenomenon of natural oscillations and the determination of nat-
ural frequencies of oscillation by means of an example.

Q7.6. Discuss the variation with frequency of the input reactance of a short-circuited
line and its application in the determination of the location of a short circuit.

Q7.7. Outline the method of computation of resonant frequencies of a system formed
by connecting together two short-circuited line sections.

Q7.8. How is the generalized voltage reflection coefficient defined? Discuss its varia-
tion along the line.

Q7.9. Discuss the sketching of standing-wave patterns for line voltage and current on
a line terminated by an arbitrary load.

Q7.10. Define the standing-wave ratio (SWR). What are the standing-wave ratios for
(a) a semi-infinitely long line; (b) a short-circuited line; (c) an open-circuited
line; and (d) a line terminated by its characteristic impedance?

Q7.11. Discuss the slotted-line technique for performing standing-wave measurements
on a line and the determination of an unknown load impedance from the stand-
ing-wave measurements.

Q7.12. How is line impedance defined? Summarize the several properties of line
impedance.

Q7.13. Outline the procedure for the determination of time-average power flow down
a line from input impedance considerations.

Q7.14. Define normalized line impedance and normalized line admittance. How are
they related to the voltage reflection coefficient?

Q7.15. Discuss the reasons for transmission-line matching and the principle behind
matching.

Q7.16. Which property of line impedance forms the basis for the quarter-wave trans-
former (QWT) technique of transmission-line matching? Outline the solution
for the QWT matching problem.

Q7.17. What is a stub? Outline the solution for the single-stub matching problem.
Q7.18. Outline the solution for the double-stub matching problem.
Q7.19. Discuss the bandwidth associated with a transmission-line matched system and

the procedure for obtaining the SWR in the main line versus frequency.
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510 Chapter 7 Transmission Lines for Communications

Q7.20. What is the basis behind the construction of the Smith chart? Briefly discuss the
mapping of the normalized line impedances onto the 

Q7.21. Why is a circle with its center at the center of the Smith chart known as a con-
stant SWR circle? Where on the circle is the corresponding SWR value marked?

Q7.22. Using the Smith chart, how do you find the normalized line admittance at a
point on the line, given the normalized line impedance at that point?

Q7.23. Briefly describe the solution to the single-stub matching problem by using the
Smith chart.

Q7.24. Briefly describe the solution to the double-stub matching problem by using the
Smith chart.

Q7.25. Discuss the forbidden region of for possible match associated with the dou-
ble-stub matching technique.

Q7.26. Discuss the transformation of the reflection coefficient from one side of a trans-
mission-line discontinuity to the other side of the discontinuity and an applica-
tion of the property associated with this transformation.

Q7.27. Discuss the modification of the distributed equivalent circuit for the lossless
line case to the lossy line case.

Q7.28. What are the conditions under which a lossy line can be classified as a low-loss
line? Compare the propagation parameters of the low-loss line with those for
the lossless line.

Q7.29. Discuss the computation of and for a lossy line from a knowledge of the
input impedances of the line with short-circuit and open-circuit terminations.

Q7.30. Briefly outline the procedure for the computation of time-average power flow
at the input and the load ends of a lossy line and, hence, the time-average power
dissipated in the line.

Q7.31. State and explain the condition for distortionless transmission along a lossy line.
Discuss the propagation of a pulse along the distortionless line by means of an
example.

Q7.32. Discuss the phenomenon of diffusion along a lossy line with reference to the
special case of the noninductive, leakage-free cable.

PROBLEMS

Section 7.1

P7.1. Solutions for line voltage and current for an open-circuited line. For a line open-
circuited at the far end, as shown in Fig. 7.41, obtain the solutions for the phasor
line voltage and current, and sketch the voltage and current standing-wave pat-
terns, as in Fig. 7.4.

gZ
 –

0

y1
œ

≠-plane.

Z0, b Open
Circuit

d � 0d

�
�

FIGURE 7.41

For Problem P7.1.
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0�1/2 1/2 1 3/2 2
t, �s

Z0 � 50 �
 vp � 108 m/s

V0

Vg

Vg, V

100 �

150 m

(a)

(b)

A

�
�

FIGURE 7.43

For Problem P7.3.

P7.2. Open-circuited line excited by a source of two harmonically related frequencies.
In the system shown in Fig. 7.42, the line is open-circuited at the far end, the
source voltage is

and at Find the root-mean-square (rms) values of the line voltage
and line current at values of d/l equal to and 1. (Note: The rms value of the
sum of the voltages of two harmonically related frequencies is equal to the square
root of the sum of the squares of the rms values of the individual voltages.)

0, 13, 12,
f = f0.l = l>4

Vg1t2 = V0 cos pf0 t cos 3pf0 t

Z0 � 100 � Open
Circuit

Vg

50 �

d � l d � 0d

�
�

FIGURE 7.42

For Problem P7.2.

P7.3. Short-circuited line excited by a nonsinusiodal periodic source. In the system
shown in Fig. 7.43(a), the source voltage is periodic, as shown in Fig. 7.43(b).
Find the reading of the ammeter A if it reads root-mean-square values.
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512 Chapter 7 Transmission Lines for Communications

P7.4. A parallel-plate resonator. In the system shown in Fig. 7.44, a nonmagnetic
lossless material medium is sandwiched between two parallel, perfect

conductors. For uniform plane waves bouncing back and forth normal to the
conductors, find the following: (a) the minimum value of l for which the natural
frequency of oscillation is 2.5 GHz if the medium is a perfect dielectric of per-
mittivity and (b) the expression for the lowest natural frequency of oscil-
lation if the medium is a plasma, which can be thought of as equivalent to a
perfect dielectric of permittivity where known as the plasma
frequency, is a constant and f is the wave frequency.

fN,e011 - fN
2 >f22,

2.25e0,

1m = m02,

m0, e

l
FIGURE 7.44

For Problem P7.4.

P7.5. Natural frequencies of oscillation for a ring transmission line. A ring transmis-
sion line is formed as shown in Fig. 7.45(a) by connecting the ends a and of
the conductors of a line of length l [shown in Fig. 7.45(b)] to the ends b and 
respectively, of the same conductors. Find the natural frequencies of oscillation
of the system.

b¿,
a¿

Z0, vp

Z0, vp

l

l
a

a


b

b


(b)

(a)

FIGURE 7.45

For Problem P7.5.

P7.6. Natural frequencies of oscillation for a twisted-ring transmission line. Repeat
Problem P7.5 for a twisted-ring transmission line formed by connecting the ends a
and of the conductors [see Fig. 7.45(b)] to the ends and b, respectively.b¿a¿
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P7.7. Input impedance of a line at low frequencies. Show that, for the
input impedance of a short-circuited line of length l and phase velocity is es-
sentially that of a single inductor of value where is the inductance per unit
length of the line. Assuming that the criterion is satisfied for fre-
quencies compute the maximum length of an air-dielectric short-
circuited line for which the input impedance is approximately that of an
inductance equal to the total inductance of the line for 

P7.8. Location of a short circuit in a line. In the example involving the location of a
short circuit in a line, solve for the distance of the short circuit from the genera-
tor by considering the standing-wave patterns for the two frequencies of inter-
est and deducing the number of wavelengths at one of the two frequencies.

P7.9. Finding the resonant frequencies for a transmission-line resonant system. A
transmission line of characteristic impedance phase velocity 

and length is short-circuited at one end and terminated
by an inductor of value at the other end. Find the three lowest resonant
frequencies of the system.

P7.10. Finding the resonant frequencies for a parallel-plate resonator with two di-
electrics. The arrangement shown in Fig. 7.46 is that of a parallel-plate res-
onator made up of two dielectric slabs sandwiched between perfect conductors
and in which uniform plane waves bounce back and forth normal to the con-
ductors. (a) Show that the resonant frequencies of the system are given by the
roots of the characteristic equation

(b) Find the five lowest resonant frequencies if and
e2 = 16e0.

t = l>2, l = 5 cm, e1 = 4e0,

tan v2m0e1t + Ae1

e2
  tan v2m0e21l - t2 = 0

0.1 mH
l = 20 cm2 * 108 m>s,

vp =Z0 = 100 Æ,

f = 100 MHz.

f … 0.1vp>2pl,
f � vp>2pl
lll,

vp

f � vp>2pl,

m0, e1 m0, e2

t (l � t)
FIGURE 7.46

For Problem P7.10.

Section 7.2

P7.11. Standing-wave parameters for a line terminated by a reactive load. For a line of
characteristic impedance terminated by a purely reactive load jX, show that
the SWR is equal to infinity and the value of is 
for and for 

P7.12. Finding the load impedance from standing-wave measurements. A slotted coax-
ial line of characteristic impedance was used to measure an unknown load75 Æ

X 6 0.1l>2p2 tan-11 ƒX ƒ>Z02X 7 0
1l>2p2[p - tan-11X>Z02]dmin

Z0
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514 Chapter 7 Transmission Lines for Communications

impedance. First, the receiving end of the line was short-circuited. The voltage
minima were found to be 20 cm apart. One of the minima was marked as the ref-
erence point. Next, the unknown impedance was connected to the receiving end
of the line.The SWR was found to be 3.0 and a voltage minimum was found to be
6 cm from the reference point toward the load. Find the value of the unknown
load impedance.

P7.13. Normal incidence of uniform plane waves onto a dielectric slab. In the system
shown in Fig. 7.47, assume uniform plane waves of frequency f incident nor-
mally onto the interface from medium 1. (a) Find the SWR in medium 1 for

if (b) Find the three lowest values of f for which com-
plete transmission occurs if (c) Find the three lowest values of l for
which complete transmission occurs for f = 109 Hz.

l = 5 cm.
l = 5 cm.f = 109 Hz

l

Medium 2
Dielectric
m0, 2.25e0

Medium 1
Free Space
m0, e0

Medium 3
Free Space
m0, e0

FIGURE 7.47

For Problem P7.13.

P7.14. Complete transmission of uniform plane waves through a dielectric slab. For the
system shown in Fig. 7.48, find the lowest value of l for which no reflection occurs
for a uniform plane wave having the electric field

at normally incident on the interface from medium 1.z = 0

E = E0 cos 4p * 109t cos p * 109t ax

z � 0 z � l

Medium 2
m0, 4e0

Medium 1
m0, e0

Medium 3
m0, e0

FIGURE 7.48

For Problem P7.14.

P7.15. Uniform plane-wave transmission for three media in cascade. For uniform
plane waves of frequency f incident normally onto the interface from medium
1 in the system shown in Fig. 7.49, find the fraction of the incident power
transmitted into medium 3 for each of the following values of f: (a) 3000 MHz;
(b) 6000 MHz; and (c) 1500 MHz.
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t t

m0, ed m0, edm0, e0

2l

Perfect
Conductor

Perfect
Conductor

FIGURE 7.50

For Problem P7.16.

100 �

Zg � (30 � j40) �

100   0  V Z0 � 50 �

5l/8

d � l d � 0

�
�

FIGURE 7.51

For Problem P7.17.

Medium 2
m0, 4e0

Medium 1
m0, e0

Medium 3
m0, 9e0

1.25 cm
f FIGURE 7.49

For Problem P7.15.

P7.16. Parallel-plate resonator with the plates coated with a dielectric. The arrange-
ment shown in Fig. 7.50 is that of a parallel-plate resonator made up of two
plane perfect conductors coated with a dielectric and in which uniform plane
waves bounce back and forth normal to the plates. (a) Show that the character-
istic equation for the resonant frequency is given by

(b) Find the value of the lowest resonant frequency for and
ed = 4e0.

t = l>2 = 5 cm

tan v2m0e01l - t2 tan v2m0e0 t = Aed

e0

P7.17. Finding the power delivered to the load from considerations of line input im-
pedance. For the system shown in Fig. 7.51, find the input impedance of the line
and the time-average power delivered to the load.
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516 Chapter 7 Transmission Lines for Communications

P7.18. Application of maximum power transfer theorem for a transmission-line sys-
tem. In the system in Fig. 7.52, find: (a) the value of the load impedance that
enables maximum power transfer from the generator to the load and (b) the
power transferred to the load for the value found in (a). (Hint: Apply maximum
power transfer theorem at )d = l.

Z
 –

R

jX

Zg � (40 � j50) �

Vg

Line 1
Z01 � 50 �

Line 2
Z02

l/4

ZR � (90 � j75) �

l/4

�
�

P7.19. Finding the input impedance of a ring transmission-line system. The ring trans-
mission line of Fig. 7.45(a) is excited by connecting a voltage source 

across the conductors at some location on the line [such as (or )
in Fig. 7.45(b)]. Find the impedance viewed by the voltage source.

P7.20. Application of maximum power transfer theorem for a transmission-line sys-
tem. In the system shown in Fig. 7.53, find the values of the reactance X and the
characteristic impedance of line 2 for which the power delivered to the load

is a maximum.ZR

Z02

bb¿aa¿V0 cos vt
Vg1t2 =

Section 7.3

P7.21. Eliminating reflections by using a quarter-wave dielectric coating. In the arrange-
ment shown in Fig. 7.54, a quarter-wave dielectric coating is employed to elim-
inate reflections of uniform plane waves of frequency 1000 MHz incident
normally from free space onto a dielectric of permittivity Assuming that

find the thickness in centimeters and the permittivity of the dielectric
coating.
m = m0,

4e0.

FIGURE 7.53

For Problem P7.20.

(25 � j50) �

ZR

100   0   V

Z0 � 100 �

0.2 l

d � l d � 0

�
�

FIGURE 7.52

For Problem P7.18.
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Dielectric
Coating
m0, e

m0, e0 m0, 4e0

l/4
1000 MHz

(50 � j50) �

z1

Z0 � 100 � Z0 � 50 � Z0 � 100 �

l/4 d1

Z01 Z02 Z01 Z02

l l

P7.22. Minimizing the standing-wave ratio in a line with a quarter-wave section. In the
system shown in Fig. 7.55, the section of characteristic impedance is
used to minimize the SWR to the left of the section. Find analytically the mini-
mum value of that minimizes the SWR and the minimum value of the SWR.d1

50 Æl>4

FIGURE 7.54

For Problem P7.21.

FIGURE 7.55

For Problem P7.22.

FIGURE 7.56

For Problem P7.23.

P7.23. Alternated-line transformer matching arrangement. Figure 7.56 shows an arrange-
ment, known as the alternated-line transformer, for achieving a matched inter-
connection between two lines of different characteristic impedances and

It consists of two sections of the same characteristic impedances as those of
the lines to be matched but alternated, as shown in the figure. The electrical
lengths of the two sections are equal. Show that to achieve a match, the required

Z02.
Z01

RaoCh07v3.qxd  12/18/03  4:58 PM  Page 517



518 Chapter 7 Transmission Lines for Communications

electrical length of each section is

where 

P7.24. Resolving the problem of nonexistence of solution in double-stub matching
technique. We learned that in the double-stub matching technique, a solution
does not exist for if —see (7.52) and associated discussion.
Show that one means of resolving this problem is by increasing by 

P7.25. Hybrid matching system using parallel and series stubs. Figure 7.57 shows a hy-
brid arrangement of a parallel short-circuited stub and a series short-circuited
stub connected at a fixed distance from the load in order to achieve a match
between the line and the load. With reference to the notation shown in the fig-
ure, show that in order to achieve a match, the required input reactance of the
series stub is given by

and the required input susceptance of the parallel stub is given by

b1 =
x2

1 + x2
2 - b¿

b1

x2 = A1 - g¿
g¿

x2

d1

l>4.d1

g¿ 7 1>sin2 bd12b2

n = Z02>Z01.

l

l
=

1
2p

  tan-1 A n

n2 + n + 1

�R

l2

jx2

jb1

zR

z2

l1

y1 yRy1


Stub 2

Stub 1

d1

FIGURE 7.57

For Problem P7.25.
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Dielectric
m0, 4e0

Free Space
m0, e0

Dielectric
m0, 16e0

1.5 cm
2500 MHz

where is equal to Discuss the condition for which a solution does
not exist for a fixed value of and a remedy to get around the problem.

P7.26. Finding the bandwidth of a quarter-wave transformer matched system. In the
arrangement shown in Fig. 7.58, a quarter-wave transformer is employed to
eliminate reflections of uniform plane waves of frequency 2500 MHz incident
normally from the free-space side. (a) Find analytically the bandwidth between
frequencies on either side of 2500 MHz at which the SWR in free space is 2.0.
(b) What is the maximum SWR in free space as the frequency is varied on either
side of 2500 MHz?

d1,
yœ

1.1g¿ + jb¿2

FIGURE 7.58

For Problem P7.26.

Section 7.4

P7.27. Property of the transformation forming the basis for the Smith chart. The
transformation

which forms the basis for the construction of the Smith chart maps circles in the
complex onto circles in the complex For the circle in the 
given by find the equation for the circle in the 
(Hint: Consider three points on the circle in the find the corresponding
three points in the and then find the equation.)

P7.28. Property of the transformation forming the basis for the Smith chart. Using
the inverse of the procedure suggested in Problem P7.27, find the equation of
the circle in the that maps onto the circle in the given by

P7.29. Several basic procedures using the Smith chart. For a transmission line of char-
acteristic impedance terminated by a load impedance find
the following quantities by using the Smith chart: (a) reflection coefficient at
the load; (b) SWR on the line; (c) the distance of the first voltage minimum of
the standing-wave pattern from the load; (d) the line impedance at 
(e) the line admittance at and (f) the location nearest to the load
at which the real part of the line admittance is equal to the line characteristic
admittance.

P7.30. Finding SWR by using the Smith chart for an arrangement involving several
media. In the arrangement shown in Fig. 7.59, uniform plane waves of fre-
quency 2500 MHz are incident normally from medium 1 onto the interface

d = 0.15l;
d = 0.15l;

1100 + j502 Æ,50 Æ,

1Re ≠ - 0.2522 + 1Im ≠22 = 0.0625.
≠-planez-plane

≠-plane,
z-plane,

≠-plane.1r - 222 + x2 = 1,
z-plane≠-plane.z-plane

≠ =
z - 1
z + 1
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520 Chapter 7 Transmission Lines for Communications

between medium 1 and medium 2. Using the Smith chart, find the SWR in:
(a) medium 3; (b) medium 2; and (c) medium 1.

Section 7.5

P7.31. Finding load impedance from standing-wave measurements by using the Smith
chart. Standing-wave measurements on a line of characteristic impedance

indicate an SWR of 4.0 and a voltage minimum at a distance of 
from the load. Determine the value of the load impedance by using the Smith
chart.

P7.32. Solution of a single-stub matching problem by using the Smith chart. A trans-
mission line of characteristic impedance is terminated by a certain load im-
pedance. It is found that the SWR on the line is equal to 4.0 and that the first
voltage minimum of the standing-wave pattern is located to be at from the
load. Using the Smith chart, determine the location nearest to the load and the
length of a short-circuited stub of characteristic impedance connected in
parallel with the line required to achieve a match between the line and the
load.

P7.33. Solution of a double-stub matching problem by using the Smith chart. Stand-
ing-wave measurements on a line of characteristic impedance indicate
SWR on the line to be 4.0 and the location of the first voltage minimum of the
standing-wave pattern to be from the load. Assuming that and

and using the Smith chart, find the lengths of the two short-circuited
stubs of characteristic impedance required to achieve a match between the
line and the load.

P7.34. Limits for the nonexistence of a solution in double-stub matching technique. It
is proposed to match a transmission line of characteristic impedance to a
load impedance by using a double-stub arrangement with spac-
ing between stubs, equal to Determine the forbidden range of values of

within the first half-wavelength to achieve the match using the Smith chart.
P7.35. Minimizing the SWR in a line with a quarter-wave section by using the Smith

chart. Solve Problem P7.22 by using the Smith chart.
P7.36. Solution of matching with two quarter-wave sections by using the Smith chart.

In the system shown in Fig. 7.60, two line sections, each of length and charac-
teristic impedance are employed. By using the Smith chart, find the locations
of the two sections, that is, the values of and to achieve a match between
the line and the load. Use the notation shown in the figure.100-Æ

l2l1l>4
50 Æ,

l>4

d1

5l>8.d12,
120 - j1002 Æ

100 Æ

60 Æ
d12 = 0.375l

d1 = 0.05l0.1l

60 Æ

60 Æ

0.2l

60 Æ

0.4l60 Æ

Medium 2
m0, 9e0

Medium 1
m0, e0

4.8 cm

Medium 3
m0, 4e0

Medium 4
m0, e0

4.8 cm
2500 MHz

FIGURE 7.59

For Problem P7.30.
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(50 � j50) �

z4

Z0 � 50 �Z0 � 50 � Z0 � 100 �Z0 � 100 �

 l/4 l1l2 l/4

z2z3 z1 zR

FIGURE 7.60
For Problem P7.36.

(30 � j40) �

(30 � j40) �

Vg

Z0 � 100 �

l/4

�
�

FIGURE 7.61

For Problem P7.40.

P7.37. Bandwidth of a quarter-wave transformer matched system by using the Smith
chart. Solve Problem P7.26 by using the Smith chart.

P7.38. Solution of alternated-line transformer matching problem by using the Smith
chart. Consider and for the alternated-line trans-
former arrangement of Problem P7.23. By using the Smith chart, obtain the
minimum value of for achieving the match and show that it agrees with the
solution given in Problem P7.23.

P7.39. Solution of hybrid parallel-series matching problem by using the Smith chart.
For the hybrid parallel-series stub matching arrangement of Problem P7.25, il-
lustrate the solution with the use of the Smith chart by considering a line of
characteristic impedance terminated by a load of Assume

and the characteristic impedance of the stubs to be 
P7.40. Investigation of maximum power transfer achievement problem by using the

Smith chart. In the system shown in Fig. 7.61, it is desired to transfer the maxi-
mum possible power from the source to the load. By using the Smith chart, find,
if possible, the location and the length of a short-circuited stub of characteristic
impedance connected in parallel with the line that will enable this to be
achieved.

100 Æ

50 Æ.d1 = l>8
140 + j402 Æ.50 Æ

l>l
Z02 = 100 ÆZ01 = 50 Æ

Section 7.6

P7.41. Computation of propagation parameters from line parameters for a lossy line.
For a lossy line having the parameters 

and compute the values of and for f = 10 kHz.gZ
 –

0c = 50 pF>m,3 * 10-9 S>m,
g =l = 1.0 mH>m,r = 0.03 Æ>m,
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522 Chapter 7 Transmission Lines for Communications

P7.42. Propagation parameters for a lossy line from input impedance measurements.
The input impedance of a lossy line of length 50 m is measured at a frequency of
100 MHz for two cases: with the output short-circuited, it is and
with the output open circuited, it is Find: (a) the characteristic
impedance of the line; (b) the attenuation constant of the line; and (c) the phase
velocity in the line, assuming its approximate value to be 

P7.43. Computation of power flow and power dissipated for a lossy line. For the lossy
transmission-line system shown in Fig. 7.62, find: (a) the time-average power
flow at the input end of the line; (b) the time-average power delivered to the
load; and (c) the time-average power dissipated in the line.

1.75 * 108 m>s.

110 - j492 Æ.
110 + j492 Æ,

P7.44. An arrangement for eliminating reflections from a perfect conductor. In the
arrangement shown in Fig. 7.63, uniform plane waves are incident normally
onto a coating of good conductor material of conductivity and thickness l on
a perfect dielectric slab of thickness and backed by a perfect conductor.
Show that no reflection occurs from the coating if and 
where is the propagation constant in the good conductor material.gc

s = 1>h0 l,ƒgc l ƒ � 1
l>4

s

  Z0 � 50 �

a � 0.02 Np/l

9.25l

d � l d � 0

�
�

ZR � (30 � j40) �

Zg � (30 � j40) �

Vg � 100  0   V

d

FIGURE 7.62

For Problem P7.43.

Good Conductor

Free Space
m0, e0

f

Perfect
Dielectric

Perfect
Conductor

l l/4

FIGURE 7.63

For Problem P7.44.
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0 0.5 1.0 t, ms

Vg, V

100

FIGURE 7.64

For Problem P7.46.

Section 7.7

P7.45. Energy storage and dissipation in a distortionless line. For a wave alone or
a wave alone on a distortionless transmission line, show that the energy is
stored equally in the inductance and capacitance of the line, and that the energy
is dissipated equally in the resistance and conductance of the line.

P7.46. Pulse propagation along a lossy, but distortionless, transmission-line system.
For the distortionless line system of Fig. 7.34, assume that the source voltage 
is the triangular pulse of duration shown in Fig. 7.64, instead of the rectan-
gular pulse of duration shown in Fig. 7.34. Find and sketch (a) the voltage

across the load resistor versus t, (b) the line voltage versus z for 
and (c) the line voltage versus z for t = 1.5 ms.

t = 0.5 ms,VR

0.1 ms
1 ms

Vg

1-2
1+2

P7.47. Maximum value of current and its timing on the noninductive, leakage-free cable.

Show that the time-variation of the current on the noninductive, leakage-free

cable, given by (7.93), is characterized by a maximum value of at

P7.48. Diffusion of fields in a highly conducting medium. Show that the time-domain
behavior of electromagnetic fields in a highly conducting medium (displacement
current density negligible) is characterized by diffusion. Consider for simplicity
the case of and 

REVIEW PROBLEMS

R7.1. Short-circuited line excited by a nonsinusiodal periodic source. In the system
shown in Fig. 7.65(a), the source current is periodic, as shown in Fig. 7.65(b).
Find the rms value of the current through the short-circuit.

R7.2. A transmission-line resonant system. (a) For the system shown in Fig. 7.66, find
the value of L for which the system is resonant at (b) What is the
next resonant frequency of the system, greater than (c) If L is increased
by a small amount by what percent should l be changed such that the sys-
tem remains resonant at (d) Repeat part (c) for the resonant fre-
quency found in part (b).

f = 109 Hz?
d%,

109 Hz?
f = 109 Hz.

H = Hy1z, t2ay.E = Ex1z, t2ax

t =
1
2

 rcz2.
A 2
pe

  

V0

rz
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524 Chapter 7 Transmission Lines for Communications

R7.3. Uniform plane-wave reflection and transmission for three media in cascade. In
the arrangement shown in Fig. 7.67, a uniform plane wave having the electric field

is incident on the interface at Find the fraction of the incident time-average
power reflected back into medium 1 and the fraction transmitted into medium 3.

z = 0.

Ei = E0 cos 145p * 108t - 15pz2 cos 115p * 108t - 5pz2 ax V>m

Z0 � 100 �
 vp � 2 � 108 m/s

200 m

(a)

(b)

Ig

Ig

I0

�I0

50 �

0�1�2
t, �s

1 2 3

FIGURE 7.65

For Problem R7.1.

l � 10 cm

L Z0 � 50 �
 vp � 3 � 108 m/s

FIGURE 7.66

For Problem R7.2.

z � 0 z � l

Medium 2
m0, 4e0

Medium 1
m0, e0

Medium 3
m0, 16e0

x

2.5 cm
y z

FIGURE 7.67

For Problem R7.3.
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R7.4. Power flow in a system involving three transmission lines. In the system shown in
Fig. 7.68, find (a) the time-average power delivered to the resistor and (b) the
time-average power delivered to the resistor R3.

R2

jX

(50 � j50) �

50  0  V Z0 � 100 � RL � 250 �

l

�
�

FIGURE 7.69

For Problem R7.5.

Line 1
Z01 � 100 �

Line 3
Z

03� 100 �

Line 2

Z 02 �
 100 �

50 �

R2 � 200 �

R3 � 200 �

3l/4

l/2

l/4

60  0  V�
�

FIGURE 7.68

For Problem R7.4.

R7.5. Application of maximum power transfer theorem for a transmission-line sys-
tem. In the system shown in Fig. 7.69, find the value of the reactance X and the
minimum value of the line length l for which the time-average power delivered
to the resistor is a maximum.What are the values of this power and the SWR
on the line?

RL

R7.6. Finding load impedance and minimizing SWR by using the Smith chart. Stand-
ing-wave measurements on a line of characteristic impedance indicate
an SWR of 2.80 and a voltage minimum at a distance of from the load.
By using the Smith chart, determine the value of the load impedance. It is de-
sired to minimize the SWR on the line by connecting a line section at the load.
By using the Smith chart, find the minimum required length of the line section

0.1l
100 Æ
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526 Chapter 7 Transmission Lines for Communications

and the minimum achievable SWR for each of the following line sections: (a) a
short-circuited stub of characteristic impedance connected in parallel with
the load; (b) a short-circuited stub of characteristic impedance connected
in series with the load; and (c) a line section of characteristic impedance 
inserted between the main line and the load.

R7.7. Nonexistence of solution in the hybrid parallel-series stub matching technique.
It is desired to achieve a match between a line of characteristic impedance

to a load of by employing the hybrid parallel-series stub
matching arrangement of Problem P7.25. Determine the forbidden range of val-
ues of d within the first half-wavelength from the load.

R7.8. Energy dissipation in a distortionless line system. For the distortionless trans-
mission line system of Fig. 7.34, find the energy dissipated in the line from 
to Repeat the solution for the case of a short circuit for the load and a
value of for the resistor in series with the voltage source.100 Æ

t = q .
t = 0

1120 - j1602 Æ100 Æ

50 Æ
100 Æ

100 Æ
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C H A P T E R  8

Guided Wave Principles
for Electronics and
Optoelectronics

In Chapter 6, we introduced the transmission line and studied propagation and
bouncing of waves along a line, applicable to digital electronics. We devoted
Chapter 7 to sinusoidal steady-state analysis of waves on transmission lines. We
learned that wave propagation along a transmission line is characterized by the
waves sliding parallel to its conductors, with electric and magnetic fields entire-
ly transverse to the direction of propagation, and that these waves are known as
transverse electromagnetic (TEM) waves.

Another kind of waveguiding mechanism is one in which the waves
bounce obliquely between the parallel planes as they progress along the struc-
ture, resulting in transverse electric (TE) and transverse magnetic (TM) waves.
The arrangement is commonly referred to as a waveguide, although the trans-
mission line is also a waveguide. To continue our study of guided waves for
electronics, we introduce in this chapter TE and TM waves supported by plane
conductors, as in a parallel-plate transmission line, as well as those supported
by a plane dielectric slab, without the conductors. The latter arrangement is
particularly applicable to optoelectronics.

We first consider the parallel-plate waveguide, consisting of two parallel
plane conductors. To do this, we make use of the superposition of two uniform
plane waves propagating at an angle to each other. Hence, we begin the chapter
with a discussion of uniform plane wave propagation in an arbitrary direction
relative to the coordinate axes.

8.1 UNIFORM PLANE WAVE PROPAGATION IN AN ARBITRARY
DIRECTION

In Chapter 3, we introduced the uniform plane wave propagating in the z-direction
by considering an infinite plane current sheet lying in the xy-plane. If the current

527

Two
dimensions

RaoCh08v3.qxd  12/18/03  5:10 PM  Page 527



528 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

sheet lies in a plane making an angle to the xy-plane, the uniform plane wave
would then propagate in a direction different from the z-direction.Thus, let us first
consider the two-dimensional case of a uniform plane wave propagating in a per-
fect dielectric medium in the and making an angle with the negative
x-axis, as shown in Fig. 8.1. Let the electric field of the wave be entirely in the y-di-
rection. The magnetic field would then be directed as shown in the figure so that

points in the 
We can write the expression for the electric field of the wave as

(8.1)

where is the phase constant, that is, the rate of change of phase with
distance along the for a fixed value of time. From the construction
of Fig. 8.2(a), however, we have

(8.2)z¿ = -x cos u + z sin u

z¿-direction
b = v1me E = E0 cos 1vt - bz¿2 ay

z¿-direction.E � H

uz¿-direction

u

u

B

A

C

E

H

e, m

O z

z�

x

y z

x

FIGURE 8.1

Uniform plane wave propagating in the lying in the xz-plane and making an
angle with the negative x-axis.u

z¿-direction

z

x

(a) (b)

z

z�
z sin

 u

(x, z)

�x cos u

u

u

u
u u

u

H0 cos u

H0 sin u
�x

H0

ax

az

az�

FIGURE 8.2

Constructions pertinent to the formulation of the expressions for the fields of the uniform
plane wave of Fig. 8.1.

RaoCh08v3.qxd  12/18/03  5:10 PM  Page 528



8.1 Uniform Plane Wave Propagation in an Arbitrary Direction 529

so that

(8.3)

where and are the phase constants in the positive
x- and positive z-directions, respectively.

We note that and are less than the phase constant along the
direction of propagation of the wave.This can also be seen from Fig. 8.1 in which
two constant phase surfaces are shown by dashed lines passing through the
points O and A on the Since the distance along the x-direction between
the two constant phase surfaces (i.e., the distance OB) is equal to the
rate of change of phase with distance along the x-direction is equal to

The minus sign for signifies that, insofar as the x-axis is concerned, the wave
is progressing in the negative x-direction. Similarly, since the distance along the
z-direction between the two constant phase surfaces (i.e., the distance OC) is
equal to the rate of change of phase with distance along the z-direc-
tion is equal to

Since the wave is progressing along the positive z-direction, is positive. We
further note that

(8.4)

and that

(8.5)

where is the unit vector directed along the as shown in Fig. 8.2(b).
Thus, the vector

(8.6)

defines completely the direction of propagation and the phase constant along
the direction of propagation. Hence, the vector is known as the propagation
vector.

The expression for the magnetic field of the wave can be written as

(8.7)H = H0 cos 1vt - bz¿2

B

B = 1-b cos u2ax + 1b sin u2az = bxax + bzaz

z¿-direction,az¿

-cos u ax + sin u az = az
œ

b2
x + b2

z = 1-b cos u22 + 1b sin u22 = b2

bz

b  
OA

OC
=
b1OA2

OA>sin u
= b sin u

OA>sin u,

bx

b  
OA

OB
=
b1OA2

OA>cos u
= b cos u

OA>cos u,
z¿-axis.

b,ƒ bz ƒƒ bx ƒ

bz = b sin ubx = -b cos u

 = E0 cos 1vt - bx x - bz z2 ay

 = E0 cos [vt - 1-b cos u2x - 1b sin u2z] ay

 E = E0 cos [vt - b1-x cos u + z sin u2] ay
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530 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

where

(8.8)

since the ratio of the electric field intensity to the magnetic field intensity of a
uniform plane wave is equal to the intrinsic impedance of the medium. From the
construction in Fig. 8.2(b), we observe that

(8.9)

Thus, using (8.9) and substituting for from (8.2), we obtain

(8.10)

Generalizing the foregoing treatment to the case of a uniform plane wave
propagating in a completely arbitrary direction in three dimensions, as shown
in Fig. 8.3, and characterized by phase constants and in the x-, y-, andbzbx, by,

 = -  

E0

h
 1sin u ax + cos u az2 cos [vt - bx x - bz z]

 H = H01-sin u ax - cos u az2 cos [vt - b1-x cos u + z sin u2]
z¿

H0 = H01-sin u ax - cos u az2

ƒ H0 ƒ =
E02m>e =

E0

h

Generalization
to three 
dimensions

x

z

Constant Phase Surface
Phase � f

lx

lz

ly

l

y

Constant Phase Surface
Phase � f � 2p

H

E

FIGURE 8.3

The various quantities associated with a uniform plane wave propagating in an
arbitrary direction.
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8.1 Uniform Plane Wave Propagation in an Arbitrary Direction 531

z-directions, respectively, we can write the expression for the electric field as

(8.11)

where

(8.12)

is the propagation vector,

(8.13)

is the position vector, and is the phase at the origin at We recall that
the position vector is the vector drawn from the origin to the point (x, y, z) and
hence has components x, y, and z along the x-, y-, and z-axes, respectively. The
expression for the magnetic field of the wave is then given by

(8.14)

where

(8.15)

Since E, H, and the direction of propagation are mutually perpendicular to each
other, it follows that

(8.16a)

(8.16b)

(8.16c)

In particular, should be directed along the propagation vector as il-
lustrated in Fig. 8.3, so that is directed along We can therefore com-
bine the facts (8.16) and (8.15) to obtain

(8.17)

 =
bab � E0

vm
=
B � E0

vm

 H0 =
ab � E0

h
=

ab � E02m>e =
v2me ab � E0

vm

H0.B � E0

B,E � H

 E0
# H0 = 0

 H0
# B = 0

 E0
# B = 0

ƒ H0 ƒ =
ƒ E0 ƒ
h

H = H0 cos 1vt - B # r + f02

t = 0.f0

r = xax + yay + zaz

B = bxax + byay + bzaz

 = E0 cos 1vt - B # r + f02
 = E0 cos [vt - 1bxax + byay + bzaz2 # 1xax + yay + zaz2 + f0]

 E = E0 cos 1vt - bx x - by y - bz z + f02
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532 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

where is the unit vector along Thus,

(8.18)

Returning to Fig. 8.3, we can define several quantities pertinent to the uni-
form plane wave propagation in an arbitrary direction. The apparent wave-
lengths and along the coordinate axes x, y, and z, respectively, are the
distances measured along those respective axes between two consecutive con-
stant phase surfaces between which the phase difference is as shown in the
figure, at a fixed time. From the interpretations of and as being the
phase constants along the x-, y-, and z-axes, respectively, we have

(8.19a)

(8.19b)

(8.19c)

We note that the wavelength along the direction of propagation is related to
and in the manner

(8.20)

The apparent phase velocities and along the x-, y-, and z-axes, re-
spectively, are the velocities with which the phase of the wave progresses with
time along the respective axes. Thus,

(8.21a)

(8.21b)

(8.21c) vpz =
v

bz

 vpy =
v

by

 vpx =
v

bx

vpzvpx, vpy,

 =
1

lx
2 +

1

ly
2 +

1

lz
2

 
1

l2 =
1

12p>b22 =
b2

4p2 =
bx

2 + by
2 + bz

2

4p2

lzlx, ly,
l

 lz =
2p
bz

 ly =
2p
by

 lx =
2p
bx

bzbx, by,
2p,

lzlx, ly,

H =
1
vm

 B � E

B.ab

Apparent
wavelengths
and phase
velocities
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8.1 Uniform Plane Wave Propagation in an Arbitrary Direction 533

The phase velocity along the direction of propagation is related to 
and in the manner

(8.22)

The apparent wavelengths and phase velocities along the coordinate axes
are greater than the actual wavelength and phase velocity, respectively, along
the direction of propagation of the wave. This fact can be understood physically
by considering, for example, water waves in an ocean striking the shore at an
angle. The distance along the shoreline between two successive crests is greater
than the distance between the same two crests measured along a line normal to
the orientation of the crests. Also, to keep pace with a particular crest an ob-
server has to run faster along the shoreline than in a direction normal to the ori-
entation of the crests. We shall now consider an example.

Example 8.1 Verification of properties of uniform plane wave
propagating in free space

Let us consider a 30-MHz uniform plane wave propagating in free space and given by
the electric field vector

We wish to verify the properties and find the magnetic field vector H and other parame-
ters associated with the wave.

Comparing the given expression for E with the general expression (8.11), we have

Hence, (8.16a) is satisfied; is perpendicular to 

 l =
2p
b

=
2p

0.2p
= 10 m

 b = ƒB ƒ = 0.05p ƒ 3ax - 13ay + 2az ƒ = 0.05p29 + 3 + 4 = 0.2p

B.E0

 = 0.25p13 - 32 = 0

 B # E0 = 0.05p13ax - 13ay + 2az2 # 51ax + 13ay2
 B = 0.05p13ax - 13ay + 2az2

 = 0.05p13ax - 13ay + 2az2 # 1xax + yay + zaz2
 B # r = 0.05p13x - 13y + 2z2

 E0 = 51ax + 13ay2

E = 51ax + 13ay2 cos [6p * 107t - 0.05p13x - 13y + 2z2] V>m

 =
1

vpx
2 +

1

vpy
2 +

1

vpz
2

 
1

vp
2 =

1

1v>b22 =
b2

v2 =
bx

2 + by
2 + bz

2

v2

vpz

vpx, vpy,vp
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534 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

This does correspond to a frequency of or 30 MHz, in free space. The
direction of propagation is along the unit vector

From (8.17),

Thus,

To verify the expression for H just derived, we note that

Hence, (8.16b), (8.16c), and (8.15) are satisfied.
Proceeding further, we find that

 bz = 0.05p * 2 = 0.1p

 by = -0.05p * 13 = -0.0513p

 bx = 0.05p * 3 = 0.15p

 =
10

1>12p
= 120p = h0

 
ƒ E0 ƒ
ƒ H0 ƒ

=
5 ƒ ax + 13ay ƒ

11>48p2 ƒ -13ax + ay + 213az ƒ
=

521 + 3

11>48p223 + 1 + 12

 =
5

48p
 1-13 + 132 = 0

 E0
# H0 = 51ax + 13ay2 # 1

48p
 1-13ax + ay + 213az2

 =
0.05
48

 1-313 - 13 + 4132 = 0

 H0
# B = c 1

48p
 1-13ax + ay + 213az2 d # [0.05p13ax - 13ay + 2az2]

H =
1

48p
 1-13ax + ay + 213az2 cos [6p * 107t - 0.05p13x - 13y + 2z2] A>m

 =
1

48p
 1-13ax + ay + 213az2

 =
1

96p
 3 ax ay az

3  -13 2
1 13 0

3
 =

0.05p * 5

6p * 107 * 4p * 10-7 13ax - 13ay + 2az2 � 1ax + 13ay2

 H0 =
1
vm0

 B � E0

ab =
B

ƒB ƒ
=

3ax - 13ay + 2az29 + 3 + 4
=

3
4

 ax -
13
4

 ay +
1
2

 az

13 * 1082>10 Hz,
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8.1 Uniform Plane Wave Propagation in an Arbitrary Direction 535

We then obtain

Finally, to verify (8.20) and (8.22), we note that

and

K8.1. Uniform plane wave; Propagation in an arbitrary direction; Propagation vector;
Apparent wavelengths; Apparent phase velocities.

D8.1. For each of the following cases of a uniform plane wave propagating in free
space, find the frequency f: (a) wavelength along the direction of propagation
of the wave is 2 m; (b) the propagation vector is rad/m; and
(c) the apparent wavelengths along three mutually perpendicular directions
are 1 m, 1 m, and 2 m.
Ans. (a) 150 MHz; (b) 225 MHz; (c) 450 MHz.

D8.2. For a uniform plane wave of frequency 150 MHz propagating away from the
origin into the first octant in a nonmagnetic perfect dielectric medi-
um of the apparent wavelengths along the x- and y-directions are
found to be and respectively. Find (a) the phase constant along the
x-direction; (b) the apparent wavelength along the z-direction; (c) the apparent

3 
1
3 m,2 

1
2 m

e = 2e0,
1m = m02,

p11.2ax + 0.9ay2

 =
1

9 * 1016 =
1

13 * 10822 =
1

vp
2

 =
1

16 * 1016 +
1

48 * 1016 +
1

36 * 1016

 
1

vpx
2 +

1

vpy
2 +

1

vpz
2 =

1

14 * 10822 +
1

1413 * 10822 +
1

16 * 10822

 =
9

1600
+

3
1600

+
4

1600
=

1
100

=
1

102 =
1

l2

 
1

lx
2 +

1

ly
2 +

1

lz
2 =

1

140>322 +
1

140>1322 +
1

202

 vpz =
v

bz
=

6p * 107

0.1p
= 6 * 108 m>s

 vpy =
v

ƒ by ƒ
=

6p * 107

0.0513p
= 413 * 108 m>s = 6.928 * 108 m>s

 vpx =
v

bx
=

6p * 107

0.15p
= 4 * 108 m>s

 lz =
2p
bz

=
2p

0.1p
= 20 m

 ly =
2p
ƒ by ƒ

=
2p

0.0513p
=

4013
  m = 23.094 m

 lx =
2p
bx

=
2p

0.15p
=

40
3

  m = 13.333 m
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1
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FIGURE 8.4

Superposition of two uniform plane waves propagating symmetrically with respect to
the z-axis.

phase velocity along the direction of the unit vector and
(d) the equation of the plane if the source of the wave is an infinite plane sheet of
uniform current density passing through the origin.
Ans. (a) (b) 2 m; (c) (d)

8.2 TE AND TM WAVES IN A PARALLEL-PLATE WAVEGUIDE

In the preceding section, we introduced uniform plane wave propagation in an
arbitrary direction. Let us now consider the superposition of two uniform plane
waves propagating symmetrically with respect to the z-axis, as shown in Fig. 8.4,
and having the electric fields entirely in the y-direction as given by

(8.23a)

(8.23b)

where with and being the permittivity and the permeability, re-
spectively, of the medium. The corresponding magnetic fields are given by

(8.24a)

(8.24b) H2 =
E0

2h
 1-sin u ax + cos u az2 cos 1vt - bx cos u - bz sin u2

 H1 =
E0

2h
 1sin u ax + cos u az2 cos 1vt + bx cos u - bz sin u2

meb = v1me, =
E0

2
 cos 1vt - bx cos u - bz sin u2 ay

 E2 =
E0

2
  cos 1vt - B2

# r2 ay

 = -  

E0

2
  cos 1vt + bx cos u - bz sin u2 ay

 E1 = -  

E0

2
  cos 1vt - B1

# r2 ay

4x + 3y + 5z = 0.3.25 * 108 m>s;0.8p rad>m;

1
1313ax - 4ay + 12az2;

TE waves
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8.2 TE and TM Waves in a Parallel-Plate Waveguide 537

where The electric and magnetic fields of the superposition of the
two waves are given by

(8.25a)

(8.25b)

In view of the factors and for the x-dependence
and the factors and for the z-dependence,
the composite fields have standing wave character in the x-direction and traveling
wave character in the z-direction. Thus, we have standing waves in the x-direction
moving bodily in the z-direction, as illustrated in Fig. 8.5, by considering the elec-
tric field for two different times. In fact, we find that the Poynting vector is given by

(8.26)

The time-average Poynting vector is given by

(8.27)

 =
E0

2

2h
   sin u sin2 1bx cos u2 az

  +
E0

2

4h
   cos u sin 12bx cos u28sin 21vt - bz sin u29 ax

 8P9 =
E0

2

h
  sin u sin2 1bx cos u28sin2 1vt - bz sin u29 az

  +
E0

2

4h
  cos u sin 12bx cos u2 sin 21vt - bz sin u2 ax

 =
E0

2

h
  sin u sin2

 1bx cos u2 sin2
 1vt - bz sin u2 az

 = -Ey Hxaz + Ey Hzax

 P = E � H = Eyay � 1Hxax + Hzaz2

cos 1vt - bz sin u2sin 1vt - bz sin u2 cos 1bx cos u2sin 1bx cos u2

  +
E0

h
  cos u cos 1bx cos u2 cos 1vt - bz sin u2 az

 = -  

E0

h
 sin u sin 1bx cos u2 sin 1vt - bz sin u2 ax

  + cos 1vt - bz sin u - bx cos u2] az

  +
E0

2h
  cos u 1cos 1vt - bz sin u + bx cos u2

   -  cos 1vt - bz sin u - bx cos u2] ax

 =
E0

2h
 sin u [cos 1vt - bz sin u + bx cos u2

 H = H1 + H2

 = E0 sin 1bx cos u2 sin 1vt - bz sin u2 ay

   -  cos 1vt - bz sin u - bx cos u2] ay

 = -  

E0

2
 [cos 1vt - bz sin u + bx cos u2

 E = E1 + E2

h = 1m>e.
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FIGURE 8.5

Standing waves in the x-direction moving bodily in the z-direction.

Thus, the time-average power flow is entirely in the z-direction, thereby verify-
ing our interpretation of the field expressions. Since the composite electric field
is directed entirely transverse to the z-direction, that is, the direction of time-
average power flow, whereas the composite magnetic field is not, the composite
wave is known as the transverse electric, or TE, wave.
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8.2 TE and TM Waves in a Parallel-Plate Waveguide 539

From the expressions for the fields for the TE wave given by (8.25a) and
(8.25b), we note that the electric field is zero for sin equal to zero, or

(8.28)

where

Thus, if we place perfectly conducting sheets in these planes, the waves will
propagate undisturbed, as though the sheets were not present, since the bound-
ary condition that the tangential component of the electric field be zero on the
surface of a perfect conductor is satisfied in these planes. The boundary condi-
tion that the normal component of the magnetic field be zero on the surface of
a perfect conductor is also satisfied since is zero in these planes.

If we consider any two adjacent sheets, the situation is actually one of uni-
form plane waves bouncing obliquely between the sheets, as illustrated in Fig. 8.6
for two sheets in the planes and thereby guiding the
wave, and hence the energy, in the z-direction, parallel to the plates.Thus, we have
a parallel-plate metallic waveguide, as compared to the parallel-plate transmission
line in which the uniform plane wave slides parallel to the plates. We note from
the constant phase surfaces of the obliquely bouncing wave shown in Fig. 8.6 that

is simply one-half of the apparent wavelength of that wave in the x-di-
rection, that is, normal to the plates.Thus, the fields have one-half apparent wave-
length in the x-direction. If we place the perfectly conducting sheets in the planes

and the fields will then have m number of one-half ap-
parent wavelengths in the x-direction between the plates. The fields have no
variations in the y-direction. Thus, the fields are said to correspond to 
modes, where the subscript m refers to the x-direction, denoting m number of
one-half apparent wavelengths in that direction, and the subscript 0 refers to

TEm,0

x = ml>12 cos u2,x = 0

l>12 cos u2

x = l>12 cos u2,x = 0

Hx

l =
2p
b

=
2p

v2me =
1

f2me
x = ;  

mp

b cos u
= ;  

ml

2 cos u ’
 m = 0, 1, 2, 3, Á

bx cos u = ;mp, m = 0, 1, 2, 3, Á

1bx cos u2

Parallel-plate
waveguide

l

2 cos u
x =

x � 0

u u u u

x

z
y

u uu u

l

2

FIGURE 8.6

Uniform plane waves bouncing obliquely between two parallel plane perfectly conducting
sheets.
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(a)

x � 0

x � a

(c)

(e)

(b)

(d)

(f)

FIGURE 8.7

For illustrating the phenomenon of cutoff in a parallel-plate waveguide.

the y-direction, denoting zero number of one-half apparent wavelengths in
that direction.

Let us now consider a parallel-plate waveguide with perfectly conducting
plates situated in the planes and that is, having a fixed spacing a
between them, as shown in Fig. 8.7(a). Then, for waves guided by the
plates, we have from (8.28),

or

(8.29)

Thus, waves of different wavelengths (or frequencies) bounce obliquely be-
tween the plates at different values of the angle For very small wavelengths
(very high frequencies), is small, and the waves sim-
ply slide between the plates as in the case of the transmission line, as shown in
Fig. 8.7(b). As increases ( f decreases), increases, decreases, and the
waves bounce more and more obliquely, as shown in Figs. 8.7(c)–(e). Eventu-
ally, becomes equal to 2a/m, for which and the waves sim-
ply bounce back and forth normally to the plates, as shown in Fig. 8.7(f),
without any feeling of being guided parallel to the plates. For 

and has no real solution, indicating that propagation
does not occur for these wavelengths in the waveguide mode. This condition is
known as the cutoff condition.

uml>2a 7 1, cos u 7 1,
l 7 2a>m,

cos u = 1, u = 0°,l

uml>2al

cos u L 0, u L 90°,ml>2a
u.

cos u =
ml

2a
=

m

2a
  

1
f1me

a =
ml

2 cos u

TEm,0

x = a,x = 0
Cutoff
phenomenon
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8.2 TE and TM Waves in a Parallel-Plate Waveguide 541

The cutoff wavelength, denoted by the symbol is given by

(8.30)

This is simply the wavelength for which the spacing a is equal to m number of
one-half wavelengths. Propagation of a particular mode is possible only if is
less than the value of for that mode. The cutoff frequency is given by

(8.31)

Propagation of a particular mode is possible only if f is greater than the value of 
for that mode. Consequently, waves of a given frequency f can propagate in all
modes for which the cutoff wavelengths are greater than the wavelength or the
cutoff frequencies are less than the frequency. Note that since the cutoff phenom-
enon corresponds to the waves bouncing back and forth normal to the plates, that
is, transverse to the guide axis, the expressions for the cutoff wavelength and fre-
quency can be obtained directly from considerations of transverse resonance.

Substituting for 2a/m in (8.29), we have

(8.32a)

(8.32b)

(8.32c)

(8.32d)

We see from (8.32d) that the phase constant along the z-direction, that is,
is real for and imaginary for Since

an imaginary value of the phase constant does not correspond to wave propaga-
tion. This once again explains the cutoff phenomenon. We now define the guide
wavelength, to be the wavelength in the z-direction, that is, along the guide.
This is given by

(8.33)lg =
2p
bz

=
2p
b sin u

=
l21 - 1l>lc22 =

l21 - 1fc>f22

lg,

 = e ; ƒbz ƒz cos vt

 = Re1e ; ƒbz ƒzejvt2
 cos 1vt < j ƒ bz ƒ z2 = Re ej1vt < j ƒbz ƒz2

l 7 lc.l 6 lcbz1=  b sin u2,

 b sin u =
2p
l

  B1 - a l
lc
b2

 b cos u =
2p
l

  
l

lc
=

2p
lc

=
mp

a

 sin u = 21 - cos2 u = B1 - a l
lc
b2

= B1 - afc

f
b2

 cos u =
l

lc
=

fc

f

lc

fc

fc =
m

2a2melc

l

lc =
2a
m

lc,
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This is simply the apparent wavelength, in the z-direction, of the obliquely
bouncing uniform plane waves. The phase velocity along the guide axis, which is
simply the apparent phase velocity, in the z-direction, of the obliquely bouncing
uniform plane waves, is

(8.34)

Finally, substituting (8.32a)–(8.32d) in the field expressions (8.25a) and
(8.25b), we obtain

(8.35a)

(8.35b)

These expressions for the mode fields in the parallel-plate waveguide do
not contain the angle They clearly indicate the standing-wave character of the
fields in the x-direction, having m one-half sinusoidal variations between the
plates. We shall now consider an example.

Example 8.2 Finding propagating modes in an air–dielectric
parallel-plate waveguide

Let us assume the spacing a between the plates of an air-dielectric parallel-plate wave-
guide to be 5 cm and investigate the propagating modes for 

From (8.30), the cutoff wavelengths for modes are given by

This result is independent of the dielectric between the plates. Since the medium be-
tween the plates is free space, the cutoff frequencies for the modes are

For the propagating modes are 
and 

For each propagating mode, we can find and by using (8.32a), (8.33), and
(8.34), respectively. Values of these quantities are listed in the following:

Mode

10 3000 72.54 3.145

5 6000 53.13 3.75

3.33 9000 25.84 6.882 6.882 * 108TE3,0

3.75 * 108TE2,0

3.145 * 108TE1,0

vpz 1m>s2lg 1cm2u 1deg2fc 1MHz2lc 1cm2

vpzu, lg,
TE3,01fc = 9 * 109 Hz2.TE2,01fc = 6 * 109 Hz2,

TE1,01fc = 3 * 109 Hz2,f = 10,000 MHz = 1010 Hz,

fc =
3 * 108

lc
=

3 * 108

0.1>m = 3m * 109 Hz

TEm,0

lc =
2a

m
=

10
m

  cm =
1.0
m

  m

TEm,0

f = 10,000 MHz.TEm,0

TEm, 0

u.
TEm,0

 +
E0

h
  
l

lc
  cos ampx

a
b  cos 1vt - bzz2 az

 H = -  

E0

h
  
l

lg
 sin ampx

a
b  sin 1vt - bzz2 ax

 E = E0 sin ampx
a
b  sin 1vt - bzz2 ay

vpz =
v

bz
=

v

b sin u
=

vp21 - 1l>lc22 =
vp21 - 1fc>f22
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Field
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We have thus far considered transverse electric or TE waves in a parallel-
plate waveguide. In a similar manner, it is possible to have propagation of trans-
verse magnetic or TM waves, so called because the magnetic field is directed
entirely transverse to the direction of time-average power flow, whereas the
electric field is not.The field expressions for TM waves can be obtained by start-
ing with two uniform plane waves having their magnetic fields entirely in the y-
direction, and proceeding in a manner similar to the development of TE waves.
However, we shall not pursue that approach. Instead, we shall, by analogy with
(8.35a), write the expression for the magnetic field of the TM wave and then de-
rive the electric field by using one of Maxwell’s curl equations.

Thus, assuming the guide to be made up of parallel plates in the and
planes, and writing the expression for the magnetic field of the 

wave and using

we obtain the fields for the TM modes to be

(8.36a)

(8.36b)

Note that the x-variation of is cosinusoidal, which leads to sinusoidal varia-
tion for so that the boundary condition of zero tangential electric field is sat-
isfied on the two plates.The parameters and in (8.36a) and (8.36b) and the
other parameters and for the TM modes are the same as those for the TE
modes, given by (8.30), (8.33), (8.31), and (8.34), respectively.

We have in this section introduced the principle of metallic waveguides by
considering the parallel-plate waveguide. In practice, however, metallic wave-
guides are generally made up of a single conductor having rectangular or circu-
lar cross section. We shall defer the consideration of rectangular metallic
waveguides to Section 9.1 and discuss in Section 8.4 the important phenomenon
of dispersion, characteristic of propagation in parallel-plate as well as rectangu-
lar and circular waveguides and leading to the concept of group velocity.

But first we shall conclude this section with a brief description of a natu-
rally occurring waveguide, although of spherical geometry. This is the Earth-
ionosphere waveguide. The ionosphere is a region of the upper atmosphere
extending from approximately 50 km to more than 1000 km above Earth. In this
region, the constituent gases are ionized, mostly because of ultraviolet radiation
from the Sun, thereby resulting in the production of positive ions and electrons
that are free to move under the influence of the fields of a wave incident on the

vpzfc

lglc

Ez

Hy

 +
l

lc
 hH0 sin ampx

a
b  cos 1vt - bzz2 az

 E =
l

lg
 hH0 cos ampx

a
b  sin 1vt - bzz2 ax

 H = H0 cos ampx
a
b  sin 1vt - bzz2 ay

� � H =
0D
0t

TMm,0x = a
x = 0
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TM waves

Field
expressions
for 
modes
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544 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

medium. The positive ions are, however, heavy compared to the electrons, and
hence they are relatively immobile.The electron motion produces a current that
influences the wave propagation. The electron density in the ionosphere exists
in several layers known as the D, E, and F layers, in which the ionization
changes with the hour of the day, the season, and the sunspot cycle. However,
for the purpose of our discussion, it is sufficient to assume that the electron den-
sity increases continuously from zero at the lower boundary, reaching a peak at
some height, typically lying between 250 and 350 km, and then decreases con-
tinuously, as shown in Fig. 8.8(a). The wave propagation is influenced by the
electrons in such a manner that waves of very low frequencies are reflected at
the base. As the frequency is increased, the waves penetrate deeper into the re-
gion but still return to Earth after reflection. When their frequency exceeds a
certain value, typically between 20 and 40 MHz depending on the angle of inci-
dence, they penetrate through the maximum of the layer and hence do not re-
turn to Earth. Thus, for frequencies in the VLF range and lower, the lower
boundary of the ionosphere and Earth form a waveguide, thereby permitting a
waveguide mode of propagation, as shown in Fig. 8(b).

K8.2. Transverse electric wave; Transverse magnetic wave; Parallel-plate waveguide;
Cutoff frequency; Cutoff wavelength; Guide wavelength.

D8.3. The dimension a of an air-dielectric parallel-plate waveguide is 3 cm. Find the
values of and for each of the following cases: (a)
mode; (b) mode; and (c) mode.
Ans. (a) 33.56°, 9.045 cm; (b) 70.53°, 2.121 cm; (c) 48.19°, 2.683 cm.

D8.4. TE waves are excited in an air-dielectric parallel-plate waveguide having the
plates in the and planes by setting up at its input a field
distribution having

E = 40 sin3 20px sin 2 * 1010pt ay V>m

z = 0x = 5 cmx = 0

f = 15,000 MHz, TE2,0f = 15,000 MHz, TE1,0

f = 6000 MHz, TE1,0lgu

Electron Density

(a) (b)

Height

Ionosphere

Earth

FIGURE 8.8

(a) Variation of electron density with height for a simplified ionosphere. (b)
Depiction of waveguide mode of propagation in the Earth-ionosphere waveguide.
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Noting that the electric field of a propagating mode is of the form
given by (9.35a), find for each of the following modes: (a) (b)
and (c)
Ans. (a) 30 V/m; (b) 0 V/m; (c)

8.3 TRANSMISSION-LINE EQUIVALENTS

Let us now consider reflection and transmission at a dielectric discontinuity in a
parallel-plate guide, as shown in Fig. 8.9. If a TE or TM wave is incident on the
junction from section 1, then it will set up a reflected wave into section 1 and a
transmitted wave into section 2, provided that mode propagates in that section.
The fields corresponding to these incident, reflected, and transmitted waves
must satisfy the boundary conditions at the dielectric discontinuity.

Considering first TE waves and denoting the incident, reflected, and trans-
mitted wave fields by the subscripts i, r, and t, respectively, we have from the
continuity of the tangential component of E at a dielectric discontinuity,

(8.37a)

and from the continuity of the tangential component of H at a dielectric dis-
continuity,

(8.37b)

We now define the guide characteristic impedance, of section 1 as

(8.38)

Recognizing that we note that is simply the ratio of the
transverse components of the electric and magnetic fields of the wave
that give rise to time-average power flow down the guide. From (8.35a) and
(8.35b) applied to section 1, we have

(8.39)hg1 = h1 

lg1

l1
=

h121 - 1l1>lc22 =
h121 - 1fc1>f22

TEm,0

hg1ay � 1-ax2 = az,

hg1 =
Eyi

-Hxi

hg1,

Hxi + Hxr = Hxt at z = 0

Eyi + Eyr = Eyt at z = 0

-10 V>m.
TE3,0.

TE2,0;TE1,0;E0

TEm,0

Parallel-plate
waveguide
discontinuity

x � 0

z � 0
x � a

Section 1 Section 2
Incident

Reflected

Reflected

e1, m1

zy

x

FIGURE 8.9

For consideration of reflection and transmission at a dielectric discontinuity in a
parallel-plate waveguide.
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546 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

The guide characteristic impedance is analogous to the characteristic imped-
ance of a transmission line, if we recognize that and are analogous to

and respectively. In terms of the reflected wave fields, it then follows
that

(8.40)

This result can also be seen from the fact that for the reflected wave, the power
flow is in the negative z-direction, and since is equal to

For the transmitted wave fields, we have

(8.41)

where

(8.42)

is the guide characteristic impedance of section 2.
Using (8.38), (8.40), and (8.41), (8.37b) can be written as

(8.43)

Solving (8.37a) and (8.43), we get

or the reflection coefficient at the junction is given by

(8.44)

This expression for the reflection coefficient is the same as that for the
voltage reflection coefficient at the load of a lossless transmission line of char-
acteristic impedance terminated by a resistive load It is also the same
as the voltage reflection coefficient at the junction between two transmission
lines 1 and 2 having the characteristic impedances and respectively, as
shown in Fig. 8.10, where line 2 is infinitely long and hence its input impedance
is equal to Thus, insofar as reflection and transmission at the discontinuity
are concerned, each waveguide section can be replaced by a transmission line

hg2.

hg2,hg1

hg2.hg1

≠ =
Eyr

Eyi
=
hg2 - hg1

hg2 + hg1

Eyi a1 -
hg2

hg1
b + Eyr a1 +

hg2

hg1
b = 0

Eyi

hg1
-

Eyr

hg1
=

Eyt

hg2

hg2 = h2 

lg2

l2
=

h221 - 1l2>lc22 =
h221 - 1fc2>f22

Eyt

-Hxt
= hg2

Eyr>Hxr.
ay � ax = -az, hg1

hg1 = - a Eyr

-Hxr
b =

Eyr

Hxr

I + ,V +
-HxiEyi
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8.3 Transmission-Line Equivalents 547

of characteristic impedance equal to the guide characteristic impedance given
for the TE modes by

(8.45)

It should be noted that unlike the characteristic impedance of a lossless line,
which is a constant independent of frequency, the guide characteristic impedance
of the lossless waveguide is a function of the frequency and the mode of propaga-
tion. Before considering TM modes, it should be pointed out that the power re-
flection coefficient is so that the reflected power is times the incident power
and the transmitted power into section 2 is times the incident power.

Turning now to TM waves, we observe from (8.36a) and (8.36b) that the
ratio of the transverse electric field component to the transverse magnetic
field component which together are responsible for time-average power
flow in the z-direction, is equal to and hence the guide characteristic im-
pedance for TM waves is given by

(8.46)

Thus, the transmission-line equivalent for reflection and transmission of TM
waves at the waveguide discontinuity is the same as in Fig. 8.10, except that 
and follow from (8.46). We shall now consider an example.

Example 8.3 Parallel-plate waveguide discontinuity

Let us consider the parallel-plate waveguide discontinuity shown in Fig. 8.11. We wish to
find the power reflection coefficients for and waves of frequency

incident on the junction from the free-space side.
For the mode or for the mode, independent of the

dielectric. For 

 l2 = wavelength on the dielectric side =
3 * 10819 * 5 * 109 =

6
3

= 2 cm

 l1 = wavelength on the free space side =
3 * 108

5 * 109 = 6 cm

f = 5000 MHz,
lc = 2a = 10 cm,TM1,0TE1,0

f = 5000 MHz
TM1,0TE1,0

hg2

hg1

[hg] TM = h21 - 1fc>f22

hl>lg,
Hy,

Ex

11 - ≠22 ≠2≠2

[hg] TE =
h21 - 1fc>f22

Line 1

hg1

Line 2

hg2

z � 0 z

FIGURE 8.10

Transmission-line equivalent of
parallel-plate waveguide
discontinuity.
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5 
cm e0, m0 9e0, m0

z � 0

FIGURE 8.11

For illustrating the computation of reflection and
transmission coefficients at a parallel-plate
waveguide discontinuity.

Since in both sections, and modes propagate in both sections. Thus,
for the mode,

For the mode,

K8.3. Parallel-plate waveguide discontinuity; Guide characteristic impedance; Trans-
mission-line equivalent.

D8.5. For a parallel-plate waveguide of spacing and filled with a dielectric of
and find the values of the guide characteristic impedance for

each of the following cases: (a) mode of (b) mode
of and (c) mode of 
Ans. (a) (b) (c)

8.4 DISPERSION AND GROUP VELOCITY

In Section 8.2, we learned that for the propagating range of frequencies, the
phase velocity and the wavelength along the axis of the parallel-plate wave-
guide are given by

(8.47)vpz =
vp21 - 1fc>f22

159.94 Æ.112.4 Æ;202.3 Æ;
f = 6000 MHz.TE1,0f = 3000 MHz;

TM1,0f = 3000 MHz;TE1,0

m = m0,e = 6.25e0

a = 3 cm

 ≠2 = ahg2 - hg1

hg2 + hg1
b2

= a123.12 - 301.59
123.12 + 301.59

b2

= 1-0.4222 = 0.176

 hg2 = h221 - 1l2>lc22 = 123.12 Æ

 hg1 = h121 - 1l1>lc22 = 301.59 Æ

TM1,0

 ≠2 = ahg2 - hg1

hg2 + hg1
b2

= a128.25 - 471.24
128.25 + 471.24

b2

= 1-0.57222 = 0.327

 hg2 =
h221 - 1l2>lc22 =

120p>1921 - 12>1022 =
40p21 - 0.04

= 128.25 Æ

 hg1 =
h121 - 1l1>lc22 =

120p21 - 16>1022 = 471.24 Æ

TE1,0

TM1,0TE1,0l 6 lc
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8.4 Dispersion and Group Velocity 549

and

(8.48)

where and is the cutoff frequency. We
note that for a particular mode, the phase velocity of propagation along the
guide axis varies with the frequency. As a consequence of this characteristic of
the guided wave propagation, the field patterns of the different frequency com-
ponents of a signal comprising a band of frequencies do not maintain the same
phase relationships as they propagate down the guide. This phenomenon is
known as dispersion for its similarity to the phenomenon of dispersion of colors
by a prism.

To discuss dispersion, let us consider a simple example of two infinitely
long trains A and B traveling in parallel, one below the other, with each train
made up of boxcars of identical size and having wavy tops, as shown in Fig. 8.12.
Let the spacings between the peaks (centers) of successive boxcars be 50 m and
90 m, and let the speeds of the trains be 20 m/s and 30 m/s, for trains A and B, re-
spectively. Let the peaks of the cars numbered 0 for the two trains be aligned at
time as shown in Fig. 8.12(a). Now, as time progresses, the two peaks get
out of alignment as shown, for example, for in Fig. 8.12(b), since train B
is traveling faster than train A. But at the same time, the gap between the peaks
of cars numbered decreases. This continues until at the peak of car

of train A having moved by a distance of 80 m aligns with the peak of car 
of train B, which will have moved by a distance of 120 m, as shown in Fig.
8.12(c). For an observer following the movement of the two trains as a group,
the group appears to have moved by a distance of 30 m, although the individual
trains will have moved by 80 m and 120 m, respectively. Thus, we can talk of a
group velocity, that is, the velocity with which the group as a whole is moving. In
this case, the group velocity is (30 m)/(4 s) or 7.5 m/s.

The situation in the case of the guided wave propagation of two different
frequencies in the parallel-plate waveguide is analogous to the two-train exam-
ple just discussed.The distance between the peaks of two successive cars is anal-
ogous to the guide wavelength, and the speed of the train is analogous to the
phase velocity along the guide axis. Thus, let us consider the field patterns cor-
responding to two waves of frequencies and propagating in the same
mode, having guide wavelengths and and phase velocities along the
guide axis and respectively, as shown, for example, for the electric
field of the mode in Fig. 8.13. Let the positive peaks numbered 0 of the
two patterns be aligned at as shown in Fig. 8.13(a). As the individual
waves travel with their respective phase velocities along the guide, these two
peaks get out of alignment, but some time later, say, the positive peaks num-
bered will align at some distance, say, from the location of the alignment
of the 0 peaks, as shown in Fig. 8.13(b). Since the peak of wave A will have
traveled a distance with a phase velocity and the peak of-1thvpzAlgA + ¢z

-1 th
¢z,-1

¢t,

t = 0,
TE1,0

vpzB,vpzA

lgB,lgA

fBfA

-1-1
t = 4 s,-1

t = 1 s
t = 0,

fcvp = 1>1me, l = vp>f = 1>f1me,lg =
l21 - 1fc>f22
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�2

�1 0

�100 �50 0 50 100 150 200 250 m

�100 �50 0 50 100 150 200 250 m

1 2

�1 0

50 m

90 m

(a)

(b)

(c)

1 2 3 4 20 m/s

t � 0

t � 1 s

t � 4 s

A

�2 �1 0 1 2 3 4 A

�3 �2 �1 0 1 2 3 A

30 m/sB

�1 0 1 2 B

�2 �1 0 1 B

FIGURE 8.12

For illustrating the concept of group velocity.

wave B will have traveled a distance with a phase velocity in this
time we have

(8.49a)

(8.49b) lgB + ¢z = vpzB ¢t

 lgA + ¢z = vpzA ¢t

¢t,
vpzBlgB + ¢z

RaoCh08v3.qxd  12/18/03  5:10 PM  Page 550



8.4 Dispersion and Group Velocity 551

vpzA

t � 0

�1 0 1

(a)

(b)

2

�3 �2 �1 0

�2 �1 0

lgA

vpzB

vpzA

t � �t

vpzB

�1 0 1

lgB

�z

y z

x

FIGURE 8.13

For illustrating the concept of group velocity for guided wave propagation.

Solving (8.49a) and (8.49b) for and we obtain

(8.50a)

and

(8.50b)¢z =
lgAvpzB - lgBvpzA

vpza - vpzB

¢t =
lgA - lgB

vpzA - vpzB

¢z,¢t
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552 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

The group velocity, is then given by

or

(8.51)

where and are the phase constants along the guide axis, corresponding
to and respectively. Thus, the group velocity of a signal comprised of two
frequencies is the ratio of the difference between the two radian frequencies to
the difference between the corresponding phase constants along the guide axis.

If we now have a signal comprised of a number of frequencies, then a
value of group velocity can be obtained for each pair of these frequencies in ac-
cordance with (8.51). In general, these values of group velocity will all be differ-
ent. In fact, this is the case for wave propagation in the parallel-plate guide, as
can be seen from Fig. 8.14, which is a plot of versus corresponding to the
parallel-plate guide for which

(8.52)

Such a plot is known as the diagram or dispersion diagram. Note that
the dispersion diagram begins at on the since for propa-
gation does not occur.The phase velocity along the guide axis given for a partic-
ular frequency by

(8.53)

is equal to the slope of the line drawn from the origin to the point on the dis-
persion curve, corresponding to that frequency, as shown in the figure for the
three frequencies and The group velocity for a particular pair of fre-
quencies is given by the slope of the line joining the two points on the curve,
corresponding to the two frequencies, as shown in the figure for the two pairs

and Since the curve is nonlinear, it can be seen that the two group
velocities are not equal.We cannot then attribute a particular value of group ve-
locity for the group of the three frequencies and v3.v2,v1,

v3.v2,v2v1,

v3.v2,v1,

vpz =
v

bz

v 6 vc,v-axis,v = vc

v - bz

bz =
2p
lg

=
2p
l B1 - a l

lc
b2

= v2me B1 - afc

f
b2

bzv

fB,fA

bzBbzA

vg =
vB - vA

bzB - bzA

 =
fB - fA

11>lgB2 - 11>lgA2

 vg =
¢z

¢t
=
lgAvpzB - lgBvpzA

lgA - lgB
=

lgAlgBfB - lgBlgAfA

lgAlgB[11>lgB2 - 11>lgA2]

vg,

Dispersion
diagram
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8.4 Dispersion and Group Velocity 553

If, however, the three frequencies are very close, as in the case of a nar-
row-band signal, it is meaningful to assign a group velocity to the entire group
having a value equal to the slope of the tangent to the dispersion curve at the
center frequency. Thus, the group velocity corresponding to a narrow band of
frequencies centered around a predominant frequency is given by

(8.54)

For the parallel-plate waveguide under consideration, we have from (8.52)

and hence, from (8.54),

(8.55)

From (8.47) and (8.55), we note that and

vpzvg = vp
2

vpz 7 vp, vg 6 vp,

vg =
dv

dbz
=

11me B1 -
fc

2

f2
= vp B1 - afc

f
b2

 = 1me a1 -
fc

2

f2 b
-1>2

 = 1me a1 -
fc

2

f2 +
v

2p
 

fc
2

f3 b a1 -
fc

2

f2 b
-1>2

 
dbz

dv
= 1me B1 - afc

f
b2

+ v1me – 
1
2

 a1 -
fc

2

f2 b
-1>2 fc

2

pf3

vg =
dv

dbz

v

bz1 bz2 bz3
bz

v3

Slope � vpz

Slope � vg

v1

v2

v

vc

Slope �
me

1

FIGURE 8.14

Dispersion diagram for the parallel-plate
waveguide.
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554 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

For a numerical example, let us consider the air-dielectric parallel-plate wave-
guide of spacing and a narrow-band signal of center frequency

propagating in the mode. Then from Example 8.2,
and from (8.55),

as compared to found in Example 8.2.
An example of a narrow-band signal is an amplitude-modulated signal,

having a carrier frequency modulated by a low-frequency as given by

(8.56)

where m is the percentage modulation. Such a signal is actually equivalent to a
superposition of unmodulated signals of three frequencies and

as can be seen by expanding the right side of (8.56). Thus,

(8.57)

The frequencies and are the side frequencies. When the am-
plitude-modulated signal propagates in a dispersive channel, such as the paral-
lel-plate waveguide under consideration, the different frequency components
undergo phase changes in accordance with their respective phase constants.
Thus, if and are the phase constants corresponding to

and respectively, assuming linearity of the dispersion
curve within the narrow band, the amplitude-modulated wave is given by

(8.58)

This indicates that although the carrier-frequency phase changes in accordance
with the phase constant the modulation envelope, and hence the informa-
tion, travels with the group velocity as shown in Fig. 8.15. In view of¢v>¢bz,

bz,

 = Ex0[1 + m cos 1¢v – t - ¢bz – z2] cos 1vt - bzz2
 = Ex0 cos 1vt - bzz2 + mEx0 cos 1vt - bzz2 cos 1¢v – t - ¢bz – z2

 + cos [1vt - bzz2 + 1¢v – t - ¢bz – z2]6
 +

mEx0

2
 5cos [1vt - bzz2 - 1¢v – t - ¢bz – z2]

 = Ex0 cos 1vt - bzz2
 + cos [1v + ¢v2t - 1bz + ¢bz2z]6
 +

mEx0

2
 5cos [1v - ¢v2t - 1bz - ¢bz2z]

 Ex1z, t2 = Ex0 cos 1vt - bzz2

v + ¢v,v - ¢v, v,
bz + ¢bzbz - ¢bz, bz,

v + ¢vv - ¢v

 = Ex0 cos vt +
mEx0

2
 [cos 1v - ¢v2t + cos 1v + ¢v2t]

 Ex1t2 = Ex0 cos vt + mEx0 cos vt cos ¢v–t

v + ¢v,
v - ¢v, v,

Ex1t2 = Ex011 + m cos ¢v–t2 cos vt

¢v � vv

vpz = 3.145 * 108 m>s
 = 2.862 * 108 m>s

 vg = 3 * 10821 - 13>1022
fc = 3000 MHz,

TE1,0f = 10,000 MHz
a = 5 cm

Amplitude
modulated
signal
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�v
�bz

v
bz

FIGURE 8.15

For illustrating that the modulation envelope travels with the group velocity.

1T. Van Duzer, Wave Velocities, Dispersion and the Omega—Beta Diagram (Newton, MA: Educa-
tional Development Center).

this, and since is less than the fact that is greater than is not a viola-
tion of the theory of relativity. Since it is always necessary to use some modula-
tion technique to convey information from one point to another, the
information always takes more time to reach from one point to another in a dis-
persive channel than in the corresponding nondispersive medium. For further
understanding of the concept of group velocity, the reader is advised to view a
movie narrated by Van Duzer.1

K8.4. Dispersion; Group velocity; Dispersion diagram; Narrow-band signal.
D8.6. The curve for a dispersive channel can be approximated by

in the vicinity of where k is a positive constant. Find (a) the phase
velocity for a signal of (b) the phase velocity for a signal of

(c) the group velocity for a signal composed of two radian frequen-
cies and and (d) the group velocity for a narrow-band signal having
the center radian frequency 
Ans. (a) (b) (c)
(d)

8.5 REFLECTION AND REFRACTION OF PLANE WAVES

Let us now consider a uniform plane wave that is incident obliquely on a plane
boundary between two different perfect dielectric media at an angle of inci-
dence to the normal to the boundary, as shown in Fig. 8.16. To satisfy the
boundary conditions at the interface between the two media, a reflected wave
and a transmitted wave will be set up. Let be the angle of reflection and be
the angle of transmission.Then without writing the expressions for the fields, we

utur

ui

1.41421kv0.
1.40711kv0;2.06561kv0;2.21361kv0;

1.5v0.
1.6v0;1.4v0

v = 1.6v0;
v = 1.4v0;

v = 1.5v0,

v = v0 + kbz
2

v-bz

vpvpzvp,vg
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ui ur

ut

Incident
Wave

Transmitted
Wave

Reflective
Wave

Medium 1
e1, m1

Medium 2
e2, m2

FIGURE 8.16

Reflection and transmission of an
obliquely incident uniform plane wave
on a plane boundary between two
different perfect dielectric media.

can find the relationship among and by noting that for the incident, re-
flected, and transmitted waves to be in step at the boundary, their apparent
phase velocities parallel to the boundary must be equal; that is,

(8.59)

where and are the phase velocities along the
directions of propagation of the waves in medium 1 and medium 2, respectively.

From (8.59), we have

(8.60a)

(8.60b)

or

(8.61a)

(8.61b)

Equation (8.61a) is known as the law of reflection and (8.61b) is known as the law
of refraction, or Snell’s law. Snell’s law is commonly cast in terms of the refractive
index, denoted by the symbol n and defined as the ratio of the velocity of light in
free space to the phase velocity in the medium. Thus, if and

are the (phase) refractive indices for media 1 and 2, respectively, then

(8.62)ut = sin-1 an1

n2
  sin uib

n21=  c>vp22
n11=  c>vp12

 ut = sin-1 aAm1e1

m2e2
 sin uib

 ur = ui

 sin ut =
vp2

vp1
 sin ui = Am1e1

m2e2
 sin ui

 sin ur = sin ui

vp21=  1>1m2e22vp11=  1>1m1e12

vp1

sin ui
=

vp1

sin ur
=

vp2

sin ut

utui, ur,

Laws of
reflection and
refraction
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8.5 Reflection and Refraction of Plane Waves 557

For two dielectrics having which is usually the case, (8.62)
reduces to

(8.63)

We shall now consider the derivation of the expressions for the reflection
and transmission coefficients at the boundary.To do this, we distinguish between
two cases: (1) the electric field vector of the wave linearly polarized parallel to
the interface and (2) the magnetic field vector of the wave linearly polarized par-
allel to the interface. The law of reflection and Snell’s law hold for both cases
since they result from the fact that the apparent phase velocities of the incident,
reflected, and transmitted waves parallel to the boundary must be equal.

The geometry pertinent to the case of the electric field vector parallel to
the interface is shown in Fig. 8.17, in which the interface is assumed to be in the

plane and the subscripts i, r, and t associated with the field symbols de-
note incident, reflected, and transmitted waves, respectively. The plane of inci-
dence, that is, the plane containing the normal to the interface and the
propagation vectors, is assumed to be in the xz-plane, so that the electric field
vectors are entirely in the y-direction. The corresponding magnetic field vectors
are then as shown in the figure so as to be consistent with the condition that E, H,
and form a right-handed mutually orthogonal set of vectors. Since the electric
field vectors are perpendicular to the plane of incidence, this case is also said to
B

x = 0

ut = sin-1 aAe1

e2
  sin uib

m1 = m2 = m0,

u1 u1

u2

x � 0

Ei

Hi
Hr

Ht

Et

Er

Medium 1
e1, m1

Medium 2
e2, m2

y

x

z

�r

�i

�t

FIGURE 8.17

For obtaining the reflection and transmission coefficients for an obliquely
incident uniform plane wave on a dielectric interface with its electric field
perpendicular to the plane of incidence.

Perpendicular
polarization
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correspond to perpendicular polarization. The angle of incidence is assumed to
be From the law of reflection (8.61a), the angle of reflection is then also 
The angle of transmission, assumed to be is related to by Snell’s law, given
by (8.61b).

The boundary conditions to be satisfied at the interface are that (1)
the tangential component of the electric field intensity be continuous and (2)
the tangential component of the magnetic field intensity be continuous. Thus,
we have at the interface 

(8.64a)

(8.64b)

Expressing the quantities in (8.64a) and (8.64b) in terms of the total fields, we
obtain

(8.65a)

(8.65b)

We also know from one of the properties of uniform plane waves that

(8.66a)

(8.66b)

Substituting (8.66a) and (8.66b) into (8.65b) and rearranging, we get

(8.67)

Solving (8.65a) and (8.67) for and we have

(8.68a)

(8.68b)

We now define the reflection coefficient and the transmission coeffi-
cient as

(8.69a)

(8.69b) t� =
Et

Ei
=

Eyt

Eyi

 ≠� =
Er

Ei
=

Eyr

Eyi

t�

≠�

 Er =
Et

2
  a1 -

h1

h2
  

cos u2

cos u1
b

 Ei =
Et

2
  a1 +

h1

h2
  

cos u2

cos u1
b

Er,Ei

Ei - Er = Et  

h1

h2
  

cos u2

cos u1

 
Et

Ht
= h2 = Am2

e2

 
Ei

Hi
=

Er

Hr
= h1 = Am1

e1

 Hi cos u1 - Hr cos u1 = Ht cos u2

 Ei + Er = Et

 Hzi + Hzr = Hzt

 Eyi + Eyr = Eyt

x = 0

x = 0

u1u2,
u1.u1.
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where the subscript refers to perpendicular polarization. From (8.68a) and
(8.68b), we then obtain

(8.70a)

(8.70b)

Equations (8.70a) and (8.70b) are known as the Fresnel reflection and transmis-
sion coefficients, respectively, for perpendicular polarization.

Before we discuss the result given by (8.70a) and (8.70b), we shall derive
the corresponding expressions for the case in which the magnetic field of the
wave is parallel to the interface. The geometry pertinent to this case is shown in
Fig. 8.18. Here again the plane of incidence is chosen to be the xz-plane, so that
the magnetic field vectors are entirely in the y-direction. The corresponding
electric field vectors are then as shown in the figure so as to be consistent with
the condition that E, H, and form a right-handed mutually orthogonal set of
vectors. Since the electric field vectors are parallel to the plane of incidence, this
case is also said to correspond to parallel polarization.

Once again the boundary conditions to be satisfied at the interface
are that (1) the tangential component of the electric field intensity bex = 0

B

 t� =
2h2 cos u1

h2 cos u1 + h1 cos u2

 ≠� =
h2 cos u1 - h1 cos u2

h2 cos u1 + h1 cos u2

�

Parallel
polarization

u1 u1

u2

x � 0

Ei

Hi
Hr

Ht

Et

Er

Medium 1
e1, m1

Medium 2
e2, m2

y

x

z

�r

�i

�t

FIGURE 8.18

For obtaining the reflection and transmission coefficients for an obliquely
incident uniform plane wave on a dielectric interface with its electric field
parallel to the plane of incidence.
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continuous and (2) the tangential component of the magnetic field intensity
be continuous. Thus, we have at the interface 

(8.71a)

(8.71b)

Expressing the quantities in (8.71a) and (8.71b) in terms of the total fields and
also using (8.66a) and (8.66b), we obtain

(8.72a)

(8.72b)

Solving (8.72a) and (8.72b) for and we have

(8.73a)

(8.73b)

We now define the reflection coefficient and the transmission coeffi-
cient as

(8.74a)

(8.74b)

where the subscript refers to parallel polarization. From (8.73a) and (8.73b),
we then obtain

(8.75a)

(8.75b)

Note from (8.74a) and (8.74b) that

(8.76a)

(8.76b)

Equations (8.75a) and (8.75b) are known as the Fresnel reflection and transmis-
sion coefficients, respectively, for parallel polarization.

 
Ezt

Ezi
=

-Et cos u2

-Ei cos u1
= t7  

cos u2

cos u1

 
Ezr

Ezi
=

Er cos u1

-Ei cos u1
= -  

Er

Ei
= ≠7

 t7 =
2h2 cos u1

h2 cos u2 + h1 cos u1

 ≠7 =
h2 cos u2 - h1 cos u1

h2 cos u2 + h1 cos u1

7
 t7 =

Et

Ei

 ≠7 = -  

Er

Ei

t7
≠7

 Er =
Et

2
 ah1

h2
-

cos u2

cos u1
b

 Ei =
Et

2
 ah1

h2
+

cos u2

cos u1
b

Er,Ei

 Ei + Er = Et  

h1

h2

 Ei - Er = Et  

cos u2

cos u1

 Hyi + Hyr = Hyt

 Ezi + Ezr = Ezt

x = 0,
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8.5 Reflection and Refraction of Plane Waves 561

We shall now discuss the results given by (8.70a), (8.70b), (8.75a), and
(8.75b) for the reflection and transmission coefficients for the two cases:

1. For that is, for the case of normal incidence of the uniform
plane wave upon the interface, and

Thus, the reflection coefficients as well as the transmission coefficients for the
two cases become equal as they should, since for normal incidence there is no
difference between the two polarizations except for rotation by 90° parallel to
the interface.

2. and if that is,

or

(8.77)

where we have used Snell’s law given by (8.61b) to express in terms of
If we assume as is usually the case, (8.77) has real solu-

tions for for Thus, for that is, for transmission from a dielec-
tric medium of higher permittivity into a dielectric medium of lower
permittivity, there is a critical angle of incidence given by

(8.78)

for which is equal to 90° and and For becomes
greater than 1, becomes imaginary, and and become complex, but
with their magnitudes equal to unity, and total internal reflection occurs; that is,
the time-average power of incident wave is entirely reflected, the boundary con-
dition being satisfied by an evanescent field in medium 2.To explain the evanes-
cent nature, we note with reference to the geometry of Fig. 8.17 or Fig. 8.18 that

or

bx2
2 = v2m2e2 - bz2

2

bx2
2 + bz2

2 = bt
2 = v2m2e2

≠7≠�cos u2

u1 7 uc, sin u2ƒ ≠7 ƒ = 1.ƒ ≠� ƒu2

uc = sin-1
 Ae2

e1

uc

e2 6 e1,e2 6 e1.u1

m2 = m1 = m0,sin u1.
sin u2

sin u1 = Am2e2

m1e1

21 - sin2 u2 = A1 -
m1e1

m2e2
  sin2 u1 = 0

cos u2 = 0;≠7 = -1≠� = 1

 t� =
2h2

h2 + h1
, t7 =

2h2

h2 + h1

 ≠� =
h2 - h1

h2 + h1
, ≠7 =

h2 - h1

h2 + h1

u2 = 0
u1 = 0,

Total internal
reflection

RaoCh08v3.qxd  12/18/03  5:10 PM  Page 561



562 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

For and Therefore, for
and Thus, should be

replaced by corresponding to exponential decay of the field in the x-di-
rection without a propagating wave character. The phenomenon of total inter-
nal reflection is the fundamental principle of optical waveguides, since if we
have a dielectric slab of permittivity sandwiched between two dielectric
media of permittivity then by launching waves at an angle of incidence
greater than the critical angle, it is possible to achieve guided wave propagation
within the slab, as we shall learn in the next section.

3. for that is, for

or

(8.79)

For the usual case of transmission between two dielectric materials, that is, for
and this equation has no real solution for and hence there is

no angle of incidence for which the reflection coefficient is zero for the case of
perpendicular polarization.

4. for that is, for

or

(8.80)

If we assume this equation reduces to

which then gives

and

tan u1 = Ae2

e1

cos2 u1 = 1 - sin2 u1 =
e1

e1 + e2

sin2
 u1 =

e2

e1 + e2

m2 = m1,

sin2 u1 =
h2

2 - h1
2

h2
21m1e1>m2e22 - h1

2 = e2 

1m2>m12e1 - e2

e1
2 - e2

2

h2 A1 -
m1e1

m2e2
  sin2 u1 = h121 - sin2 u1

h2 cos u2 = h1 cos u1;≠7 = 0

u1,e2 Z e1,m2 = m1

sin2 u1 =
h2

2 - h1
2

h2
2 - h1

21m1e1>m2e22 = m2 

m2 - m11e2>e12
m2

2 - m1
2

h221 - sin2 u1 = h1 A1 -
m1e1

m2e2
  sin2 u1

h2 cos u1 = h1 cos u2;≠� = 0

e2 6 e1,
e1

-jax2,
bx2bx2

2 6 0.u1 7 uc, bz2 = bz1 = v2m1e1 sin2 u1 7 v2m2e2,
bx2

2 = 0.u1 = uc, bz2 = bz1 = v2m1e1 sin2 uc = v2m2e2,
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8.5 Reflection and Refraction of Plane Waves 563

Thus, there exists a value of the angle of incidence given by

(8.81)

for which the reflection coefficient is zero, and hence there is complete trans-
mission for the case of parallel polarization.

5. In view of cases 3 and 4, for an elliptically polarized wave incident on
the interface at the angle the reflected wave will be linearly polarized per-
pendicular to the plane of incidence. For this reason, the angle is known as
the polarizing angle. It is also known as the Brewster angle.The phenomenon as-
sociated with the Brewster angle has several applications. An example is in gas
lasers in which the discharge tube lying between the mirrors of a Fabry–Perot
resonator is sealed by glass windows placed at the Brewster angle, as shown in
Fig. 8.19, to minimize reflections from the ends of the tube so that the laser be-
havior is governed by the mirrors external to the tube.

We shall now consider an example.

Example 8.4 Oblique incidence of uniform plane wave onto a dielectric
medium

A uniform plane wave having the electric field

is incident on the interface between free space and a dielectric medium of and
as shown in Fig. 8.20. We wish to obtain the expressions for the electric fields of

the reflected and transmitted waves.
m = m0,

e = 1.5e0

Ei = E0 a13
2

  ax -
1
2

  azb  cos [6p * 109t - 10p1x + 13z2]

up

up,

up = tan-1 Ae2

e1

up,

Brewster
angle

Gas Discharge Tube

MirrorMirror

Glass Window Glass Window

FIGURE 8.19

For illustrating the application of the Brewster angle effect in gas lasers.
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x � 0

Ei

Medium 1
e0, m0

Medium 2
1.5e0, m0

y

x

z

�i

60

FIGURE 8.20

For Example 8.4.

First, we note from the given that the propagation vector of the incident wave is
given by

the direction of which is consistent with the angle of incidence of 60°. We also note that
the electric field vector (which is perpendicular to ) is entirely in the plane of inci-
dence. Thus the situation corresponds to one of parallel polarization, as in Fig. 8.18.

To obtain the required fields, we first find, by using (8.63) and with reference to the
notation of Fig. 8.18, that

or Then from (8.75a)–(8.75b) and (8.76a)–(8.76b), we have

Finally, noting with the aid of Fig. 8.21 that

Br = 20pa -  
1
2

 ax +
13
2

 azb = 10p1-ax + 13az2

 
Et

Ei
= 0.758

 
Er

Ei
= -0.072

 =
212

2 + 13
= 0.758

 t7 =
21h0>11.52 cos 60°

1h0>11.52 cos 45° + h0 cos 60°

 =
2 - 13
2 + 13

= 0.072

 ≠7 =
1h0>11.52 cos 45° - h0 cos 60°

1h0>11.52 cos 45° + h0 cos 60°

u2 = 45°.

sin u2 = A e0

1.5e0
  sin 60° =

112

Bi

Bi = 10p1ax + 13az2 = 20pa1
2

 ax +
13
2

 azb

Ei
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x � 0

Ei

Er

Et

1.5e0, m0

e0, m0

y

x

z

�i

�t

�r

60 60

45

FIGURE 8.21

For writing the expressions for the
reflected and transmitted wave electric
fields for Example 8.4.

and

we write the expressions for the reflected and transmitted wave fields to be

and

Note that for and so that the fields do in-
deed satisfy the boundary conditions.

K8.5. Oblique incidence of uniform plane waves; Plane interface; Law of reflection;
Snell’s law; Perpendicular and parallel polarizations; Total internal reflection;
Brewster angle.

D8.7. Consider a plane boundary between medium and medium
Find the value of for each of the following cases of

uniform plane waves incident on the boundary from medium 1: (a) Total in-
ternal reflection occurs for (b) the reflection coefficient for parallel
polarization is zero for and (c) the critical angle of incidence for
total internal reflection is the same as the Brewster angle for incidence from
medium 2.
Ans. (a) 0.75; (b) 3; (c) 0.618.

D8.8. In Figs. 8.17 and 8.18, assume that and
Find (a) and for the case of perpendicular polarization

(Fig. 8.17) and (b) and for the case of parallel polarization (Fig. 8.18).
Ans. (a) (b) 0.146, 0.662.-0.382, 0.618;

Et>EiEr>Ei

Et>EiEr>Eiui = 45°.
e1 = 3e0, e2 = 9e0, m1 = m2 = m0,

ui = 60°;
ui Ú 60°;

e2>e12 1e = e2, m = m02.
1 1e = e1, m = m02

Exi + Exr = 1.5Ext,x = 0, Ezi + Ezr = Ezt

Et = 0.758E0 a 112
 ax -

112
 azb  cos [6p * 109t - 1013p1x + z2]

Er = -0.072E0 a13
2

 ax +
1
2

 azb  cos [6p * 109t + 10p1x - 13z2]

Bt = 20p11.5 a 112
 ax +

112
 azb = 1013p1ax + az2
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Description

8.6 DIELECTRIC SLAB GUIDE

In the preceding section, we learned that for a wave that is incident obliquely
from a dielectric medium of permittivity onto another dielectric medium of
permittivity total internal reflection occurs for angles of incidence 
exceeding the critical angle given by

(8.82)

where it is assumed that everywhere. In this section, we shall consider
the dielectric slab waveguide, which forms the basis for thin-film waveguides,
used extensively in integrated optics.

A. Wave-Bounce Approach

The dielectric slab waveguide consists of a dielectric slab of permittivity 
sandwiched between two dielectric media of permittivities less than For sim-
plicity, we shall consider the symmetric waveguide, that is, one for which the
permittivities of the dielectrics on either side of the slab are the same and equal
to as shown in Fig. 8.22. Then by launching waves at an angle of incidence

where is given by (8.82), it is possible to achieve guided wave propa-
gation within the slab, as shown in the figure. For a given thickness d of the slab
and for a given frequency of the waves, there are only discrete values of for
which the guiding can take place. In other words, guiding of a wave of a given
frequency is not ensured simply because the condition for total internal reflec-
tion is met.

The allowed values of are dictated by the self-consistency condition,
which can be explained with the aid of the construction in Fig. 8.23, as follows. If
we consider a point A on a given wavefront designated 1 and follow that wave-
front as it moves to position passing through point B, reflects at the interface

giving rise to wavefront designated 2, then moves to position passing2¿x = d>2 1¿

ui

ui

ucui 7 uc,
e2,

e1.
e1,

m = m0

uc = sin-1Ae2

e1

uc

uie2 6 e1,
e1

Self-
consistency
condition for
guidance

ui � uc

m0, e2 � e1

m0, e2 � e1

m0, e1

FIGURE 8.22

Total internal reflection in a dielectric slab waveguide.
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ui ui

ui
ui

1 1� 2 2�

3�3

C

A

B

e2

e1

e2

x � d/2

x � �d/2

x

y z

FIGURE 8.23

For explaining the self-consistency condition for waveguiding in a dielectric slab guide.

through point C, reflects at the interface giving rise to wavefront des-
ignated 3, and finally moves to position passing through A, then we see that
the total phase shift undergone must be equal to an integer multiple of If 
is the wavelength in free space corresponding to the wave frequency, the self-
consistency condition is given by

(8.83)

where and are the reflection coefficients at the interfaces and
respectively, and We recall that under conditions of total

internal reflection, the reflection coefficients (8.70a) and (8.75a) become com-
plex with their magnitudes equal to unity. For the symmetric waveguide,

Thus, substituting for and and 2d for we
write (8.83) as

or

(8.84)
2pd1er1

l0
  cos ui + l≠ = mp, m = 0, 1, 2, Á

4pd1er1

l0
  cos ui + 2l≠ = 2mp, m = 0, 1, 2, Á

1AB + BC + CA2,≠B≠A≠≠A = ≠B.

er1 = e1>e0.x = d>2,
x = -d>2≠B≠A

+l≠A + 2p1er1

l0
 1CA cos ui2 = 2mp, m = 0, 1, 2, Á

2p1er1

l0
 1AB cos ui2 + l≠B + 2p1er1

l0
 1BC cos ui2

l02p.
3¿
x = -d>2
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To proceed further, we need to distinguish between the cases of perpen-
dicular and parallel polarizations as defined in the preceding section, since the
reflection coefficients for the two cases are different. We shall here consider
only the case of perpendicular polarization. The situation then corresponds to
TE modes, since the electric field has no longitudinal or z-component. Thus,
substituting

and

in (8.70a), we obtain

(8.85)

so that

(8.86)

Substituting (8.86) into (8.84), we then obtain

or

or

(8.87)tan [f1ui2] = c g1ui2, m = 0, 2, 4, Á

-  
1

g1ui2, m = 1, 3, 5, Á

tan apd1er1

l0
  cos ui -

mp

2
b =

2sin2 ui - 1e2>e12
cos ui

, m = 0, 1, 2, Á

2pd1er1

l0
  cos ui - 2 tan-1

  

2sin2 ui - 1e2>e12
cos ui

= mp, m = 0, 1, 2, Á

 = -2 tan-1
  

2sin2 ui - 1e2>e12
cos ui

 l≠� = -2 tan-1
  

h121e1>e22 sin2 ui - 1

h2 cos ui

≠� =
h2 cos ui - jh121e1>e22 sin2 ui - 1

h2 cos ui + jh121e1>e22 sin2 ui - 1

 = jAe1

e2
 sin2 ui - 1

 = j2sin2 u2 - 1

 cos u2 = 21 - sin2 u2

cos u1 = cos ui

Characteristic
equation for
TE modes
and solution

RaoCh08v3.qxd  12/18/03  5:10 PM  Page 568



where

(8.88a)

(8.88b)

Equation (8.87) is the characteristic equation for the guiding of TE waves
in the dielectric slab. For given values of d, and the solutions for can
be obtained by plotting the two sides of (8.87) versus and finding the points of
intersection. The nature of this construction is shown in Fig. 8.24. Each solution
corresponds to one mode. It can be seen from (8.88a) and Fig. 8.24 that for a
given set of values of and fewer solutions are obtained for as the ratio

becomes smaller, since the number of branches of the plot of 
between and become fewer. It can also be seen that there is al-
ways one solution for a given d, even for arbitrarily low values of —that
is, for large values of or low frequencies.

Alternative to the graphical solution, we can use a computer to solve
(8.87) for the allowed values of for specified values of d, and Com-
puted values of for values of and are
listed in Table 8.1.

Returning now to Fig. 8.24, we designate the modes associated with the
solutions as modes, where correspond to the values of m
on the plot. We note from the plot that the solution for a given mode forTEm

m = 0, 1, 2, ÁTEm

l0 = 5 mmd = 10 mm,er2 = 1,er1 = 4,ui

l0.er2,er1,ui

l0

1d>l02
ui = ucui = p>2 tan [f1ui2]1d>l02

uie2,e1

ui

uil0,e2,e1,

 g1ui2 =
2sin2 ui - 1e2>e12

cos ui

 f1ui2 = pd1er1

l0
  cos ui

8.6 Dielectric Slab Guide 569

tan [ f(ui)]

m � 0

m � 1
m � 3

m � 2
m � 4

g(ui)
1

� m � 5

g(ui)

p	2

ui uc

FIGURE 8.24

Graphical construction pertinent to the solution of Eq. (8.87).

Cutoff
frequencies
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Finding
propagating
modes

does not exist if Therefore, the cutoff condition is
given by

(8.89)

where we have used (8.82). The cutoff frequency is given by

The fundamental mode, has no cutoff frequency. Thus,

(8.90)

Example 8.5 Finding the number of propagating TE modes in a
symmetric dielectric slab waveguide

For the symmetric dielectric slab waveguide of Fig. 8.23, let and
We wish to find the number of TE modes that can propagate by guidance in

the slab.
From (8.90),

Thus, for and the modes are cut off. Therefore, the number of propagat-
ing TE modes is 25, corresponding to m = 0, 1, 2, Á , 24.

fc 7 fm 7 24,

 =
mf

24.98
, m = 0, 1, 2, Á

 fc =
mc

20l022.56 - 1

d = 10l0.
e2 = e0,e1 = 2.56e0,

fc =
mc

2d2er1 - er2

, m = 0, 1, 2, Á

TE0,

fc =
c

l0
=

mc

2d2er1 - er2

l0 7
2d2er1 - er2

m

pd1er1

l0
  A1 -

e2

e1
6

mp

2

pd1er1

l0
  cos uc 6

mp

2

f1uc2 6 mp>2.m 7 1

TABLE 8.1 Allowed Values of for
Dielectric Slab Guide Example

m

0 83.42783
1 76.77756
2 69.96263
3 62.87805
4 55.38428
5 47.28283
6 38.30225

ui 1deg2

ui
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8.6 Dielectric Slab Guide 571

TM modesThe entire discussion for guided waves in the dielectric slab guide can
be repeated for TM modes by using in the place of in (8.84) to derive
the characteristic equation for guidance. We shall include the derivation as
Problem 8.27.

B. Wave-Field Approach

A formal approach to the investigation of guided modes in the dielectric slab
involves the derivation of the field expressions. This is done by recognizing
with reference to the geometry in Fig. 8.23 that (a) in the slab the fields have
standing wave character in the x-direction and traveling wave character in the
z-direction; (b) outside the slab, the fields are evanescent, that is, they decay
exponentially away from it in the x-direction and have traveling wave charac-
ter in the z-direction; and (c) from symmetry considerations, the fields should
be even or odd with respect to x.

Let us first consider even TE modes—that is, modes with the transverse
field components having even symmetry with respect to x. We write the expres-
sion for the (only) electric field component to be

(8.91)

where and are constants. Note that subscripts 1 and 2 denote regions of
permittivities and respectively, and that the phase constant does not
have a subscript 1 or 2, since it must be the same in all three regions, in view of
the requirement that the fields be in phase at the boundaries for all z.
Continuity of at further requires that

so that

(8.92)

and hence

(8.93)E
 –

y = e
A
 –

 cos bx1x e-jbzz for ƒ x ƒ 6 d>2
A
 –

 cos bx1 
d

2
  e-ax21x - d>22e-jbzz for x 7 d>2

A
 –

 cos bx1 
d

2
  eax21x + d>22e-jbzz for x 6 -d>2

B
 – = A

 –
eax2d>2 cos bx1 

d

2

A
 –

 cos bx1 
d

2
= B

 –
e-ax2d>2

x = ;d>2E
 –

y

x = ;d>2
bze2,e1

B
 –

A
 –

E
 –

y = c A
 –

 cosbx1x e-jbzz for ƒ x ƒ 6 d>2
B
 –

e-ax2x e-jbzz for x 7 d>2
B
 –

eax2x e-jbzz for x 6 -d>2

E
 –

y

≠�≠7

Field
behavior for
guided modes

Field
expressions
for even 
TE modes
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To obtain the corresponding magnetic field components, we use the phasor
forms of (3.12a)–(3.12c) with the understanding that 

and 

(8.94a)

(8.94b)

Thus

(8.95)

(8.96)

Now, continuity of at requires that

(8.97)

We also know that and are not independent, since together the field
components must also satisfy the component equations of (3.22) in phasor form
with 

(8.98)

Substitution of (8.93), (8.95), and (8.96) gives us

(8.99a)

(8.99b)

or

(8.100)
ax2

bx1
= Bv2m01e1 - e22

bx1
2

- 1

 -ax2
2 + bz

2 = v2m0e2

 bx1
2 + bz

2 = v2m0e1

-jbzH
 –

x -
0H

 –
z

0x
= c jve1E

 –
y for ƒ x ƒ 6 d>2

jve2E
 –

y for  x 7 d>2
jve2E

 –
y for x 6 -d>2

J = 0:

ax2bz,bx1,

tan bx1 
d

2
=
ax2

bx1

x = ;d>2H
 –

z

 H
 –

z = f
-  

jbx1

vm0
 A
 –

 sin bx1x e-jbzz for ƒ x ƒ 6 d>2
-  

jax2

vm0
 A
 –

 cos bx1 
d

2
  e-ax21x - d>22e-jbzz for x 7 d>2

jax2

vm0
 A
 –

 cos bx1 
d

2
  eax21x + d>22e-jbzz for x 6 -d>2

 H
 –

x = -  

bz

vm0
 E
 –

y

 
0E

 –
y

0x
= -jvB

 –
z

 jbzE
 –

y = -jvB
 –

x

Ex = Ez = 0:10>0z2: -jbz

10>0t2: jv, 10>0y2 = 0,
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(a) (b) (c)

x � d
2

x � 0

x � �d
2

FIGURE 8.25

Variations of with x for the mode in the symmetric dielectric slab waveguide for (a) near
cutoff; (b) far from cutoff; and (c) intermediate to (a) and (b).

TE2Ey

Combining (8.97) and (8.100), we obtain the characteristic equation for guid-
ance to be

(8.101)

which is the same as (8.87) for 
Proceeding further, we can interpret the mode number m in terms of the

field variations with x in the following manner. For a given value of m, we ob-
serve from Fig. 8.24 that Thus, from

to varies from cos 0º to some value between
and Near cutoff,

and The variation of with x is as illustrated in Fig. 8.25(a) for 
At high frequencies far from cutoff,
and The variation of with x is as illustrated in Fig. 8.25(b). Figure
8.25(c) illustrates the situation intermediate to those near cutoff and far from
cutoff. Thus, within the thickness of the slab, the behavior of the field compo-
nents varies from m half-sine variations near cutoff toward half-sine1m + 12

Eyax2 : q .
bx1d>2 : 1m + 12p>2, tan bx1d>2 : q ,

m = 2.Eyax2 : 0.
bx1d>2 : mp>2, tan 1bx1d>22: 0,cos 1m + 12p>2.cos mp>2 x = ;d>2, cos bx1xx = 0

mp>2 6 bx1d>2 [=  f1ui2] 6 1m + 12p>2.

m = 0, 2, 4, Á .

tan [f1ui2] = g1ui2
 tan apd1er1

l0
  cos uib =

2sin2 ui - 1e2>e12
cos ui

 tan a b1d

2
 cos uib = Bv2m01e1 - e22

v2m0e1 cos2 ui

- 1

 tan abx1 
d

2
b = Bv2m01e1 - e22

bx1
2

- 1
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574 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

variations far from cutoff, with the evanescence outside the dielectric slab dic-
tated by near cutoff toward far from cutoff.

The field expressions for the odd TE modes, that is, modes with the trans-
verse field components having odd symmetry with respect to x, can be obtained
by writing the expression for to be

(8.102)

where and are constants and proceeding in a manner similar to that for the
even modes. We shall omit the details and write down the final results:

(8.103)

(8.104)

(8.105)

Continuity of at requires that

(8.106)

where we have used (8.100). Thus, the characteristic equation for guidance is

(8.107)

which is the same as (8.87) for 
Proceeding further, we observe from Fig. 8.24 that for a given value of

Thus, from to 
varies from sin 0° to some value between and 

Near cutoff, and At high frequencies
far from cutoff, and Thus,ax2 : q .bx1d>2 : 1m + 12p>2, cot 1bx1d>22: q ,

ax2 : 0.bx1d>2 : mp>2, cot 1bx1d>22: 0,
sin 1m + 12p>2.sin mp>2 sin bx1x

x = ;d>2,x = 0m, mp>2 6 bx1d>2 [=  f1ui2] 6 1m + 12p>2.

m = 1, 3, 5, Á .

tan f1ui2 = -  
1

g1ui2

 = -Bv2m01e1 - e22
bx1

2 - 1

 cot bx1 
d

2
= -  

ax2

bx1

x = ;d>2Hz
–

H
 –

z = f
jbx1

vm0
  C
 –

 cos bx1x e-jbzz for ƒ x ƒ 6 d>2
-  

jax2

vm0
  C
 –

 sin bx1 
d

2
 e-ax21x - d>22e-jbzz for x 7 d>2

-  

jax2

vm0
  C
 –

 sin bx1 
d

2
 eax21x + d>22e-jbzz for x 6 -d>2

H
 –

x = -  

bz

vm0
 E
 –

y

E
 –

y = e C
 –

 sin bx1x e-jbzz for ƒ x ƒ 6 d>2
C
 –

 sin bx1 
d

2
 e-ax21x - d>22e-jbzz for x 7 d>2

-C
 –

 sin bx1 
d

2
 eax21x + d>22e-jbzz for x 6 -d>2

D
 –

C
 –

E
 –

y = c C
 –

 sin bx1x e-jbzz for ƒ x ƒ 6 d>2
D
 –

e-ax2xe-jbzz for x 7 d>2
-D

 –
eax2xe-jbzz for x 6 -d>2

E
 –

y

ax2 : qax2 : 0
Field
expressions
for odd TE
modes
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(a) (b) (c)

x � d
2

x � 0

x � �d
2

FIGURE 8.26

Variations of with x for mode in the symmetric dielectric slab waveguide for (a) near
cutoff; (b) far from cutoff; and (c) intermediate to (a) and (b).

TE1Ey

the variation of with x for is illustrated in Fig. 8.26 for three situations:
(a) near cutoff, (b) far from cutoff, and (c) intermediate to (a) and (b). As in the
case of the even modes, the behavior of the field components varies from m
half-sine variations near cutoff toward half-sine variations far from
cutoff.

Let us now investigate the time-average power flow down the symmetric
slab waveguide for TE modes. First, we write the complex Poynting vector asso-
ciated with the TE mode fields as given by

(8.108)

Then, noting from (8.93), (8.95), and (8.96) that is real, whereas is
imaginary, we obtain the time-average Poynting vector as given by

(8.109)

where we have used the even mode field expression. For the odd modes, the
terms will be replaced by terms and the final result will be the same.sin2cos2

 =
bz ƒ A – ƒ 2

2vm0
e

cos2 bx1x az for ƒ x ƒ 6 d>2
cos2 bx1 

d

2
  e-2ax21x - d>22 az for x 7 d>2

cos2 bx1 
d

2
  e2ax21x + d>22 az for x 6 -d>2

 =
bz

2vm0
ƒ E –y ƒ 2 az

 8P9 = Re P

E
 –

y H
 –

z
*E

 –
y H

 –
x
*

 = 1
21E –yH

 –
z
* ax - E

 –
yH

 –
x
* az2

 P = 1
2 E � H*

1m + 12

m = 1Ey

Power flow
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x � 
d
2

x � d
2

1
ax2

x �� �d
2

1
ax2

x � 0

x � �d
2

Effective

Actual

FIGURE 8.27

For illustrating the effective boundaries for waveguiding along the symmetric
dielectric slab guide.

The time-average power flow along the guide per unit length in the y-direction
(because of the independence of the fields with y) is then given by

(8.110)

Using (8.97) and substituting

we obtain

(8.111)

Besides giving the expression for the time-average power flow along the
guide, (8.111) leads to the definition of fictitious effective boundaries at

where

(8.112)

as shown in Fig. 8.27. The physical interpretation of the placement of these ef-
fective boundaries relates to the phase shift that the waves experience upon
being total internally reflected at the actual boundaries.

d eff = d +
2
ax2

x = ;d eff>2,

 =
bz ƒ A – ƒ 2

4vm0
 ad +

2
ax2
b

 8P9 =
bz ƒ A – ƒ 2

vm0
 ad

4
+

1
2ax2
b

 =
2bx1

ax2
  sin2 bx1 

d

2

 sin bx1d = 2 sin bx1 
d

2
   cos bx1 

d

2

 =
bz ƒ A – ƒ 2

vm0
 cd

4
+

sin bx1d

4bx1
+

cos2 bx1d>2
2ax2

d

 =
bz ƒ A – ƒ 2

vm0
cL

d>2

0
 cos2 bx1x dx + L

q

d>2
 cos2 bx1 

d

2
 e-2ax21x - d>22 dx d

 8P9 = L
1

y = 0L
q

x = -q
8P9 # dx dy az
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The entire solution for the field components can be repeated for TM modes
by starting with the expression for the (only) magnetic field component and
proceeding in a manner similar to that used for the TE mode case. We shall not,
however, pursue these details here, but we include them as Problems P8.29 and
P8.30.

We have thus far discussed modes that are guided within the slab. Anoth-
er type of mode that is possible for the dielectric slab guide is that for which the
field variations with x are sinusoidal not only in the slab but also outside it. The
situation can be visualized by locating perfectly conducting plates on either side
of the slab and parallel to it, as in Fig. 8.28, and displacing the conductors to in-
finity, thereby obtaining the slab waveguide in the limiting case. Waves that are
incident from medium 1 on the interface at angles of incidence less than the crit-
ical angle for total internal reflection are transmitted into medium 2 and are re-
flected at the conductor, giving rise to ray paths such as the one shown. The
modes established when the associated self-consistency condition is satisfied
are known as the radiation modes.These modes are important in the coupling of
energy in and out of the dielectric slab.

H
 –

y

TABLE 8.2 For Example 8.6

Mode

83.42783 2157.47 10.927
76.77756 2099.27 10.953
69.96263 1998.97 11.001TE2

TE1

TE0

d eff1mm2ax21m-12ui 1deg2

TM modes

Radiation
modes

Example 8.6 Computation of effective thickness for modes in a
symmetric dielectric slab waveguide

For the values of d, and used for Table 8.1, it is desired to find for the first
three modes.

From (8.99b),

Substituting and we have

From Table 8.1, we can then compute and hence for the first three modes, as list-
ed in Table 8.2.

deffax2

ax2 =
2p

5 * 10-324 sin2 ui - 1

er2 = 1,l0 = 5 mm, er1 = 4,

 ax2 =
2p
l0
2er1 sin2 ui - er2

 = v2m0e01er1 sin2 ui - er22
 = v2m0e1 sin2 ui - v2m0e2

 ax2
2 = bz

2 - v2m0e2

deffl0er1, er2,
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578 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

K8.6. Dielectric slab waveguide; Guiding by total internal reflection; Self-consistency
condition; Characteristic equation for guidance; Propagating modes; Derivation
of field expressions; Characteristic equation for guidance; Mode behavior;
Power flow; Radiation modes.

D8.9. For a symmetric dielectric slab waveguide, and Find the fol-
lowing for TE modes: (a) the lowest value of for which an allowed value of

is 60°; (b) the lowest value of for which an allowed value of is 75°; and
(c) the second lowest value of for which an allowed value of is 75°.
Ans. (a) 0.3545; (b) 0.9972; (c) 2.2852.

D8.10. For a symmetric dielectric slab waveguide, and Find the value
of for the mode for each of the following values of (a) 2; (b) 5;
and (c) 0.5.
Ans. (a) 1.0927; (b) 1.0368; (c) 1.4047.

8.7 RAY TRACING AND GRADED-INDEX GUIDE

For the dielectric slab waveguide of the preceding section, the permittivity under-
goes an abrupt discontinuity from a uniform value of in the slab to a uniform
value of on either side of the slab.When the permittivity varies within the thick-
ness of the slab, the arrangement is known as a graded-index guide, as compared
to the step-index guide of the previous section, where the word “index” refers to
the refractive index n ( for a nonmagnetic dielectric).To extend our
discussion of guided wave propagation to a graded-index slab waveguide, we first
introduce the general topic of geometrical optics and ray tracing.

Geometrical optics is that branch of optics that allows us to study wave phe-
nomena by tracing “rays,” which are paths normal to the wavefronts, from the local
application of the laws of reflection and refraction (Snell’s law). Whenever the
wavefront extends and is uniform over many wavelengths and when the bound-
aries are large compared to the wavelength, ray tracing can be usefully employed.
Also, as long as the radii of curvature are large in comparison to the wavelength,
the boundaries as well as the wavefronts can be nonplanar. In fact, we have already

=  c>vp = 1er

e2

e1

d>l0:TE0deff>d
er2 = 1.er1 = 4

uid>l0

uid>l0ui

d>l0

e2 = e0.e1 = 2.25e0

Geometrical
optics
approximation
explained

e2

Perfect
Conductor

Perfect
Conductor

e1

x

y
z

e2

FIGURE 8.28

For explaining the mechanism pertinent to radiation modes in a dielectric slab guide.
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Ray tracing
formulation

made use of geometrical optics concepts to introduce the cutoff phenomenon in a
parallel-plate waveguide in Section 8.2 and to derive the characteristic equation
for guidance in the dielectric slab guide in Section 8.6. In all of these cases, the
media were uniform and the boundaries were planar and abrupt, so that the ray
paths were all straight lines. For nonuniform media, the ray paths become curved.

To formulate the ray tracing procedure, let us consider the arrangement
shown in Fig. 8.29, in which a medium of continuously varying refractive index
n(x) is approximated by a series of plane slabs of uniform refractive indices

Let a wave be incident from the medium of refractive index at
an angle from the vertical. Then assuming the ray
path bends more and more away from the vertical in accordance with Snell’s
law applied at the interfaces

(8.113)

with the path in each layer being a straight line. In the limit that the thickness of
each layer goes to zero, the refractive index varies continuously with x and the ray
path becomes curved. To trace the path of the ray, let us consider a differential
segment ds along the ray path, having the components dx and dz in the x- and z-
directions, respectively, as shown in Fig. 8.30. Then

(8.114)

From (8.113), or Substituting in (8.114),
we obtain

(8.115)

For a given refractive index profile n(x), the solution of (8.115) gives the ray tra-
jectory in the xz-plane. In general, the solution has to be carried out numerically.
For certain functions for n(x), an analytical solution is possible. We shall illus-
trate by means of an example.

dz

dx
=

n0 sin u02n2 - n0
2 sin2 u0

sin u = 1n0>n2 sin u0.n sin u = n0 sin u0,

dz

dx
= tan u =

sin u21 - sin2 u

n0 sin u0 = n1 sin u1 = n2 sin u2 = Á

n0 6 n1 6 n2 6 n3 6 Á ,u0

n0n1, n2, n3, Á .

n4

n3 x

n2

n1

n0

u3

u2

u1

u0
FIGURE 8.29

The bending of ray paths in a series of plane
dielectric slabs of uniform refractive indices.
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580 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

Example 8.7 Finding the ray trajectory in a dielectric medium with
linear profile of permittivity

Let us consider a variation of refractive index as given by

where Note that for a nonmagnetic dielectric medium, this corresponds to a linear
profile of permittivity.We wish to find the ray trajectory in the medium in the xz-plane for a
wave entering the medium at and at an angle from the vertical (x-direction).

From (8.115), we have

The ray trajectory is given by

Rearranging, we have

or

Thus, the ray trajectory is parabolic, with the parabola having its apex at 
and Note that at or 
and consistent with the solution obtained.u = 90°,

n = n0 sin u0,x = 1cos2 u02>a, n2 = n0
211 - cos2 u02z = 1sin 2u02>a.

x = 1cos2 u02>a
x =

cos2 u0

a
- a cos u01a -

1a
2 sin u0

 zb2

cos2 u0 - ax = a -  
az

2 sin u0
+ cos u0b

2

 = -  

2 sin u0

a
  [2cos2 u0 - ax - cos u0]

 = -  sin u0 c 2
a
2cos2 u0 - ax d

0

x

 z1x2 = L
x

0

sin u02cos2 u0 - ax
  dx

 =
sin u02cos2 u0 - ax

 
dz

dx
=

n0 sin u02n0
2 - n0

2 ax - n0
2 sin2 u0

u0z = 0x = 0

a 7 0.

n2 = n0
2 11 - ax2

Ray path 
for linear
profile of
permittivity

dz

dsdx

n0

n(x)

z

x

u0

u

FIGURE 8.30

For the formulation of ray
tracing for continuous
variation of retractive index.
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When the ray trajectories are nearly along the propagation axis, the rays
are known as paraxial rays. For paraxial rays, the angle that the ray
makes with the propagation axis, which here is the z-axis as shown in Fig. 8.31, is
small such that approximations of and can be used.

Example 8.8 Paraxial rays in a dielectric medium with parabolic
refractive index profile

An important example of a graded refractive index profile is given by

(8.116)

For sufficiently small that which is usually the case,

(8.117)

corresponds to a parabolic variation. We wish to investigate paraxial rays for this profile.
Let us consider a ray making an angle with the z-axis at the point Then

from (8.115),

or

(8.118)x =
d0

a
  sin az

 =
1
a

  sin-1
  
ax

d0

 = c 1
a

  sin-1
 a a
d0

xb d
0

x

 z = L
x

0

dx2d0
2 - a2x2

 L
1

d0
2 - a2x2

 =
cos d02sin2 d0 - a2x2

 =
n0 cos d02n0

211 - a2x22 - n0
2 cos2 d0

 
dz

dx
=

n0 sin u02n2 - n0
2 sin2 u0

=
n0 cos d02n2 - n0

2 cos2 d0

x = 0.d0

n1x2 = n021 - a2x2 L n011 - 1
2 a2x22

ax � 1,a

n2 = n0
211 - a2x22

cos d L 1sin d L d

d1=  90° - u2

Paraxial rays
in parabolic
index profile

z

x

u

d FIGURE 8.31

Geometry pertinent to the paraxial ray
approximation.

Paraxial 
ray approxi-
mation
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x

n

d
2

0

d
2

n2

n1(x)
u(x) e1(x)

e2 � e(x � d/2)

x � d/2

x � �d/2

x� xa

x � �xa

x � 0

e2

(b)(a)

�

FIGURE 8.33

(a) Refractive index profile for a symmetrical graded-index guide. (b) Ray path within the graded-
index region.

The ray oscillates about the axis with a period of known as the pitch, independent
of and a peak amplitude as shown in Fig. 8.32 for a few values of 

We may now discuss wave guidance in a graded-index guide. To do this, let
us consider, for simplicity, the symmetric refractive index profile of the shape
shown in Fig. 8.33(a). Then for those waves that are total internally reflected
within a sketch of the ray path can be drawn, as in Fig. 8.33(b),
with apex points at where From Snell’s law,

since at Using the same reasoning as for writ-
ing (8.83), we can write the self-consistency condition for guidance to be

(8.119)

In view of symmetry, (8.119) reduces to

(8.120)

where ≠a = [≠]x = xa
.

4p
l0 L

xa

x = 0
2er11x2 cos u1x2 dx + l≠a = mp, m = 0,1,2, Á

+l[ ≠ ]x = -xa = 2mp, m = 0,1,2, Á
L

xa

x = -xa

2p
l0
2er11x2 cos u1x2 dx + l[≠ ]x = xa + L

-xa

x = xa

 
2p
l0
2er11x2 cos u1x2 dx

x = ;xa.u = 90°n11x2 sin u1x2, n1;xa2 =xa 6 d>2.x = ;xa,
-d>2 6 x 6 d>2,

d0.d0>a,d0,
2p>a,

Guidance
condition for
graded-index
guide

z

x

FIGURE 8.32

Paraxial rays in a parabolic index profile.
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To proceed further, we consider the TE case and find by using (8.86).
We first write as

(8.121)

where we have inserted primes so as not to confuse with the notation of Fig. 8.33.
Now we note that for the situation under consideration,

so that

(8.122)

In view of the continuous variation of we now have to take the limit of the
right side of (8.122) as and tend to We note however that this re-
sults in a situation of zero divided by zero. To avoid this, we write that in the
vicinity of 

Thus,

(8.123)

 =
1 - j

1 + j
= 1l -p>2

 ≠a = Lim
¢x:0

A - ¢x  
de

dx
- j  A - ¢x  

de

dxA - ¢x  
de

dx
+ j  A - ¢x  

de

dx

 e1xa2 - e1xa+2 L e1xa2 - e1xa2 - ¢x  
de

dx
= - ¢x  

de

dx

 e1xa-2 - e1xa2 L e1xa2 - ¢x  
de

dx
- e1xa2 = - ¢x  

de

dx

e1x2 L e1xa2 + 1x - xa2 
de

dx
= e1xa2 + ¢x  

de

dx

x = xa,

xa.xa+xa-
e1,

≠a =
2e1xa-2 - e1xa2 - j 2e1xa2 - e1xa+22e1xa-2 - e1xa2 + j 2e1xa2 - e1xa+2

 2e1
œ  cos ui = 2e1

œ - e1
œ  sin2 ui = 2e1xa-2 - e1xa2

 e1
œ  sin2 ui = [e]x = xa

 sin2 90° = e1xa2
 e2

œ = [e]x = xa + ¢x = e1xa+2
 e1

œ = [e]x = xa - ¢x = e1xa-2

 =
2e1

œ  cos ui - j2e1
œ  sin2 ui - e2

œ2e1
œ  cos ui + j2e1

œ  sin2 ui - e2
œ

 ≠a =
h2

œ  cos ui - jh1
œ21e1

œ>e2
œ2 sin2 ui - 1

h2
œ  cos ui + jh1

œ21e1
œ>e2

œ2 sin2 ui - 1

≠a

l≠a
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so that The same result can be shown to hold for the TM case,
which makes use of (see Problem P8.35).

Finally, substituting and also

(8.124)

into (8.120), we obtain the characteristic equation for guidance to be

(8.125)

or in terms of refractive index

(8.126)

As in the case of the step-index guide, each value of m corresponds to a mode.
For a given value of m and for a given profile (8.126) must in general be
solved numerically.There are however certain refractive index profiles that per-
mit analytical solution. An example is in order.

Example 8.9 Guided waves in a parabolic index dielectric slab waveguide

Let us consider the refractive index profile of Example 8.8 given by

(8.127)

where is such that and investigate guided waves in the slab.
Substituting for in (8.126), we have

(8.128)xa
2 =
12m + 12l0

2pn0a
, m = 0, 1, 2, Á

 
2pn0a

l0
  cx2xa

2 - x2 + xa
2  sin-1

  
x

xa
d

x = 0

xa

= am +
1
2
bp, m = 0, 1, 2, Á

 
4pn0a

l0 L
xa

x = 0
2xa

2 - x2 dx = am +
1
2
bp, m = 0, 1, 2, Á
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≠7

l≠a = -p>2.

Modes in
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index guide
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8.7 Ray Tracing and Graded-Index Guide 585

The value of increases with the mode number m, as can also be seen in general from
(8.126). Recall that For paraxial modes, the ray trajectories are given by

(8.129)

In contrast with the modes of the step-index guide in which the ray paths for all modes
extend to the boundaries of the slab with varying values of the pitch, for these modes the
ray paths possess amplitudes increasing with m but with a fixed pitch.

The numerical solution of (8.126) involves an iterative procedure. For a
given refractive index profile and specified values of d and the iterative proce-
dure consists of starting with and computing that satisfies (8.126).To do
this, is set equal to d/2 and the integral on the left side is evaluated numerically.
If this results in a value of less than for the left side of (8.126), then it means
that a solution does not exist for any value of m and the computation is terminat-
ed. If the value is greater than then an interval-bisection procedure is used it-
eratively, beginning with the interval from 0 to d/2, until a value of that satisfies
(8.126) to a desired accuracy is found.The value of m is then increased in steps of
unity and the computation repeated for each value of m, beginning with the
search interval extending from the solution for found for the previous value of
m to d/2. The entire computation is terminated when a value of m is reached for
which the left side of (8.126) yields a value of less than 

Returning now to the result of (8.129), we consider its consequence in in-
termodal dispersion, the type of dispersion resulting from different travel times
of rays corresponding to different modes. Because rays of higher modes travel
farther but with greater velocities (lower refractive index), the travel times of
the different rays are nearly equalized, thereby almost eliminating intermodal
dispersion. To discuss in quantitative terms, we note that the phase constant
along the guide axis is given by
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FIGURE 8.34

For Problem D8.11.

Thus, the group velocity along the guide axis is given by

independent of m.

K8.7. Ray tracing; paraxial rays; parabolic index profile; graded-index guide; inter-
modal dispersion.

D8.11. In Fig. 8.34, a medium of continuously varying refractive index is approximated
by a series of plane slabs of uniform refractive indices. If and 
find the following: (a) if (b) if and (c)
Ans. (a) 35.26°; (b) (c) 30°.

D8.12. In Example 8.9, let and Compute the follow-
ing: (a) for (b) the maximum value of m; and (c) the paraxial angle 
for the value of m computed in (b).
Ans. (a) (b) 5; (c) 13.88°.

SUMMARY

In this chapter, we studied the principles of waveguides. To introduce the wave-
guiding phenomenon, we first learned how to write the expressions for the elec-
tric and magnetic fields of a uniform plane wave propagating in an arbitrary
direction with respect to the coordinate axes. These expressions are given by

where and r are the propagation and position vectors given by

 r = xax + yay + zaz

 B = bxax + byay + bzaz

B

 H = H0 cos 1vt - B # r + f02
 E = E0 cos 1vt - B # r + f02

1.4567l0;

d0m = 0;xa

d = 10l0.n0 = 1.5, a = 0.05>l0,
13;

ut.u3 = 30°;n3n1 = 1.5;u1

u0 = 60°,n0 = 1

vgz =
dv

dbz
=

c
n0

RaoCh08v3.qxd  12/18/03  5:11 PM  Page 586



Summary 587

and is the phase of the wave at the origin at The magnitude of is equal
to the phase constant along the direction of propagation of the wave.The
direction of is the direction of propagation of the wave.We learned that

that is, and are mutually perpendicular, and that

Also, since should be directed along the propagation vector it then
follows that

The quantities and are the phase constants along the x-, y-, and z-
axes, respectively. The apparent wavelengths and the apparent phase velocities
along the coordinate axes are given, respectively, by

By considering the superposition of two uniform plane waves having
only y-components of electric fields and propagating at an angle to each other
and placing perfect conductors in two constant-x planes such that the bound-
ary condition of zero tangential electric field is satisfied, we introduced the
parallel-plate waveguide. We learned that the composite wave is a transverse
electric, or TE, wave, since the electric field is entirely transverse to the direc-
tion of time-average power flow, that is, the guide axis, but the magnetic field
is not. In terms of the uniform plane wave propagation, the phenomenon is
one of waves bouncing obliquely between the conductors as they progress
down the guide. For a fixed spacing a between the conductors of the guide,
waves of different frequencies bounce obliquely at different angles such that
the spacing a is equal to an integer, say, m number of one-half apparent wave-
lengths normal to the plates and hence the fields have m number of one-half
sinusoidal variations normal to the plates. These are said to correspond to

modes, where the subscript 0 implies no variations of the fields in the
direction parallel to the plates and transverse to the guide axis. When the fre-
quency is such that the spacing a is equal to m one-half wavelengths, the waves
bounce normally to the plates without the feeling of being guided along the

TEm,0

 vpi =
v

bi
, i = x, y, z

 li =
2p
bi

, i = x, y, z

bzbx, by,

H =
1
vm

 B � E

B,E � H

ƒ E0 ƒ
ƒ H0 ƒ

= h = AmeBE0, H0,

 E0
# H0 = 0

 H0
# B = 0

 E0
# B = 0

B

v2me, Bt = 0.f0
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588 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

axis, thereby leading to the cutoff condition. Thus, the cutoff wavelengths cor-
responding to modes are given by

and the cutoff frequencies are given by

A given frequency signal can propagate in all modes for which or
For the propagating range of frequencies, the wavelength along the

guide axis, that is, the guide wavelength, and the phase velocity along the guide
axis are given, respectively, by

As compared to TE modes, the transverse magnetic, or TM, modes have
their magnetic fields entirely transverse to the direction of time-average power
flow. They are obtained by considering two uniform plane waves having only y-
components of magnetic fields and propagating at an angle to each other and
placing two perfect conductors in two constant-x planes.The expressions for the
propagation parameters and for the TM modes are the same as
those for the TE modes.

We discussed the solution of problems involving reflection and transmis-
sion at a discontinuity in a waveguide by using the transmission-line analogy.
This consists of replacing each section of the waveguide by a transmission line
whose characteristic impedance is equal to the guide characteristic impedance,
and then computing the reflection and transmission coefficients as in the trans-
mission-line case. The guide characteristic impedance, is the ratio of a trans-
verse electric-field component to the corresponding transverse magnetic-field
component, which together with the electric-field component gives rise to time-
average power flow down the guide. It is given for TE modes by

and for TM modes by

[hg] TM = h B1 - a l
lc
b2

= h B1 - afc

f
b2

[hg] TE =
h21 - 1l>lc22 =

h21 - 1fc>f22

hg,

vpzlc, fc, lg,

 vpz =
vp21 - 1l>lc22 =

vp21 - 1fc>f22

 lg =
l21 - 1l>lc22 =

l21 - 1fc>f22

f 7 fc.
l 6 lc

fc =
vp

lc
=

m

2a2me
lc =

2a
m

TEm,0
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Summary 589

We then discussed the phenomenon of dispersion arising from the fre-
quency dependence of the phase velocity along the guide axis, and we intro-
duced the concept of group velocity. Group velocity is the velocity with which
the envelope of a narrow-band modulated signal travels in the dispersive chan-
nel, and hence it is the velocity with which the information is transmitted. It is
given by

where is the phase constant along the guide axis. On the dispersion diagram
or the diagram, the group velocity is equal to the slope of the tangent to
the dispersion curve at the center frequency of the narrow-band signal. For the
parallel-plate waveguide, it is given by

To extend the discussion of waveguides to integrated optics, we then con-
sidered oblique incidence of a uniform plane wave on the boundary between
two perfect dielectric media. We derived the laws of reflection and refraction,
given, respectively, by

where and are the angles of incidence, reflection, and transmission, re-
spectively, of a uniform plane wave incident from medium 1 onto medi-
um 2 The law of refraction is also known as Snell’s law.We then derived
the expressions for the reflection and transmission coefficients for the cases of
perpendicular and parallel polarizations. An examination of these expressions
revealed the following, under the assumption of (1) for incidence from
a medium of higher permittivity onto one of lower permittivity, there is a critical
angle of incidence given by

beyond which total internal reflection occurs, and (2) for the case of parallel polar-
ization, there is an angle of incidence, known as the Brewster angle and given by

for which the reflection coefficient is zero.

up = tan-1 Ae2

e1

uc = sin-1 Ae2

e1

m1 = m2:

1e2, m22.
1e1, m12

utui, ur,

 ut = sin-1 aAm1e1

m2e2
  sin uib

 ur = ui

vg = vp A1 - afc

f
b2

v-bz

bz

vg =
dv

dbz
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590 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

Next, we introduced the dielectric slab waveguide, consisting of a dielectric
slab of permittivity sandwiched between two dielectric media of permittivities

We learned that by launching waves at an angle of incidence greater
than the critical angle for total internal reflection, it is possible to achieve guided
wave propagation within the slab. For a given frequency, several modes are pos-
sible corresponding to values of that satisfy the self-consistency condition as-
sociated with the bouncing waves. We derived the characteristic equation for
computing these values of for the TE case and discussed its solution. The
modes are designated modes and their cutoff frequencies are given by

where d is the thickness of the slab. The fundamental mode, has no cutoff
frequency. We also discussed the guided modes by using the approach of deriv-
ing the field expressions, based on the behavior that (a) in the transverse (x-) di-
rection, the fields have standing wave character inside the slab and are
evanescent outside the slab, and (b) in the longitudinal (z-) direction, the fields
have traveling wave character both inside and outside the slab. Dividing the
modes into even and odd modes with respect to x from symmetry considera-
tions, we derived the field expressions for the TE modes and (a) obtained the
associated characteristic equation for guidance to be the same as that obtained
from the wave-bounce approach, (b) discussed the field behavior from near cut-
off to far from cutoff, and (c) investigated power flow down the guide.

To extend the treatment of dielectric waveguide to one of graded-index
guide, that is, one in which the refractive index varies within the thickness of the
slab, we first introduced the topic of ray tracing, making use of the geometrical
optics concept. The ray tracing procedure involves the application of Snell’s law
in conjunction with the geometry associated with the problem.Although in gen-
eral the solution has to be carried out numerically, for certain functions for the
refractive index variation, analytical solutions are possible, as illustrated by con-
sidering (a) a linear profile of permittivity, and (b) paraxial rays, that is, rays that
make small angles to the propagation axis, in a parabolic index profile. For the
latter case, we found that the ray oscillates about the axis with a pitch indepen-
dent of the angle of takeoff from the axis at the starting point. We then consid-
ered the graded-index guide having a symmetric refractive index profile and
derived the condition for guidance. Applying the guidance condition to investi-
gate modes in a parabolic index guide, we showed that, for paraxial rays in the
parabolic index guide, intermodal dispersion is nearly eliminated.

REVIEW QUESTIONS

Q8.1. What is the propagation vector? Interpret the significance of its magnitude and
direction.

Q8.2. Discuss how the phase constants along the coordinate axes are less than the
phase constant along the direction of propagation of a uniform plane wave
propagating in an arbitrary direction.

TE0,

fc =
mc

2d2er1 - er2

, m = 0, 1, 2, Á

TEm

ui

ui

uie2 6 e1.
e1
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Review Questions 591

Q8.3. Write the expressions for the electric and magnetic fields of a uniform plane
wave propagating in an arbitrary direction, and list all the conditions to be satis-
fied by the electric field, magnetic field, and propagation vectors.

Q8.4. What are apparent wavelengths? Why are they longer than the wavelength
along the direction of propagation?

Q8.5. What are apparent phase velocities? Why are they greater than the phase veloc-
ity along the direction of propagation?

Q8.6. Discuss how the superposition of two uniform plane waves propagating at an
angle to each other gives rise to a composite wave consisting of standing waves
traveling bodily transverse to the standing waves.

Q8.7. What is a transverse electric wave? Discuss the reasoning behind the nomencla-
ture modes.

Q8.8. Compare the phenomenon of guiding of uniform plane waves in a parallel-plate
waveguide with that in a parallel-plate transmission line.

Q8.9. Discuss how the cutoff condition arises in a parallel-plate waveguide. Explain
the relationship between the cutoff wavelength and the spacing between the
plates of a parallel-plate waveguide based on the phenomenon at cutoff.

Q8.10. Is the cutoff wavelength dependent on the dielectric in the waveguide? Is the
cutoff frequency dependent on the dielectric in the waveguide?

Q8.11. What is guide wavelength?
Q8.12. Provide a physical explanation for the frequency dependence of the phase ve-

locity along the guide axis.
Q8.13. What is a transverse magnetic wave? Compare and contrast TE and TM waves

in a parallel-plate waveguide.
Q8.14. Discuss the phenomenon of guiding of waves in the Earth-ionosphere waveguide.
Q8.15. How is guide characteristic impedance defined? Discuss guide characteristic

impedance for both TE and TM modes.
Q8.16. Discuss the use of the transmission-line analogy for solving problems involving

reflection and transmission at a waveguide discontinuity.
Q8.17. Why are the reflection and transmission coefficients for a given mode at a loss-

less waveguide discontinuity dependent on frequency, whereas the reflection
and transmission coefficients at the junction of two lossless lines are indepen-
dent of frequency?

Q8.18. Discuss the phenomenon of dispersion.
Q8.19. Discuss the concept of group velocity with the aid of an example.
Q8.20. What is a dispersion diagram? Explain how the phase and group velocities can

be determined from a dispersion diagram.
Q8.21. When is it meaningful to attribute a group velocity to a signal comprised of

more than two frequencies? Why?
Q8.22. Discuss the propagation of a narrow-band amplitude-modulated signal in a dis-

persive channel.
Q8.23. Discuss the condition required to be satisfied by the incident, reflected, and

transmitted waves at the interface between two dielectric media.
Q8.24. What is Snell’s law?
Q8.25. What is meant by the plane of incidence? Distinguish between the two different

linear polarizations pertinent to the derivation of the reflection and transmis-
sion coefficients for oblique incidence on a dielectric interface.

TEm,0
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592 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

Q8.26. Briefly discuss the determination of the Fresnel reflection and transmission co-
efficients for an obliquely incident wave on a dielectric interface.

Q8.27. What is total internal reflection? Discuss the nature of the reflection coefficient
and the manner in which the boundary condition is satisfied for an angle of in-
cidence greater than the critical angle for total internal reflection.

Q8.28. What is the Brewster angle? What is the polarization of the reflected wave for
an elliptically polarized wave incident on a dielectric interface at the Brewster
angle? Discuss an application of the Brewster angle effect.

Q8.29. Discuss the principle of optical waveguides by considering the dielectric slab
waveguide.

Q8.30. Explain the self-consistency condition for waveguiding in a dielectric slab wave-
guide.

Q8.31. Discuss the dependence of the number of propagating modes in a dielectric slab
waveguide on the ratio of the thickness d of the dielectric slab to the wavelength 

Q8.32. Considering TE modes in a dielectric slab guide, specify the fundamental mode
and discuss the associated cutoff condition.

Q8.33. Outline the considerations that come into play in deriving the field expressions
for the modes in a dielectric slab guide.

Q8.34. Discuss the mode designation for a dielectric slab guide with reference to the
field variations in the guide. Further discuss the behavior of the even and odd
modes as the situation changes from near cutoff to far from cutoff.

Q8.35. Discuss the concept of effective boundary for waveguiding along a dielectric
slab guide.

Q8.36. Explain radiation modes with reference to a dielectric slab guide.
Q8.37. What is geometrical optics approximation? Under what conditions is it valid?
Q8.38. Outline the formulation of the procedure for ray tracing in a plane-stratified

medium of continuously varying refractive index.
Q8.39. What is paraxial ray approximation? Discuss paraxial rays in a medium of para-

bolic index profile.
Q8.40. Outline the derivation of the self-consistency condition for wave guidance in a

graded-index dielectric slab guide.
Q8.41. Compare and contrast the ray trajectories associated with modes in a graded-

index guide with those associated with modes in a step-index guide.
Q8.42. What is intermodal dispersion? Why is it minimized for the case of paraxial rays

in a parabolic index guide?

PROBLEMS

Section 8.1

P8.1. Finding the parameters for a uniform plane wave from a specified electric field.
The electric field of a uniform plane wave propagating in a perfect dielectric
medium having and is given by

E = 1012ax + ay - 2az2 cos [3p * 107t - 0.1p12x - 2y + z2]
m = m0e = 9e0

l0.
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Problems 593

Find: (a) the frequency; (b) the direction of propagation; (c) the wavelength
along the direction of propagation; (d) the apparent wavelengths along the x-, y-,
and z-axes; and (e) the apparent phase velocities along the x-, y-, and z-axes.

P8.2. Finding whether a given E represents that of a uniform plane wave in free
space. Given

(a) Determine if the given E represents the electric field of a uniform plane
wave propagating in free space. (b) If the answer is “yes,” find the correspond-
ing magnetic-field vector H.

P8.3. Finding whether a given E-H pair represents that of a uniform plane wave in a
dielectric. Given

(a) Perform all necessary tests and determine if these fields represent a uniform
plane wave propagating in a perfect dielectric medium. (b) If the answer is
“yes,” find the permittivity and the permeability of the medium.

P8.4. Properties of a uniform plane wave from specified apparent phase velocities.
The apparent phase velocities of a uniform plane wave propagating in a perfect
dielectric medium are measured in three directions as follows: along
the x-direction, along the direction of the unit vector 
and along the direction of the unit vector Find
the direction of propagation of the wave and the phase velocity along the direc-
tion of the unit vector 

P8.5. Finding the parameters for a uniform plane wave from specified phasor electric
field. The electric field of a uniform plane wave propagating in free space is
given in phasor form by

(a) Determine the frequency of the wave. (b) What is the direction of propaga-
tion? (c) Obtain the associated magnetic field in phasor form. (d) Discuss the
polarization of the wave. (e) Find the time-average power flow per unit area
normal to the direction of propagation.

Section 8.2

P8.6. Finding the spacing for the plates of a parallel-plate waveguide for a given con-
dition. Find the spacing a for a parallel-plate waveguide having a dielectric of

and such that 6000 MHz is 20 percent above the cutoff frequen-
cy of the dominant mode, that is, the mode with the lowest cutoff frequency.

m = m0P = 9P0

E = 101ax + j0.4ay + j0.3az2ej10.6y - 0.8z2

1
312ax + 2ay - az2.

1
31ax - 2ay + 2az2.12 * 108 m>s

1
514ax + 3ay2,2 * 108 m>s

4 * 108 m>s

 H =
1

60p
 1ax - 2ay + 13az2 cos [15p * 106t - 0.05p113x - z2]

 E = 1ax + 2ay + 13az2 cos [15p * 106t - 0.05p113x - z2]

E = 1014ax + 5ay - 3az2 cos [3p * 107t - 0.02p13x + 4z2]
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P8.7. Finding propagating modes and their characteristics in a parallel-plate wave-
guide. The dimension a of a parallel-plate waveguide with a dielectric of

and is 3 cm. Determine the propagating modes for a wave of
frequency 6000 MHz. For each propagating mode, find and 

P8.8. Finding propagating modes in a parallel-plate waveguide for a given excitation.
Transverse electric modes are excited in an air dielectric parallel-plate wave-
guide of dimension by setting up at its mouth a field distribution
having

Determine the propagating mode(s) and obtain the expression for the electric
field of the propagating wave.

P8.9. Finding E for the propagating wave in a parallel-plate waveguide for a given ex-
citation. TE modes are excited in an air-dielectric parallel-plate waveguide
having the plates in the and planes by setting up at its input

a field distribution such that

Find the expression for the electric field of the propagating wave.
P8.10. Finding fields for the propagating wave in a parallel-plate waveguide from the

excitation. TM mode is excited in a parallel-plate waveguide filled with a di-
electric of and and having the plates in the and 
planes by setting up at its input the magnetic field distribution

Find the expressions for the electric and magnetic fields of the propagating wave.

Section 8.3

P8.11. Power reflection coefficient at a parallel-plate waveguide discontinuity for sev-
eral cases. For the parallel-plate waveguide discontinuity of Example 8.3, find
the power reflection coefficient for for each of the following
cases: (a) TEM mode; (b) mode; and (c) mode.

P8.12. Power reflection coefficient at a parallel-plate waveguide discontinuity for sev-
eral cases. The left half (section 1) of a parallel-plate waveguide of dimensions

is filled with a dielectric of and The right half (section
2) is filled with a dielectric of and For waves of frequency 2500
MHz incident on the discontinuity from the left, find the power reflection coef-
ficient for each of the following cases: (a) mode; (b) mode; (c)
mode; and (d) mode.

P8.13. Finding the dielectric permittivity at an air–dielectric interface in a parallel-
plate guide. Assume that the permittivity of the dielectric to the right side of
the parallel-plate waveguide discontinuity of Fig. 8.11 is unknown. If the reflec-
tion coefficient for waves of frequency 5000 MHz incident on the junction
from the free space side is find the permittivity of the dielectric.-0.2643,

TE1,0

TM2,0

TM1,0TE2,0TE1,0

m = m0.e = 16e0

m = m0.e = 9e0a = 5 cm

TM1,0TE1,0

f = 7500 MHz

H = H0 cos 40px sin 8p * 109t ay

z = 0
x = 5 cmx = 0m = m0e = 4e0

E = E0 sin3 20px cos 5p * 109t cos 15p * 109t ay

z = 0
x = 5 cmx = 0

E = 101sin 20px + 0.5 sin 60px2 sin 1010pt ay

a = 5 cm

vpz.lc, fc, u, lg,
m = m0e = 4e0
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Section 8.4

P8.14. Finding the group velocity for a group of two trains. For the two-train example
of Fig. 8.12, find the group velocity if the speed of train B is (a) 36 m/s and (b) 40
m/s, instead of 30 m/s. Discuss your results with the aid of sketches.

P8.15. Finding phase and group velocities from a dispersion curve. The curve for
a dispersive channel can be approximated by

in the vicinity of where k is a constant. Find the following: (a) the
phase velocity for a signal of (b) the group velocity for a signal com-
posed of two frequencies and and (c) the group velocity for a narrow-
band signal having the center frequency 

P8.16. Finding group velocities of signals propagating in a parallel-plate waveguide.
For a parallel-plate waveguide of dimension and having a perfect
dielectric of and find the group velocity for: (a) a signal com-
posed of the two frequencies and and (b) a
narrow-band signal having the center frequency 2500 MHz.

P8.17. Finding group velocities of signals propagating in a parallel-plate waveguide.
Find the group velocity of propagation of a TE wave in a parallel-plate wave-
guide filled with a perfect dielectric of and and having the
plates in the and planes for each of the following cases of elec-
tric field distribution at its input 

(a)

(b)

P8.18. A geometric interpretation of the group velocity in a parallel-plate waveguide.
By considering the parallel-plate waveguide, show that a point on the obliquely
bouncing wavefront, traveling with the phase velocity along the oblique direc-
tion, progresses parallel to the guide axis with the group velocity.

Section 8.5

P8.19. Fresnel coefficients for the case of interface between two perfect dielectric media.
For the case of two nonmagnetic perfect dielectric media, show that the
Fresnel coefficients for perpendicular polarization (8.70a) and (8.70b) reduce to

respectively, and the Fresnel coefficients for parallel polarization (8.75a) and
(8.75b) reduce to

respectively.

≠7 =
tan 1u2 - u12
tan 1u2 + u12 and t7 =

2 cos u1 sin u2

sin 1u1 + u22 cos 1u1 - u22

≠� =
sin 1u2 - u12
sin 1u2 + u12 and t� =

2 cos u1 sin u2

sin 1u2 + u12

1m = m02,

E0 sin 10px11 + 0.5 cos 104pt2 cos 4 * 109pt ay

E0 sin 10px cos 109pt cos 4 * 109pt ay

z = 0:
x = 10 cmx = 0

m = m0e = 2.25e0

f2 = 3000 MHz;f1 = 2500 MHz
m = m0,e = 9e0

a = 2.5 cm

0.5v0.
0.6v0;0.4v0

v = 0.5v0;
v = 0.5v0,

1

v2 =
1

v0
2 +

k2

b2

v–b
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P8.20. Oblique incidence of uniform plane wave onto a dielectric medium. In Exam-
ple 8.4, assume that

and the angle of incidence is 45°. Obtain the expressions for the electric fields of
the reflected and transmitted waves.

P8.21. Oblique incidence of uniform plane wave onto a dielectric medium. Repeat
Problem P8.20 for

P8.22. Oblique incidence of uniform plane wave onto a dielectric medium at Brewster
angle. In Example 8.4, assume that the permittivity of medium 2 is unknown
and that

(a) Find the value of for which the reflected wave is linearly polarized.
(b) For the value of found in (a), find the expressions for the reflected and

transmitted wave electric fields.

P8.23. Consistency of Fresnel coefficients with power flow normal to the interface.
For oblique incidence of a uniform plane wave on a dielectric interface, show
that the Fresnel reflection and transmission coefficients are consistent with the
condition that for power flow normal to the interface, the sum of the reflected
power and the transmitted power be equal to the incident power, for each of the
two cases: (a) perpendicular polarization and (b) parallel polarization.

Section 8.6

P8.24. Minimum bouncing angle for total internal reflection in a thin-film waveguide.
A thin-film waveguide employed in integrated optics consists of a substrate on
which a thin film of refractive index greater than that of the substrate is
deposited. The medium above the film is air. For relative permittivities of the
substrate and the film equal to 2.25 and 2.4, respectively, find the minimum
bouncing angle of total internally reflected waves in the film. Assume 
for both substrate and film.

P8.25. TE modes in a symmetric dielectric slab waveguide. For a symmetric dielectric
slab waveguide, and (a) Find the number of propagating
TE modes for (b) Find the maximum value of for which the
waveguide supports only one TE mode.

P8.26. Design of a symmetric dielectric slab waveguide. Design a symmetric dielectric
slab waveguide, with and by finding the value of such
that the mode operates at 20% above its cutoff frequency.TE1

d>l0er2 = 2.13,er1 = 2.25

d>l0d>l0 = 10.
e2 = e0.e1 = 2.25e0

m = m0

1c>vp2

e2

e2

+ E0 ay sin [6p * 109t - 10p1x + 13z2]
Ei = E0a13

2
 ax -

1
2

 azb  cos [6p * 109t - 10p1x + 13z2]

e2

Ei = E0 ay cos [6p * 108t - 12p1x + z2]

Ei = E01ax - az2 cos [6p * 108t - 12p1x + z2]
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Problems 597

P8.27. Guiding of waves in a symmetric dielectric slab waveguide for parallel polariza-
tion. Consider the derivation of the characteristic equation for guiding of
waves in the symmetric dielectric slab waveguide for the case of parallel polar-
ization, which corresponds to TM modes. Noting that in Fig. 8.18,

where is given by (8.75a), show that the characteristic equation
is given by

where

P8.28. Power confinement factor for dielectric slab waveguide. The ratio of the power
associated with the region of the slab to the total power

is known as the power confinement factor. Show that for a
given frequency, the power confinement factor is the highest for the dominant
mode. Find the power confinement factors for the three modes in Example 8.6.

P8.29. Even TM modes in a symmetric dielectric slab waveguide. Beginning with an
expression for analogous to that of for even TE modes given by (8.91),
derive the field expressions for even TM modes for the symmetric dielectric
slab waveguide and obtain the characteristic equation for guidance.

P8.30. Odd TM modes in a symmetric dielectric slab waveguide. Repeat Problem
P8.29 for odd TM modes, beginning with an expression for analogous to that
of for odd TE modes given by (8.102).

P8.31. Dispersion relation for the mode in a symmetric dielectric slab waveguide.
For the symmetric dielectric slab guide, show that the versus or the disper-
sion relation for the mode, is given by

Then find the value of for which the phase velocity along the guide axis
is equal to where and for the fun-

damental mode, if and Note that since is always posi-
tive, or as it should be.

Section 8.7

P8.32. Derivation of the laws of geometrical optics from Fermat’s principle. The laws
of geometrical optics can be derived from Fermat’s principle, which states that the
optical path length of a ray of light from point A to point B is an1AB n ds

vp2 7 vpz 7 vp1,v2m0e2 6 bz
2 6 v2m0e1,

tan2er2 = 2.25.er1 = 4.0
vp2 = 1>1m0e2,vp1 = 1>1m0e11vp1vp2,vpz

d>l0

tan2 ad

2
2v2m0e1 - bz

2 -
mp

2
b =

bz
2 - v2m0e2

v2m0e1 - bz
2

TEm

bz,v

TEm

E
 –

y

H
 –

y

E
 –

yH
 –

y

1- q 6 x 6 q2
1 ƒ x ƒ 6 d>22

 g1ui2 =
2sin2 ui - 1e2>e12
1e2>e12 cos ui

 f1ui2 = pd1er1

l0
 cos ui

tan [f1ui2] = c g1ui2, m = 0, 2, 4, Á

-  
1

g1ui2, m = 1, 3, 5, Á

≠7Er>Ei = -≠7,
Hr>Hi =
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598 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

extremum, so that the variation in the optical path length, is equal to
zero. Derive from this property the laws of reflection and refraction for oblique
incidence on a plane boundary between two different perfect dielectric media.

P8.33. Ray tracing in spherical geometry. Consider ray tracing in spherical geometry,
as shown in Fig. 8.35, in which n is a function of r, the radial distance from the
center of a spherical interface (radius ).A ray is incident on the interface at an
angle from a medium of uniform refractive index Show that the ray path
for is governed by a modified form of Snell’s law given by

and hence by the solution of the differential equation

du

dr
=

n0r0 sin u

r2n2r2 - n0
2r0

2 sin2 u0

nr sin u = constant = n0r0 sin u0

r 7 r0

n0.u0

r0

d1ABn ds,

u0

u

rr0
n0

n(r)

FIGURE 8.35

For Problem P8.33.

P8.34. Paraxial rays in a dielectric medium with linear refractive index profile. In Ex-
ample 8.8, assume

Obtain the solution for z(x) for paraxial rays and find the approximate peak
amplitude and the approximate pitch in terms of 

P8.35. Guidance condition for the graded-index guide for the TM case. Show that the
guidance condition for the graded-index guide for the TM case is the same as
that given by (8.125) or (8.126) for the TE case by showing that for the TM
case is Note that to be used for the TM case is (see Problem
P8.27), where is given by (8.75a).

P8.36. Graded-index guide with linear profile of dielectric permittivity. In Example
8.9, assume

Obtain the expression for for the mth mode.xa

n1
21x2 = n0

211 - a ƒ x ƒ 2

≠7
-≠7≠1l -p>2.

≠a

d0.

n1x2 = n011 - a ƒ x ƒ 2
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Review Problems 599

REVIEW PROBLEMS

R8.1. Application of information on apparent phase velocities of a uniform plane
wave. The apparent phase velocities of a uniform plane wave of frequency

propagating in a nonmagnetic perfect dielectric medium are
given for three directions as follows: along the direction of the
unit vector along the direction of the unit vec-
tor and along the direction of the unit vector

Find (a) the permittivity of the medium and (b) the apparent
wavelength along the direction of the unit vector 

R8.2. TM wave reflection and transmission at a parallel-plate waveguide discontinu-
ity. The left half of a parallel-plate waveguide having the plates in the

and planes is filled with a dielectric of and 
whereas the right half is filled with a dielectric of and

A TM wave having the magnetic field at given by

is incident on the discontinuity from the left. Find the expressions for the
electric and magnetic fields as functions of z and t for the incident and reflected
waves for and the transmitted wave for 

R8.3. Finding the ratio of group velocity to phase velocity for an interval on a disper-
sion curve. The curve for a certain dispersive channel is such that at a fre-
quency the group and phase velocities are equal, and the group velocity
is proportional to in a certain frequency interval around Find the
ratio in that frequency interval.

R8.4. Oblique incidence of uniform plane wave onto a dielectric medium at Brewster
angle. Region is free space, whereas region is a perfect di-
electric of and For an elliptically polarized uniform plane
wave incident from free space onto the boundary it is found that the re-
flected wave is linearly polarized with electric-field amplitude and the trans-
mitted wave is circularly polarized with electric-field magnitude (a) Find

(b) Find the axial ratio of the polarization ellipse for the incident wave.
R8.5. Design of a symmetric dielectric slab waveguide. Design a symmetric dielectric

slab waveguide with and by finding the value of such
that for the mode is 88°. Then find the value of for the mode and
the number of remaining propagating TE and TM modes.

R8.6. Paraxial rays in a graded-index guide with linear profile of dielectric permittivity.
For a graded-index guide with the refractive index profile given by

obtain the solution for z(x) for paraxial rays and find the approximate ampli-
tude and approximate pitch in terms of Then find the approximate value of

in terms of mode number.d0

d0.

n1
21x2 = n0

211 - a ƒ x ƒ 2

TE0uiTM0ui

d>l0er2 = 1.00er1 = 2.25

E2>E1.
E2.

E1

x = 0,
m = m0.e = 16e0

2 1x 7 021 1x 6 02
vg>vp

v = v0.v

v = v0,
v–b

z 7 0.z 6 0

z = 0

Hi = H0 cos3 40px cos 3p * 1010t ay

z = 0m = m0.
e = 2.25e01z 7 02

m = m0,e = 4e0x = 2.5 cmx = 0
1z 6 02

1
312ax + 2ay - az2.

ay - 2az2.1
312ax +

18 * 108 m>s2ay + az2;1
312ax -

1
312ax + ay + 2az2; 4.5 * 108 m>s

2.25 * 108 m>s
1m = m02,109 Hz
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600

C H A P T E R  9

Several Topics for Electronics
and Photonics

In the previous chapter, we introduced the principles of guided waves and
learned that the mechanism of waveguiding is one in which the waves bounce
obliquely between parallel planes as they progress along the structure. We stud-
ied transverse electric (TE) and transverse magnetic (TM) waves supported by
plane conductors, as well as those supported by a plane dielectric slab. Thus, we
restricted our study of guided waves to one-dimensional structures. In this chap-
ter, we extend the treatment to two dimensions.

As in the previous chapter, we consider metallic waveguides, that is, those
in which the TE and TM waves propagate in the medium between and parallel
to the metallic boundaries of the guide, as well as optical fibers in which the sup-
porting structure for the guided waves is a cylindrical dielectric rod surrounded
by a dielectric cladding and without the presence of metallic boundaries.

We shall begin the chapter by introducing rectangular metallic wave-
guides, first by a geometrical extension of the parallel-plate waveguide arrange-
ment and then by solving Maxwell’s equations in two dimensions. We make use
of the latter approach to study cylindrical metallic waveguides and later optical
fibers. We shall also consider losses in metallic waveguides and resonators and
extend our discussion of dispersion in Chapter 8 to study the phenomenon of
pulse broadening, which is of particular importance in photonic systems. Finally,
we shall consider the topics of interference and diffraction, and wave propaga-
tion in an anisotropic medium.

9.1 RECTANGULAR METALLIC WAVEGUIDE AND CAVITY RESONATOR

To introduce the rectangular metallic waveguide, we begin with TE modes in a
parallel-plate waveguide.We recall that the parallel-plate waveguide is made up
of two perfectly conducting sheets in the planes and and that
the electric field of the mode has only a y-component with m numberTEm,0

x = a,x = 0

TE modes in
rectangular
waveguide
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9.1 Rectangular Metallic Waveguide and Cavity Resonator 601

x � a y � 0

y = b

x � 0
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Hz

Ez

x
z

y

FIGURE 9.1

Rectangular waveguide.

of one-half sinusoidal variations in the x-direction and no variations in the y-
direction. If we now introduce two perfectly conducting sheets in two constant-
y planes, say, and the field distribution will remain unaltered since
the electric field is entirely normal to the plates, and hence the boundary condi-
tion of zero tangential electric field is satisfied for both sheets.We then have the
rectangular waveguide, a metallic pipe with rectangular cross section in the xy-
plane, as shown in Fig. 9.1.

Since the mode field expressions derived for the parallel-plate
waveguide satisfy the boundary conditions for the rectangular waveguide, those
expressions as well as the entire discussion of the parallel-plate waveguide case
hold also for mode propagation in the rectangular waveguide case. We
learned that the modes can be interpreted as being due to uniform plane
waves having electric field in the y-direction and bouncing obliquely between
the conducting walls and and with the associated cutoff condition
characterized by bouncing of the waves back and forth normally to these walls,
as shown in Fig. 9.2(a). For the cutoff condition, the dimension a is equal to m
number of one-half wavelengths such that

(9.1)

In a similar manner, we can have uniform plane waves having electric field
in the x-direction and bouncing obliquely between the walls and 
and with the associated cutoff condition characterized by bouncing of the waves
back and forth normally to these walls, as shown in Fig. 9.2(b), thereby resulting
in modes having no variations in the x-direction and n number of one-half
sinusoidal variations in the y-direction. For the cutoff condition, the dimension
b is equal to n number of one-half wavelengths such that

(9.2)[lc]TE0,n
=

2b
n

TE0,n

y = b,y = 0

[lc]TEm,0
=

2a
m

x = a,x = 0

TEm,0

TEm,0

TEm,0

y = b,y = 0
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FIGURE 9.2

Propagation and cutoff of (a) (b) and (c) modes in a
rectangular waveguide.

TEm,nTE0,n,TEm,0,

We can even have modes having m number of one-half sinusoidal
variations in the x-direction and n number of one-half sinusoidal variations in
the y-direction, due to uniform plane waves having both x- and y-components of
the electric field and bouncing obliquely between all four walls of the guide and
with the associated cutoff condition characterized by bouncing of the waves back
and forth obliquely between the four walls as shown, for example, in Fig. 9.2(c).
For the cutoff condition, the dimension a must be equal to m number of one-half
apparent wavelengths in the x-direction, and the dimension b must be equal to n
number of one-half apparent wavelengths in the y-direction such that

or

(9.3)[lc]TEm,n
=

121m>2a22 + 1n>2b22

1

[lc]TEm,n

2 =
1

12a>m22 +
1

12b>n22

TEm,n
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The discussion thus far of modes in a rectangular waveguide has
been based on qualitative reasoning. We shall now derive the field expressions
for the TE modes. To do this, we shall first show, by making use of the expan-
sions for the Maxwell’s curl equations in Cartesian coordinates, that all trans-
verse (x and y) field components are derivable from the longitudinal field
component It is convenient to use the phasor forms of the field components
and differential equations. Since all components of the fields are then depen-
dent on t and z in the manner we can replace by and by

Furthermore, in view of TE modes and and are all zero
since the medium inside the waveguide is a perfect dielectric. Thus, the phasor
forms of (3.12a)–(3.12c) and of the component equations of (3.22) pertinent to
the discussion here are

(9.4a) (9.4d)

(9.4b) (9.4e)

(9.4c) (9.4f)

Solving (9.4a), (9.4b), (9.4d), and (9.4e), for and in terms of
we obtain

(9.5a)

(9.5b)

(9.5c)

(9.5d)

Furthermore, by substituting (9.5a) and (9.5b) into (9.4c) and rearranging, we
obtain a differential equation for as given by

(9.6)

Recall that so that 
To solve (9.6) for we make use of the separation of variables tech-

nique. This consists of assuming that the required function of the two variables
x and y is the product of two functions, one of which is a function of x only and

H
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z,
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02H
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Derivation of
field
expressions
for TE modes

Separation of
variables
technique
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the second is a function of y only. Thus, denoting these functions to be and 
we have

(9.7)

Substituting (9.7) into (9.6), we then obtain

or

(9.8)

where the primes denote differentiation with respect to the respective variables.
Equation (9.8) says that a function of x only plus a function of y only is equal to
a constant. For this to be satisfied, both functions must be equal to constants.
Hence, we write

(9.9a)

and

(9.9b)

or

(9.10a)

and

(9.10b)

We have thus obtained two ordinary differential equations involving separately
the two variables x and y; hence, the technique is known as the separation of
variables technique.

The solutions to (9.10a) and (9.10b) are given by

so that

(9.11)H
 –

z = 1A –1 ejbx x + A
 –

2 e-jbx x21B –1 ejby y + B
 –

2 e-jby y2e-jbz z

 Y
 –1y2 = B

 –
1 ejby y + B

 –
2 e-jby y

 X
 –1x2 = A

 –
1 ejbx x + A

 –
2 e-jbx x

d2Y
 –

dy2 = -by
2Y

 –

d2X
 –

dx2 = -bx
2X

 –

Y
 – –
Y
 – = -by

2, a constant

X
 – –
X
 – = -bx

2, a constant

X
 – –
X
 – +

Y
 – –
Y
 – = bz

2 - b2

X
 – –1x2Y –1y2 + X

 –1x2Y – –1y2 - 1bz
2 - b22X –1x2Y –1y2 = 0

H
 –

z1x, y, z2 = X
 –1x2Y –1y2e-jbz z

Y
 –

,X
 –
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where and are constants. We also note from substitution of (9.9a)
and (9.9b) into (9.8) that

or

(9.12)

Now, to determine the constants in (9.11), we make use of the boundary
conditions that require that the tangential components of the electric-field in-
tensity on all four walls of the guide be zero. Thus, we have

To apply these boundary conditions to (9.11), we have to translate them into
boundary conditions involving From (9.5a) and (9.5b), these are

(9.13a)

(9.13b)

(9.13c)

(9.13d)

Using (9.13c) and (9.13a) in conjunction with (9.11), we get

which then simplifies (9.11) to

(9.14)

where is a constant. Using the remaining two boundary conditions (9.13d)
and (9.13b), we then obtain

(9.15a)

(9.15b) sin by b = 0 or by =
np

b
, n = 0, 1, 2, Á

 sin bx a = 0 or bx =
mp

a
, m = 0, 1, 2, Á
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Thus, the solution for for the mode is given by

(9.16)

We also note by substituting (9.15a) and (9.15b) in (9.12) that

(9.17)

For propagation to occur, the exponent in (9.16) must be real. Hence, the cut-
off condition is given by

(9.18)

or the cutoff frequency is given by

(9.19)

and the cutoff wavelength is

(9.20)

which is the same as given by (9.3). Now, from (9.17) and (9.20), we have

(9.21)

Substituting (9.16) and (9.21) into (9.5a)–(9.5d), we obtain the expressions for
the transverse field components:
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(9.22b) E
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(9.22c)

(9.22d)

Note that the sine terms in these field expressions satisfy the boundary condi-
tions of zero tangential electric field and zero normal magnetic field at the walls
of the waveguide. It can also be seen that if both m and n are equal to zero, then
all transverse field components go to zero. Therefore, for TE modes, either m or
n can be zero, but both m and n cannot be zero.

The entire procedure for the derivation of the field expressions can be
repeated for TM waves by starting with the longitudinal field component 
We shall not, however, pursue the derivation here; instead, we present the
final expressions. This is done in Table 9.1 together with the TE mode field ex-
pressions. The upper signs of the and signs in these expressions refer to
waves propagating in the whereas the lower signs refer to waves
propagating in the Note from the expression for in Table 9.1E

 –
z-z-direction.
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TABLE 9.1 Field Expressions and Associated Parameters for TE and TM Modes in a Rectangular Waveguide

Transverse electric (TE) waves Transverse magnetic (TM) waves

Field Expressions: Field Expressions:
(m, but not both zero) (m, )
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f
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that the x- and y-variations of are sinusoidal, so that goes to zero on all
four walls of the waveguide. This arises because being longitudinal, is tan-
gential to all four walls, and the boundary conditions require that the tangen-
tial components of E be zero on the walls. It can also be seen that if either m or
n is equal to zero, then Therefore, for TM modes both m and n must be
nonzero.Also listed in Table 9.1 are the expressions for the cutoff frequency 
the cutoff wavelength the guide wavelength the phase velocity 
along the guide axis, and the guide characteristic impedance all of which
have the same interpretations as the corresponding quantities for the parallel-
plate waveguide case.

The foregoing discussion of the modes of propagation in a rectangular
waveguide points out that a signal of given frequency can propagate in several
modes, namely, all modes for which the cutoff frequencies are less than the sig-
nal frequency or the cutoff wavelengths are greater than the signal wavelength.
Waveguides are, however, designed so that only one mode, the mode with the
lowest cutoff frequency (or the largest cutoff wavelength), propagates. This is
known as the dominant mode. From Table 9.1, we can see that the dominant
mode is the mode or the mode, depending on whether the dimen-
sion a or the dimension b is the larger of the two. By convention, the larger di-
mension is designated to be a, and hence the mode is the dominant mode.
We shall now consider an example.

Example 9.1 Finding propagating modes in a rectangular waveguide

It is desired to determine the lowest four cutoff frequencies referred to the cutoff fre-
quency of the dominant mode for three cases of rectangular waveguide dimensions:

and Given it is then desired to find the propagating
mode(s) for for each of the three cases.

From Table 9.1, the expression for the cutoff wavelength for a mode, where
and but not both m and n equal to zero, and for a

mode where and is given by

The corresponding expression for the cutoff frequency is

The cutoff frequency of the dominant mode is Hence,

fc

[fc]TE1,0

= Bm2 + an 
a

b
b2

1>2a1me.TE1,0

 =
1

2a1me  Bm2 + an 
a

b
b2

 fc =
vp

lc
=

11me  Bam

2a
b2

+ a n

2b
b2

lc =
121m>2a22 + 1n>2b22

n = 1, 2, 3, Á ,m = 1, 2, 3, ÁTMm,n

n = 0, 1, 2, 3, Ám = 0, 1, 2, 3, Á
TEm,n

f = 9000 MHz
a = 3 cm,b>a = 1

3.b>a = 1, b>a = 1
2,

TE1,0

TE0,1TE1,0

hg,
vpzlg,lc,
fc,

E
 –

z = 0.

E
 –

z,
E
 –

zE
 –

z
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fc

[ fc]TE1,0

b
a 55 4321
 � 1

TE1,0
TE0,1

TM1,1
TE1,1

TE2,0
TE0,2

TM2,1
TM1,2
TE2,1
TE1,2

2

fc

[ fc]TE1,0

b
a

1
2 55 4321

 �

b
a

1
3

 �

TE1,0

TE1,0 TE2,0

TE0,1
TE2,0

TE3,0
TE0,1

TM1,1
TE1,1

TE1,1
TM1,1

8

TE2,1
TM2,1

fc

[ fc]TE1,0
510 4321

FIGURE 9.3

Lowest four cutoff frequencies referred to the cutoff frequency of the dominant mode
for three cases of rectangular waveguide dimensions.

By assigning different pairs of values for m and n, the lowest four values of can
be computed for each of the three specified values of b/a.These computed values and the
corresponding modes are shown in Fig. 9.3.

For and assuming free space for the dielectric in the waveguide,

Hence, for a signal of frequency all the modes for which is less
than 1.8 propagate. From Fig. 9.3, these are

It can be seen from Fig. 9.3 that for the second lowest cutoff frequency which
corresponds to that of the mode is twice the cutoff frequency of the dominant
mode For this reason, the dimension b of a rectangular waveguide is generally
chosen to be less than or equal to a/2, in order to achieve single-mode transmission over
a complete octave (factor of 2) range of frequencies.

As in the case of the parallel-plate waveguide, reflection and transmission at
discontinuities in rectangular waveguides can be studied by using the transmission-
line analogy.We shall illustrate this by means of an example.

TE1,0.
TE2,0

b>a … 1
2,

TE1,0, TE0,1, TM1,1, TE1,1 for b>a = 1
TE1,0 for b>a = 1

2

TE1,0 for b>a = 1
3

fc>[fc]TE1,0
f = 9000 MHz,

[fc]TE1,0
=

1
2a1me =

3 * 108

2 * 0.03
= 5000 MHz

a = 3 cm,

fc>[fc]TE1,0

Transmission-
line analogy
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z � 0 za � 4 cm x

y
b � 2 cm

Section 2

m0, 9e0

Section 1

m0, e0

FIGURE 9.4

Rectangular waveguide discontinuity.

Example 9.2 Application of transmission-line analogy to a rectangular
waveguide system

A rectangular waveguide extending in the z-direction and having the dimensions
and has a dielectric discontinuity at as shown in Fig. 9.4. For

waves of frequency incident from section 1, we wish to find (a) the
transmission-line equivalent and (b) the length and the permittivity of a quarter-wave
section required to achieve a match between the two sections.

(a) First, we note that for the mode, for both sections. For
the wavelength in free space is and the wavelength in a

dielectric of permittivity is Since and are both less than the
mode propagates in both sections. Denoting the guide parameters associated

with sections 1 and 2 by subscripts 1 and 2, respectively, we then obtain

Thus, the transmission-line equivalent is as shown in Fig. 9.5.
(b) The characteristic impedance of a quarter-wave section required to achieve a

match between line 1 and line 2 must be equal to Denoting the parame-
ters associated with the quarter-wave section by subscript 3, we then have

or

 
e0>e3

1 - 16>8221e0>e32 =
570 * 129.8

137722 = 0.5205

 
h12e0>e321 - 1l1>lc221e0>e32 = 1hg1hg2

hg3 =
h321 - 1l3>lc22 = 1hg1hg2

1hg1hg2.

 hg2 =
h221 - 1l2>lc22 =

377>321 - 12>822 = 129.8 Æ

 hg1 =
h121 - 1l1>lc22 =

37721 - 16>822 = 570 Æ

TE1,0

lc,l2l1l2 = 2 cm.9e0

l1 = 6 cmf = 5000 MHz,
lc = 2a = 8 cmTE1,0

f = 5000 MHzTE1,0

z = 0,b = 2 cma = 4 cm

FIGURE 9.5

Transmission-line equivalent for the rectangular
waveguide discontinuity of Fig. 9.4 for waves
of frequency 5000 MHz.

TE1.0

hg1 � 570 � hg2 � 129.8 �

RaoCh09v3.qxd  12/18/03  5:19 PM  Page 610



9.1 Rectangular Metallic Waveguide and Cavity Resonator 611

solving which we obtain To find the length of the quarter-wave sec-
tion, we compute

Thus, the length of the quarter-wave section is or 1.0825 cm.

Let us now consider guided waves of equal amplitude propagating in the
positive z- and negative z-directions in a rectangular waveguide. This can be
achieved by terminating the guide by a perfectly conducting sheet in a constant-
z plane, that is, a transverse plane of the guide. Due to perfect reflection from
the sheet, the fields will then be characterized by standing wave nature along
the guide axis, that is, in the z-direction, in addition to the standing wave nature
in the x- and y-directions. The standing wave pattern along the guide axis will
have nulls of transverse electric field on the terminating sheet and in planes par-
allel to it at distances of integer multiples of from that sheet. Placing of per-
fect conductors in these planes will not disturb the fields, since the boundary
condition of a zero tangential electric field is satisfied in those planes.

Conversely, if we place two perfectly conducting sheets in two constant-z
planes separated by a distance d, then, for the boundary conditions to be satis-
fied, d must be equal to an integer multiple of We then have a rectangular
box of dimensions a, b, and d in the x-, y-, and z-directions, respectively, as shown
in Fig. 9.6. Such a structure is known as a cavity resonator and is the counterpart
of the low-frequency lumped parameter resonant circuit at microwave frequen-
cies, since it supports oscillations at frequencies for which the foregoing condi-
tion, that is,

(9.23)d = l 

lg

2
, l = 1, 2, 3, Á

lg>2.

lg>2

lg3>4,

 =
6 * 0.634511 - 19>162 * 0.4026

= 4.33 cm

 lg3 =
l321 - 1l3>lc22 =

l11e0>e321 - 1l1>lc221e0>e32

e3 = 2.484e0.

Cavity
resonator

b

d

z

a
x

y
FIGURE 9.6

Rectangular cavity resonator.
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is satisfied. Substituting for in (9.23) from Table 9.1 and rearranging, we
obtain

or

which upon substitution for gives

(9.24)

The expression for the frequencies of oscillation is thus given by

(9.25)

The modes are designated by three subscripts in the manner and 
Since m, n, and l can assume combinations of integer values, an infinite number of
frequencies of oscillation are possible for a given set of dimensions of the cavity
resonator.Also, a given frequency of oscillation may correspond to more than one
mode.We recall that for TE modes but not both zero, whereas
for TM modes For both TE and TM modes as
given in (9.23). In addition TM modes at cutoff ( and ) sat-
isfy the boundary conditions since then and both go to zero. Hence, for TM
modes is allowed.We shall now consider an example.

Example 9.3 Finding the frequencies of oscillation for a rectangular
cavity resonator

The dimensions of a rectangular cavity resonator with air dielectric are 
and It is desired to determine the three lowest frequencies of oscil-

lation and specify the mode(s) of oscillation, transverse with respect to the z-direction,
for each frequency.

By substituting and the given dimensions for a, b, and d in (9.25),
we obtain

 = 37502m2 + 4n2 + l2 MHz

 fosc = 3 * 108
 Ba m

0.08
b2

+ a n

0.04
b2

+ a l

0.08
b2

m = m0, e = e0,

d = 4 cm. b = 2 cm,
a = 4 cm,

l = 0
E
 –

yE
 –

x

hg = 0 lg = qbz = 0,
l = 1, 2, 3, Á ,m, n = 1, 2, 3, Á .

m, n = 0, 1, 2, Á ,

TMm,n,l.TEm,n,l

fosc =
vp

l
=

11me  Bam

2a
b2

+ a n

2b
b2

+ a l

2d
b2

 l =
121m>2a22 + 1n>2b22 + 1l>2d22

 
1

l2 = am

2a
b2

+ a n

2b
b2

+ a l

2d
b2

lc

1

l2 -
1

lc
2 = a l

2d
b2

2d

l
=

l21 - 1l>lc22

lg
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By assigning combinations of integer values for m, n, and l and keeping in mind the re-
strictions on these values as discussed, we obtain the three lowest frequencies of oscilla-
tion and the corresponding modes to be

K9.1. Rectangular waveguide; TE and TM modes; Dominant mode; Cavity resonator;
Frequency of oscillation.

D9.1. A generator of fundamental frequency 2000 MHz and rich in harmonics excites a
rectangular waveguide. Find all frequencies that propagate in only TE modes for
each of the following cases: (a) (b)

and (c) Assume that 
for all cases.
Ans. (a) 4000, 6000 MHz; (b) 2000, 4000 MHz; (c) None.

D9.2. For the rectangular waveguide discontinuity of Fig. 9.4, find the power reflec-
tion coefficient for incidence from section 1 for each of the following cases:
(a) wave of frequency (b) wave of frequency

and (c) wave of frequency 
Ans. (a) 0.2756; (b) 0.4649; (c) 0.0676.

D9.3. The frequencies of oscillation for an air-dielectric rectangular cavity resonator
of dimensions a, b, and d, in the x-, y-, and z-directions, respectively, are given for
three modes as follows:

Find the values of a, b, and d in cm.
Ans. 2.5 cm, 1 cm, 5 cm.

9.2 CYLINDRICAL METALLIC WAVEGUIDE AND CAVITY RESONATOR

Thus far in this chapter, we have been concerned with the guiding of waves be-
tween metallic boundaries involving rectangular geometries. We shall now ex-
tend the treatment to cylindrical geometry by considering the case of a
cylindrical waveguide, which is simply a hollow tube of circular cross section of
a radius a and extending along the z-direction, as shown in Fig. 9.7.Thus, for TM
waves in a cylindrical waveguide,

Hz = 0 Ez Z 0

 fosc = 3000130 MHz for TM1,1,1 mode

 fosc = 3000126 MHz for TE0,1,1 mode

 fosc = 300015 MHz for TE1,0,1 mode

f = 10,000 MHz.TM1,1f = 10,000 MHz;
TE1,1f = 10,000 MHz;TE1,0

m = m0a = 6 cm, b = 6 cm, e = e0. b = 1.5 cm, e = 4e0;
a = 4.5 cm,a = 5 cm, b = 2.5 cm, e = e0;

 3750 * 16 = 9186 MHz for TE1,1,1 and TM1,1,1 modes

 3750 * 15 = 8385 MHz for TE0,1,1, TE2,0,1, TE1,0,2, and TM1,1,0 modes

 3750 * 12 = 5303 MHz for TE1,0,1 mode

9.2 Cylindrical Metallic Waveguide and Cavity Resonator 613
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z Cylindrical
Conductor

Axis

a

r
f

m, eFIGURE 9.7

A cylindrical waveguide
extending in the z-direction.

and all other field components can be expressed in terms of whereas for TE
waves,

and all other field components can be expressed in terms of 
To derive the field expressions for TM and TE modes in a cylindrical

waveguide, we begin with Maxwell’s curl equations in cylindrical coordinates
and proceed similarly to the rectangular waveguide case, using the phasor forms
of the field components in the manner where the upper and lower
signs represent wave propagation in the and respectively.
Thus, replacing by and by in the expansions for Maxwell’s curl
equations in cylindrical coordinates, we have for a perfect dielectric medium in-
side the waveguide,

(9.26a)

(9.26b)

(9.26c)

(9.26d)

(9.26e)

(9.26f) 
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Solving (9.26a), (9.26b), (9.26d), and (9.26e), we obtain

(9.27a)

(9.27b)

(9.27c)

(9.27d)

thereby expressing the transverse field components in terms of the longitudinal
field components. Recall that 

Now, setting and substituting for and in (9.26f), we obtain
the differential equation for for the TM-mode case

(9.28a)

Similarly, setting and substituting for and in (9.26c), we obtain the
differential equation for for the TE-mode case

(9.28b)

In view of the similarity of (9.28a) and (9.28b), we let stand for in the case
of TM waves and in the case of TE waves and consider the solution of the
differential equation

or

(9.29)

where

(9.30)

To solve this equation, we make use of the separation of variables technique as
in Section 9.1. Thus, letting

(9.31)c = R
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and substituting into (9.29), we have

or

(9.32)

where the primes denote differentiation with respect to the respective variables,
thereby obtaining the two separate differential equations

(9.33a)

(9.33b)

The solution for (9.33a) is of the form

(9.34a)

where and are constants. Equation (9.33b) is a Bessel’s equation that has
the solution

(9.34b)

where and are constants, and

The variations of and with their argument x are shown for a few
values of n in Figs. 9.8(a) and (b), respectively.The function has the prop-
erty that for all orders. Since the fields must remain finite inside the
guide, which includes (the z-axis), it follows that must be zero. Hence,
the solution for pertinent to the cylindrical waveguide problem is given by

The solution for is thus given by

(9.35)

where we have absorbed into and This is the general solution for 
which we use for in the case of TM waves and the in the case of TE waves
to obtain their particular solutions satisfying the boundary conditions.

For TM modes, and Hence,
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 Nn1bc r2 = Bessel function of the second kind of order n and argument bc r
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(a)
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FIGURE 9.8

Variations of (a) and (b) with the argument x for a few values of n.Nn1x2,Jn1x2

Since for a cylindrical waveguide, and must be a single-valued
function, the solution must be periodic in with a period This requires that
n be an integer. Thus,

n = 0, 1, 2, 3, Á

2p.f

E
 –

z0 … f … 2p
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The boundary condition at requires that the tangential component of 
be zero. Since is tangential, it follows that for all giving us

or

(9.37)

Note that this also makes the remaining tangential component equal to zero
at since from (9.27b), Equation (9.37) tells us that only cer-
tain values of and hence of are allowed. These are the values for which
the Bessel function goes to zero, that is, they are the roots of the equation

(9.38)

For a given value of n, there are an infinite number of roots as can be seen from
Fig. 9.8(a). Denoting the number of the root to be m, we list in Table 9.2 the low-
est three nonvanishing roots for the first five values of 

With the understanding that the values of are given by those in Table 9.2,
we can obtain the expressions for the transverse-field components by noting that

and substituting (9.36) into (9.27a)–(9.27d):

(9.39a)

(9.39b)

(9.39c)

(9.39d)

In (9.39a), the prime associated with denotes differentiation with respect to
the argument 

The allowed values of may be written as where the first sub-
script refers to the order of the Bessel function and the second subscript de-
notes the mth root of the nth order Bessel function. The corresponding modes
are designated as modes. In terms of the field configurations, the firstTMn,m

1bc a2n,m,bc a
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TABLE 9.2 Roots of 

m
n

0 1 2 3 4

1 2.40 3.83 5.14 6.38 7.59

2 5.52 7.02 8.42 9.76 11.06

3 8.65 10.17 11.62 13.02 14.37

Jn1x2
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subscript refers to the number of complete sinusoidal variations of the field
components in the direction. For example, means that the field compo-
nents have no variations in means that they have one sinusoidal varia-
tion in and so on. The second subscript refers to the number of quasi
half-cycle variations (except that in the case of the first one is a one-
quarter cycle) of the field components in the r direction in accordance with the
behavior of the Bessel functions, as shown in Fig. 9.8(a), and their derivatives,
depending upon the component.

For TE modes, and Hence,

(9.40)

Again, n must be an integer as in the case of TM modes, since the solution must
be periodic in with period in order that is single-valued. Thus,

The boundary condition at requires that the tangential component of 
be zero. Since for TE modes, we need to consider which is the re-
maining tangential component of From (9.27b), we note that 
Thus, we have

or

where the prime associated with denotes the derivative of the Bessel func-
tion. It follows that

(9.41)

Equation (9.41) tells us that again in this case, only certain values of and
hence of are allowed. These are the values for which the derivative of the
Bessel function goes to zero, that is, they are the roots of the equation

(9.42)

It can be seen by visualizing the derivatives of the graphs of the Bessel functions in
Fig. 9.8(a) that for a given value of n, there are infinite number of roots for (9.42),
corresponding to the points at which the slopes of the Bessel functions are zero.
Denoting the number of the root to be m, we list in Table 9.3 the lowest three

nonvanishing roots for the first five values of 
With the understanding that the values of are given by those in Table 9.3,

we can obtain the expressions for the transverse field components by noting that
bc a

n1n = 0, 1, 2, 3, 42.1m = 1, 2, 32

Jn
œ 1x2 = 0

bc,
bc a,

Jn
œ 1bc a2 = 0

Jn

0 = Jn
œ 1bc a21A –n cos nf + B

 –
n sin nf2e < jbz z

c 0H
 –

z

0r
d

r = a
= 0

E
 –
f r 0H

 –
z>0r.E.

E
 –
f,E

 –
z K 0

Er = a

n = 0, 1, 2, 3, Á

H
 –

z2pf

H
 –

z = Jn1bc r21A –n cos nf + B
 –

n sin nf2e < jbz z

c = H
 –

z.E
 –

z = 0

n = 0,
f,

f, n = 1
n = 0f
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and substituting (9.40) into (9.27a)–(9.27b):

(9.43a)

(9.43b)

(9.43c)

(9.43d)

The allowed values of may once again be written as and the modes
designated as modes. As in the case of modes, the first subscript
refers to the number of complete sinusoidal variations of the field components
in the direction. The second subscript refers to the number of quasi-half-cycle
variations (except that for the first one is a one-quarter cycle) of the field
components in the r direction.

Let be the values of for the (n,m)th mode found from the roots
of for TM modes and of for TE modes. Then recalling that

and that the cutoff condition occurs for equal to zero, we note that the cutoff
frequencies are given by

(9.44)

and the cutoff wavelengths are given by

(9.45)
 =

2p
1bc2n,m

 1lc2n,m =
11me1fc2n,m

1fc2n,m =
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2

bz
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2 = b2 - bz

2 = v2me - bz
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Jn
œ 1bc a2Jn1bc a2 bc1bc2n,m

n Z 0,
f

TMn,mTEn,m

1bc a2n,mbc a

 H
 –
f = ;  

bz

vm
 E
 –

r

 H
 –

r = <  

bz

vm
 E
 –
f

 E
 –
f = j  

vm

bc
 Jn

œ 1bc r21A –n cos nf + B
 –

n sin nf2e < jbz z

 E
 –

r = j  

vmn
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2r

 Jn1bc r21A –n sin nf - B
 –

n cos nf2e < jbz z

E
 –

z = 0
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TABLE 9.3 Roots of 

m
n

0 1 2 3 4

1 3.83 1.84 3.05 4.20 5.32

2 7.02 5.33 6.71 8.02 9.28

3 10.17 8.54 9.97 11.35 12.68

Jn
œ 1x2
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Proceeding further, for the propagating range of frequencies for a given mode,
we have from (9.30),

or

(9.46)

The phase velocity along the guide axis is given by

(9.47)

Finally, by taking the ratios of appropriate pairs of transverse electric- and
magnetic-field components given by (9.39a)–(9.39d) for TM modes and (9.43a)–
(9.43d) for TE modes, we obtain the guide characteristic impedances to be

(9.48a)

and

(9.48b)

Note that the expressions (9.46)–(9.48b) are the same as the corresponding ex-
pressions for the rectangular waveguide case.We shall now consider an example.

Example 9.4 Finding propagating modes and their characteristics 
for a cylindrical waveguide

The radius of an air-dielectric cylindrical waveguide is given by It is desired
to find the propagating modes and their characteristics for a signal of frequency
f = 3 GHz.

a = 5 cm.

 =
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From Tables 9.2 and 9.3, we note that the lowest root is 1.84, corresponding to the
mode. Thus, mode is the dominant mode and its cutoff frequency is given by

In fact, by choosing the roots in increasing order of value from Tables 9.2 and 9.3 and di-
viding them by a and substituting in (9.44), we can find the cutoff frequencies in the in-
creasing order.The four lowest cutoff frequencies and the corresponding modes found in
this manner are listed in Table 9.4. For any given frequency f, propagation occurs in all
modes for which Thus, for a signal of frequency 3 GHz, the propagating modes
are and The corresponding values of and computed by
using (9.45)–(9.48b), are also listed in Table 9.4.

hg,lc, lg, ypz,TE2,1.TE1,1, TM0,1,
f 7 fc.

 = 1.757 GHz

 [fc]TE1,1 =
[1bc a21,1]>a
2p1m0e0

=
1.84

5 * 10-2 *
3 * 108

2p

TE1,1TE1,1
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TABLE 9.4 The Four Lowest Cutoff Frequencies and the Corresponding Modes for an 
Air-Dielectric Cylindrical Waveguide of Radius and the Parameters for the Propagating
Modes for 

Mode(s) (GHz) (cm) (cm) (m/s) (ohms)

1.84 1.757 17.074 12.337 465.10

2.40 2.292 13.090 15.500 243.24

3.05 2.913 10.300 41.827 1576.84
3.83 3.657 8.203 — — —TE0,1, TM1,1

12.548 * 108TE2,1

4.650 * 108TM0,1

3.701 * 108TE1,1

hgypzlglcfcbc a

f = 3 GHz
a = 5 cm

As in the case of the rectangular waveguide, by placing two perfectly con-
ducting sheets in two constant-z planes separated by a distance d, we can have a
cylindrical cavity resonator that supports oscillations at frequencies for which

(9.49)

Substituting for from (9.46), we have

(9.50)

The modes are designated and where n and m are allowed values
as discussed earlier. For both TE and TM modes, as given by
(9.49). In addition, as for the rectangular waveguide case, TM modes at cutoff
( and ) satisfy the boundary conditions, since both and

go to zero. Hence, for TM modes is allowed. Let us consider an example.l = 0E
 –
f

E
 –

rhg = 0bz = 0, lg = q

l = 1, 2, 3, Á ,
TMn,m,l,TEn,m,l

 fosc =
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l
=

11me  B 1

lc
2 + a l

2d
b2

 
1

l2 =
1

lc
2 + a l

2d
b2

 
2d

l
=

l21 - 1l>lc22

lg

d = l 

lg

2
, l = 1, 2, 3, Á
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Example 9.5 Finding the frequencies of oscillation for a cylindrical
cavity resonator

A cylindrical cavity resonator is formed by placing two perfectly conducting sheets 5 cm
apart in the cross-sectional planes of the cylindrical waveguide of Example 9.4, so that

It is desired to find the four lowest frequencies of oscillation and identify the
mode(s) of oscillation for each frequency.

By substituting and in (9.50), we obtain

By using the results of Table 9.4 and assigning values to l, as discussed, we obtain the four
lowest frequencies of oscillation and the corresponding modes to be

K9.2. Cylindrical waveguide; Bessel functions; TM and TE modes; Cylindrical cavity
resonator.

D9.4. An air-dielectric waveguide with the z-axis as its axis has a semicircular cross
section of radius as shown in Fig. 9.9. Find the mode with the lowest
cutoff frequency and the corresponding value of the cutoff frequency for (a) TE
waves and (b) TM waves.
Ans. (a) 1.757 GHz; (b) 3.657 GHz.

D9.5. The resonant frequencies for the mode and the mode of an air-
dielectric cylindrical cavity resonator are both known to be 3000 MHz. Find the
values of the dimensions a and d of the resonator.
Ans. 3.82 cm; 7.79 cm.

TE1,1,1TM0,1,0

TM1,1,TE1,1,

a = 5 cm,

 3000Ba 10
13.09

b2

+ 1 = 3775 MHz for TM0,1,1 mode

 3000 *
10

8.203
= 3657 MHz for TM1,1,0 mode

 3000Ba 10
17.074

b2

+ 1 = 3477 MHz for TE1,1,1 mode

 3000 *
10

13.09
= 2292 MHz for TM0,1,0 mode

 = 3000Ba0.1
lc
b2

+ l2 MHz

 fosc = 3 * 108
 B 1

lc
2 + a l

0.1
b2

d = 5 cm,m = m0, e = e0,

d = 5 cm.

az

r

f

FIGURE 9.9

For Problem D9.4.
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS

In this section, we shall extend our discussion of waveguides and resonators to
consider the effects of lossy materials. Power dissipation in the imperfect dielec-
tric of a guide results in loss that follows simply from the attenuation constant
for the case of a uniform plane wave propagating in the dielectric. If, for the pur-
pose of illustration, we consider the TE or TM wave in a parallel-plate wave-
guide, then we know that progress of the composite TE or TM wave along the
guide by a distance d involves travel of the component uniform plane waves 
obliquely to the plates by a distance Thus, if is the atten-
uation constant for uniform plane wave propagation in the dielectric, then
the attenuation constant for the TE or TM wave along the guide axis is

and the attenuation is equal to From
Section 4.5, we recall that for a slightly imperfect dielectric 

Unlike the case of the imperfect dielectric, attenuation of the wave due to
power flow into the imperfect conductors of a guide as the wave propagates
down the guide involves an elaborate treatment. Since the conductors are only
slightly imperfect the procedure is based on considering the situa-
tion as though a plane wave having the same magnetic field components as
those given by the appropriate tangential magnetic field components on that
wall for the perfect conductor case propagates normally into the conductor and
then computing the power flow into the wall (assumed to be of infinite depth in
view of the rapid attenuation of fields as they propagate into a good conductor).
Now, for a tangential magnetic field on a given wall, the electric-field vector
of a uniform plane wave propagating into the wall (designated to be in the di-
rection ) is where is the intrinsic impedance of the conductor.
The complex Poynting vector is

(9.51)

The time-average power flowing into the conductor of conductivity for a
length along the guide is given by

(9.52)

 =
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where is the skin depth at the frequency of operation f, dl is the
differential length element along the transverse dimension, and denotes in-
tegration performed along the transverse dimension. We shall illustrate the ap-
plication of (9.52) by means of an example.

Example 9.6 Attenuation constant for mode in a rectangular
guide with imperfect conductors

Let us consider the propagation of mode in a rectangular waveguide and obtain
the expression for the attenuation constant associated with it due to imperfect, but
good, conductors making up the walls of the guide.

To obtain the attenuation constant we note that since for a given mode the
fields are attenuated in the manner where the z-direction is assumed to be the guide
axis, the time-average power flow down the guide varies in the manner The
time-average power dissipated over an infinitesimal distance at any value of z along
the guide is then given by

so that

(9.53)

Thus, the attenuation constant is one-half the ratio of the time-average power dissipated
per unit distance at any value of z along the guide to the time-average power flow down
the guide at that value of z. In fact, this is a general result applicable for any lossy travel-
ing wave. The procedure for computing for a given mode therefore consists of evalu-
ating and for that mode.

To find we consider the different walls of the waveguide separately. For
each wall, we compute the time-average power flowing into the conductor over a surface
made up of distance along the guide axis and the entire transverse dimension of that
wall by using (9.52). To proceed further, we substitute and in the TE mode
field expressions given in Table 9.1, and considering the wave only, we obtain the

mode field components in a lossless waveguide to be

(9.54a)

(9.54b)

(9.54c)

(9.54d)

where a and b are the dimensions of the guide in the x- and y-directions, respectively, as
shown in Fig. 9.10. For the lossy case, the field components are multiplied by Sincee-ac z.
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626 Chapter 9 Several Topics for Electronics and Photonics

we compute the quantities and at some particular value of z, say, we can
absorb the factors and into the constant Also, each nonzero tangential
component of magnetic field on a given wall will be accompanied by a tangential electric
field perpendicular to it so as to produce power flow into the conductor. Since some of
these tangential electric-field components are longitudinal, the mode is no longer exact-
ly TE mode. However, these components are very small in magnitude; hence, the mode is
almost a TE mode.

We shall now consider the different walls and compute the corresponding values
of with the aid of Fig. 9.10.

RIGHT SIDE WALL

(9.55a)

LEFT SIDE WALL

Same as for the right side wall.

(9.55b)

BOTTOM WALL
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FIGURE 9.10

Rectangular waveguide with imperfectly conducting walls
and showing the tangential magnetic field components on
the walls for the mode.TE1,0
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(9.55c)

TOP WALL

Same as for the bottom wall.

(9.55d)

Adding up the contributions from all four walls, we obtain the total time-average power
dissipated over an infinitesimal length along the guide to be

(9.56)

Now, to find the time-average power transmitted down the guide, we note that the
time-average Poynting vector is given by

(9.57)

The time-average power transmitted down the guide is then given by

(9.58)
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Finally, the attenuation constant is given by

or

(9.59)

Note that for For so that for 
Thus, as f varies from to infinity, varies from infinity to some minimum

value and then increases to infinity. The minimum value of occurs for

(9.60)

For example, for the minimum value occurs for 

To proceed further, let us now consider the walls of a cavity resonator to
be imperfect but good conductors. Then we can talk of the quality, or Q factor,
of the resonator and derive the expression for it. The Q factor, which is a mea-
sure of the frequency selectivity of the resonator, is defined as

(9.61)

Since the conductors are good conductors, the power dissipated in them can be
computed by analysis, as in Example 9.6 for the waveguide case. As for the en-
ergy stored in the cavity, it is distributed between the electric and magnetic
fields at any arbitrary instant of time. But there are particular values of time at
which the electric field is maximum and the magnetic field is zero, and vice
versa.At these values of time, the entire energy is stored in one of the two fields.
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This can be taken advantage of to obtain the stored energy. We shall illustrate
the determination of the Q factor by means of an example.

Example 9.7 Q factor for mode in a rectangular cavity resonator
with imperfect conductors

Let us consider the mode of oscillation in the rectangular cavity resonator of
Fig. 9.6 and obtain the expression for the Q factor associated with it due to imperfect,
but good, conductors making up the walls of the resonator.

First, we obtain the expressions for mode field components by superimpos-
ing the and wave field components for the waves from Table 9.1 and sat-
isfying the boundary conditions of zero tangential electric fields at the ends and

Thus, we have

(9.62a)

(9.62b)

(9.62c)

(9.62d)

(9.63)

so that

(9.64a)

(9.64b)

giving us the required field components

(9.65a)

(9.65b)

(9.65c)

(9.65d)

where and we have also substituted and 
To find the energy stored in the cavity, we shall make use of the electric field. Not-

ing that the amplitude of the only electric field component which is the value of at
the instant of time the magnetic field throughout the cavity is zero, is given by
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630 Chapter 9 Several Topics for Electronics and Photonics

and integrating the energy density throughout the volume of the cavity, we obtain the en-
ergy stored in the cavity to be

(9.67)

To find the time-average power dissipated in the walls of the cavity, we note from
the application of (9.51) that for a given wall, the time-average power dissipated is

(9.68)

where S is the surface of the wall. Applying this result to the different walls of the cavity,
we compute the corresponding values of with the aid of Fig. 9.11.
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FIGURE 9.11

Rectangular cavity resonator with imperfectly
conducting walls and showing the tangential magnetic
field components on the walls for the mode.TE1,0,1
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LEFT SIDE WALL

Same as for right side wall.

(9.69b)

BOTTOM WALL

(9.69c)

TOP WALL

Same as for bottom wall.

(9.69d)

FRONT WALL

(9.69e)

BACK WALL

Same as for front wall.
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Adding up the contributions from all six walls, we obtain the total time-average power
dissipated to be

(9.70)

Substituting (9.67) and (9.70) into (9.61), we obtain

(9.71)

From (9.25), the resonant frequency for the mode is, however, given by

(9.72)

Thus, (9.71) reduces to

(9.73)

For a numerical example, for the mode of Example 9.3 and with the walls of
the cavity made of copper and the value of
Q is about 11,020.

K9.3. Attenuation constant; mode in a rectangular waveguide; Q factor;
mode in a rectangular cavity resonator.

D9.6. For each of the following cases of waves propagating in a rectangular
waveguide with copper walls, find the frequency of operation for which the at-
tenuation constant is a minimum and the minimum value of (a)

and air-dielectric and (b) and dielectric of 
and 
Ans. (a) 12.0711 GHz, 0.00653; (b) 7.4045 GHz, 0.0047.

D9.7. Find Q for mode for each of the following cases of a rectangular cavity res-
onator with copper walls: (a) air-dielectric; (b)

air-dielectric; (c) dielectric with
and 

Ans. (a) 16,434; (b) 10,160; (c) 13,417.
m = m0.e = 2.25e0

a = b = d = 5 cm;b = 2 cm, d = 5 cm,
a = 2.5 cm,a = b = d = 5 cm,

TE1,0,1

m = m0.
e = 4e0a = b = 3 cm,b = 1.5 cm,

a = 3 cm,ac:ac
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9.4 Optical Fiber 633

9.4 OPTICAL FIBER

Thus far in this chapter, we have discussed the guiding of waves between metal-
lic boundaries. We now turn our attention to the optical fiber. An optical fiber,
so called because of its filamentary appearance, consists typically of a core and
a cladding with circular cross sections, as shown in Fig. 9.12(a).The core is made
up of a material of permittivity greater than that of the cladding, so that a criti-
cal angle exists for waves inside the core incident on the interface between the
core and the cladding, and hence waveguiding is made possible in the core by
total internal reflection.The phenomenon of guiding may be visualized by consid-
ering a longitudinal cross section of the fiber through its axis, shown in Fig. 9.12(b),
and comparing it with that of the slab waveguide, shown in Fig. 8.22.Whereas this
situation corresponds to meridional rays, skewed rays whose paths lie in planes
offset from the fiber axis also explain the guiding mechanism. Although the
cladding is not essential for the purpose of waveguiding in the core since the
permittivity of the core material is greater than that of free space, the cladding
serves two useful purposes: (1) It avoids scattering and field distortion by the
supporting structure of the fiber since the field decays exponentially outside the
core and hence is negligible outside the cladding; (2) it allows a single-mode
propagation for a larger value of the radius of the core than permitted in the ab-
sence of the cladding.

To simplify analysis of waveguiding in an optical fiber, we shall consider
the cladding region to extend to infinity, so that the geometry is one of a cylin-
drical dielectric rod of permittivity greater than that of the surrounding medi-
um, as shown in Fig. 9.13. In addition, we shall consider the permittivity of the
core to be uniform, thereby corresponding to the case of a step-index fiber. To
carry out the field analysis, we make use of our previous experience with the
cylindrical metallic waveguide and the dielectric slab waveguide. First, we know
that the transverse field components can be expressed in terms of the longitudi-
nal field components and We shall, however, find that the modes do not
all separate into TE and TM modes and that the situation leads to the so-called
hybrid modes. Second, we know in analogy with the case of the slab guide that
radially decaying fields can be expected outside the core.

Hz.Ez

Description

(b)

Cladding e2 	 e1

Core

Cladding

Core e1

Cladding e2 	 e1

(a)

FIGURE 9.12

(a) Transverse and (b) longitudinal cross sections of an optical fiber.
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a
r

(a) (b)

z

a

r

f

e1
e2

0

e1

e2

e

FIGURE 9.13

(a) Cross section of a cylindrical dielectric rod surrounded by a cladding region extending to
infinity. (b) Permittivity profile for the arrangement of (a).

We recall from Section 9.2 that the differential equation to be satisfied by
the fields for the cylindrical geometry is that given by (9.29)

(9.74)

where stands for or and

(9.75)

We also learned that (9.74) is separable into a differential equation involving r
only and one involving only.The solution for the r-variation is a superposition
of the Bessel functions and whereas the solutions for the

are sinusoidal ( and ). The sinusoidal variations in re-
quire l to be an integer.The behaviors of the Bessel functions for real arguments
are shown in Fig. 9.8.

Inside the core, and is real.The
solutions for the r-variation are and with real arguments. But since has
the property that for all orders, we rule it out. Thus,

(9.76)c1r, f, z2 = A
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Field solution
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where we consider only the wave, for simplicity. Defining we can
write the longitudinal components and then the transverse field components by
using (9.27a)–(9.27d) as follows:

(9.77a)

(9.77b)

(9.77c)

(9.77d)

(9.77e)

(9.77f)

In (9.77a)–(9.77f), the upper functions and signs go together and the lower func-
tions and signs go together. Note that when This is
because when a given transverse component is proportional to (or ), it is
proportional to (or ).

In the cladding, and is imagi-
nary. The solutions for the r-variations are and with imaginary arguments

where It is common practice then to represent the solution
in terms of the modified Bessel functions and with real arguments 
The behaviors of these functions for a few values of l are shown in Fig. 9.14.
Since has the property that for all orders, we rule it out. We can
thus write the solutions for the field components as follows:
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FIGURE 9.14

Behaviors of the modified Bessel functions (a) and (b) Kn1x2.In1x2

To obtain the guidance condition, we need to satisfy the boundary condi-
tions for the field components. We now see that, for the set of equations
separates into two groups: and involving the constants and

and and involving the constants and The first group
corresponds to the TM case, and the characteristic equation obtained by setting

at is

(9.79)

where we have used the property that and 
The second group corresponds to the TE case, and the characteristic equation
obtained by setting at is

(9.80)

For the boundary conditions cannot be satisfied by the two separate
groups, and hence the fields can no longer be separated into TM and TE modes,
but instead are known as hybrid modes.The characteristic equation obtained by
setting and at

is then given by (see Problem P9.20)
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where

(9.82)

Note that

(9.83)

where

(9.84)

is known as the numerical aperture, an important parameter of physical signifi-
cance (see Problem P9.22).

Determination of the characteristics of the modes for a given value of l re-
quires the solution of (9.79) or (9.80) for (TM and TE modes) and (9.81)
for (hybrid modes), all with the constraint (9.82), from a knowledge of the
values of and a. It is convenient to replace the derivatives of the Bessel
functions by the Bessel functions themselves, using the recursive formulas

(9.85a)

(9.85b)
(9.85c)

(9.85d)

and express (9.81) in the manner (see Problem P9.23)

(9.86)

where

(9.87)

Let us first consider the hybrid modes. A method of solution consists of
plotting (9.82) and (9.86) in the -plane and looking for the points of intersec-
tion. To do this, we note that (9.82) is simply the equation of a circle in the uw-
plane, whereas (9.86) results in many branches.The approximate plot of Fig. 9.15
shows the nature of the first three branches for and the circle for 
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u
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FIGURE 9.15

For illustrating the nature of solution of
the characteristic equation for guided
modes in an optical fiber.

hybrid, is predominant for HE modes and is predominant for EH modes.
The subscript m denotes the number of the solution for the particular value of l.
It can be seen that for the situation shown in Fig. 9.15 and are cut
off, whereas a solution exists for In fact, since the branch for origi-
nates at (0, 0), that mode has no cutoff.Thus, mode is the dominant mode.
As increases, V increases, and more and more points of intersection with the
V-circle occur, corresponding to higher-order modes.

The modes with the lowest nonzero cutoff frequency are the TM and TE
modes governed by the characteristic equations (9.79) and (9.80), respectively.
Therefore, to determine the condition for single-mode operation, we consider
these equations. Since the cutoff occurs for (condition of fields extending
to infinity in medium 2) and for we get or

for both modes. Also for Thus, for sin-
gle-mode operation, V must be less than 2.405.

Example 9.8 Minimum free-space wavelength for single-mode
propagation in an optical fiber

A fiber with core and cladding refractive indices and respectively,
has a core radius of We wish to find the minimum free-space wavelength,
for single-mode operation.

For and 

Thus, is given by

 = 11.1033 mm

 =
2p * 25 * 0.17

2.405
 mm

l0 7
2pa1NA2

2.405

V  =
2pa

l0
 1NA2 6 2.405

l0

NA = 211.4522 - 11.4422 = 0.17

n2 = 1.44,n1 = 1.45

l0,a = 25 mm.
n2 = 1.44,n1 = 1.45

V = 2u2 + w2 = u.w = 0,u = 2.405
J11u2 = 0w = 0,K1>K0 = q

w = 0

v

HE1,1

HE1,1HE1,1.
EH1,1HE1,2

EzHz

Single-mode
operation
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For most practical fibers, the refractive indices of the core and the
cladding are nearly equal corresponding to weak guidance. The rays
are then paraxial and the longitudinal components of the fields are much small-
er than the transverse components, so that the waves are almost TEM, the sim-
plest such waves being linearly polarized along two orthogonal axes. The
associated modes are designated as modes, formed in general by superpo-
sitions of the exact modes. The mode, which corresponds to just the 
mode, is the dominant mode with no cutoff. Thus, in terms of LP modes, single-
mode operation refers to the mode and it is ensured for 

K9.4. Core; Cladding; Field solutions; Hybrid modes; mode; LP modes.

D9.8. A fiber has core radius Find the following for single-mode propa-
gation at (a) maximum allowable value of the numerical aperture;
(b) minimum allowable value of the cladding refractive index if the core re-
fractive index and (c) maximum allowable value of the core refrac-
tive index if the difference between the core and cladding refractive indices
is 0.04.
Ans. (a) 0.3828; (b) 1.4503; (c) 1.8513.

9.5 PULSE BROADENING IN DISPERSIVE MEDIUM

In Section 8.4, we introduced the phenomenon of dispersion resulting from the
variation of phase velocity of a wave with frequency. We learned that for a sig-
nal comprising a band of frequencies, the field patterns of the different frequen-
cy components do not maintain the same phase relationships as they travel
down the propagation medium, and hence they disperse. For the case of a nar-
row-band signal, it is then meaningful to associate a group velocity, which deter-
mines the travel time of the signal. In this section, we consider another
consequence of dispersion, which is the broadening of a pulse as it travels down
the propagation medium.Although this characteristic is pertinent to any disper-
sive medium, it is particularly important for propagation of pulses in an optical
fiber, because of its predominant contribution to the limitations in signal band-
widths that can be transmitted over long distances.

A heuristic explanation of pulse broadening can be provided by consider-
ing the dispersion diagram of Fig. 8.14. The slope of the curve at a point on the
dispersion curve represents the group velocity at the frequency corresponding
to that point. If we consider two frequencies and then we note
that the group velocity at the higher frequency is greater than that at the lower
frequency. Thus, a positive group velocity differential exists between the two
frequencies. Now, we know that a signal having a pulse envelope has a certain
bandwidth associated with it. The narrower the pulse, the greater is the band-
width. For a given distance, the lower frequencies undergo a greater group delay
than for the higher frequencies, or the higher frequencies “run away” from the
lower frequencies, thereby causing loss of bandwidth and hence broadening of
the pulse. In fact, the wider the bandwidth of the signal, the greater is the group

v2 17  v12,v1

n1,
n1 = 1.5;

n2,
l0 = 10 mm:

a = 10 mm.

HE1,1

V 6 2.405.LP0,1

HE1,1LP0,1

LPl,m

1e1 L e22,

9.5 Pulse Broadening in Dispersive Medium 639
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Signal with
Gaussian
envelope

delay spread within the bandwidth, so that the narrower the pulse envelope of
the signal, the more pronounced is the pulse broadening.

For a quantitative discussion of pulse broadening due to dispersion, we
shall consider the propagation of an amplitude-modulated signal consisting of a
carrier frequency signal modulated by a pulse having a Gaussian distribution
with time, that is, a carrier frequency signal with a Gaussian envelope. Thus, let
the electric field at the input of the dispersive channel be

(9.88)

where is the carrier frequency, so that the phasor electric field is

(9.89)

In (9.89), the function corresponds to Gaussian distribution with 1/e
half-width equal to as shown in Fig. 9.16(a).

To analyze the propagation of the pulse, we need to use the Fourier tech-
nique, which consists of following the Fourier spectrum of (9.89) as it propa-
gates down the medium and examine the inverse Fourier transform at the
distant location. The Fourier transform of (9.89) is given by

or
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FIGURE 9.16

(a) Amplitude-modulated signal with Gaussian envelope, and (b) its Fourier spectrum.
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Note that the Fourier transform is also Gaussian, with half-width and cen-
tered at the carrier frequency as shown in Fig. 9.16(b).

In traveling by a distance z from the input, each frequency component of
the Fourier spectrum undergoes a phase change where it is understood
that the phase constant along the direction of propagation, is a function of 
Assuming lossless medium, the Fourier transform of the signal at that location is
then given by

(9.91)

Taking the inverse Fourier transform of (9.91), we obtain the propagated signal
to be

(9.92)

To evaluate (9.92), we consider the pulse to be narrow-band and to be
a slowly varying function of so that we can expand in Taylor’s series about
the carrier frequency and keep the first three terms:

(9.93)

where and are and respectively, evaluated
at Substituting (9.93) into (9.92), we have

(9.94)

where
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and Proceeding further, we obtain

or

(9.96)

where

(9.97)

The result that we have obtained for the transmitted pulse tells us that the
pulse envelope is Thus, it reaches a peak at which is sim-
ply the group delay at the carrier frequency and its half-width is broadened
from the initial value to The quantity S, which has the
physical meaning given by (9.97), is known as the “pulse broadening parame-
ter.” It is of interest to discuss this further since it governs the pulse spread. In
fact, for the pulse half-width is approximately equal to From
(9.97), it can be seen that the value of S is influenced by three factors: (1) the
bandwidth, of the input pulse; (2) dispersion, through the factor and
(3) the distance, z, traveled by the signal. Figure 9.17 depicts the pulse broaden-
ing as a function of distance. Note from the plot of T versus z that for large dis-
tances the half-width of the pulse increases approximately linearly with distance
at the rate of or which is inversely proportional to the initial
half-width T0.
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ttt

T

T0
z

Slope = bz
(2)

2

2
T0

T0 
 S
2

FIGURE 9.17

Broadening of the Gaussian envelope of a signal as a function of distance in a
dispersive medium.

Example 9.9 Broadening of a signal with Gaussian envelope 
in a dispersive medium

Consider the propagation of a signal with Gaussian pulse envelope of half-width in a
dispersive medium having the dispersion relation

where and a are constants. It is desired to investigate the broadening of the transmit-
ted pulse.

For the given dispersion relation,

From (9.97), the pulse broadening parameter is given by

and the half-width of the transmitted pulse is

Note that for large distances from the input, the half-width is approximately equal to

Having discussed the phenomenon of pulse spreading due to dispersion, we
shall now turn to causes of dispersion in optical waveguides. In optical waveguides,
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dispersion is influenced by three factors: (1) waveguide dispersion, (2) intermodal
dispersion, and (3) material dispersion.Waveguide dispersion is due to the fact that
the phase velocity of propagation of the wave along the guide axis is a function of
the wave frequency.This is the same as in metallic waveguides, which led to the in-
troduction of the topic of dispersion in Section 8.4. Intermodal dispersion results
from different travel times of rays corresponding to different modes, as discussed
in Section 8.7. Material dispersion results from the frequency dependence of the
refractive index of optical materials.We shall here elaborate on this.

For a plane wave propagating in a uniform material medium having the
refractive index n, the phase constant is given by

(9.98)

To investigate pulse broadening due to material dispersion, we need to evaluate
First, we note that

Since it is common practice to deal with n as a function of free-space wave-
length we make use of the relationship

and obtain

so that

Note that the group velocity is

(9.99)

The quantity denoted N, is known as the group refractive index.
Proceeding further, we obtain

(9.100)
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9.5 Pulse Broadening in Dispersive Medium 645

The pulse broadening parameter is given by

(9.101)

where is the half-bandwidth of the pulse and is the
half-spectral width, that is, the half-bandwidth in the wavelength domain.

The quantity is known as the dispersion coefficient, de-
noted usually given in units of ps/km-nm, where the pulse broadening is
measured in picoseconds, the length of the medium in kilometers, and the
source spectral width in nanometers. The wavelength dependences of n, N, and

for fused silica are shown plotted in Fig. 9.18. For 
and the dispersion is normal. For and the dispersion is
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K9.5. Signal with Gaussian envelope; Pulse broadening parameter; Dispersion in opti-
cal guides; Material dispersion; Dispersion coefficient.

D9.9. The phase refractive index of an optical material used in a single-mode fiber can
be approximated as

Obtain the following for equal to (a) the phase refractive index; (b) the
group refractive index; and (c) the dispersion coefficient.
Ans. (a) 1.6384; (b) 1.7552; (c) 2,336 ps/km-nm.

9.6 INTERFERENCE AND DIFFRACTION

In this section, we turn our attention to two related topics that are based on the
superposition of waves. When two or more waves are superimposed, the result-
ing distribution of intensity is in general not merely the sum of the distributions
of the intensities of the individual waves; instead, it varies between maxima,
which exceed the sum of the individual intensities, and minima, which may go to
zero. This phenomenon is called interference. In the terminology of light, inten-
sity means the time-average power crossing a unit area perpendicular to the di-
rection of power flow, that is, the time-average Poynting vector, which is
proportional to the square of the amplitude of the electric field. Thus, denoting
intensity by the symbol I, we have

(9.102)

where k is the constant of proportionality, dependent on the medium. For free
space, k is equal to 

Let us now consider two uniform plane waves whose electric fields at a point
P are and respectively.Then the intensities of the individual waves are

(9.103)

The intensity of the superposition of the two waves is

(9.104)

where is the angle between the directions of and The third term on the
right side is seen to be the interference term. Depending on the sign of this
term, it can be seen that the intensity of the composite wave can be greater than
or less than the sum of the individual intensities. It is equal to the sum of the two
intensities only if is equal to zero, which occurs when and are per-
pendicular. Thus, two waves whose fields are polarized perpendicular to each
other do not produce interference.
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9.6 Interference and Diffraction 647

An experimental demonstration of interference of light was first per-
formed by Thomas Young. Young’s experiment consisted of light from a mono-
chromatic point source behind a screen containing two pinholes separated
by a distance on the order of a millimeter, passing through the pinholes, thereby
giving rise to two light beams creating an interference pattern on an observa-
tion screen located at a distance R of the order of several meters beyond the
pinholes, as shown in Fig. 9.19.

The two waves generated at the pinholes are spherical waves and in phase.
At a point P on the observation screen, the waves can be approximated as plane
waves.The interference phenomenon can therefore be analyzed by superimpos-
ing two traveling waves propagating at the angles and to the vertical. Be-
cause of the large value of R, the difference between these angles is small so
that the two lines and can be considered to be parallel and

As the point P moves vertically on the observation screen,
the path difference varies and hence the phase difference between the
two waves varies, creating the interference pattern.

Assuming equal amplitudes and zero phase angle at the slits, the individ-
ual electric fields of the two beams can be written as

(9.105a)

(9.105b) E2 =
A
r2

  cos 1vt - br22

 E1 =
A
r1

  cos 1vt - br12

d cos u
1r2 - r12 L d cos u.
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FIGURE 9.19

Experimental arrangement of Thomas Young to demonstrate interference of light.

RaoCh09v3.qxd  12/18/03  5:19 PM  Page 647
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Setting in the amplitude factors, we obtain the total electric field to be

(9.106)

The intensity of the beam on the screen is therefore given by

(9.107)

Thus, the intensity varies between zero and In terms of the distance x,
we can write Furthermore, for we can set

so that we obtain

(9.108)

Thus, the maxima of the intensity occur for and
the minima occur for The separation
between the maxima and the minima is a constant, equal to For a
numerical example, for and 

Conversely to the preceding, if is unknown, it can be computed from a
measurement of and the known values of R and d. For two beams, the sharp-
ness of the interference fringes is not sufficient to permit accurate measurement
of but by using a large number of beams the sharpness can be increased.We
shall not pursue the multiple-source problem here, but we will consider it in
connection with antenna arrays in Section 10.4. We shall, however, include here
an example of a similar phenomenon resulting form multiple reflections and
transmissions of waves from a single source.

Example 9.10 Multiple-beam interference in a plane dielectric slab

Let us consider a uniform plane wave of electric field and wavelength incident at
an angle on a plane dielectric slab of thickness d and refractive index n, as shown in
Fig. 9.20. For simplicity, we shall consider the medium on either side of the dielectric slab
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9.6 Interference and Diffraction 649

to be free space. We wish to investigate the interference resulting from the (infinite)
number of waves produced by reflections and transmissions at the two interfaces, a few
of which are shown in Fig. 9.20.

With reference to the notation shown in Fig. 9.20, and denoting and to be the
reflection and transmission coefficients, respectively, for incidence from free space on to
the dielectric, and and to be the reflection and transmission coefficients, respective-
ly, for incidence from the dielectric on to free space, we can write the expressions for the
successively reflected and transmitted wave electric fields as follows:

(9.109a) (9.109d)

(9.109b) (9.109e)

(9.109c) (9.109f)

where

(9.110)

 =
4pnd

l0
  cos ut

 =
2pn

l0
  

d

cos ut
 11 + cos 2ut2

 d =
2pn

l0
 1AB + BD2 =

2pn

l0
 1BC + CE2

 E
 –

t3 = E
 –

it1≠¿24t¿e-j2d E
 –

r3 = E
 –

it1≠¿23t¿e-j2d

 E
 –

t2 = E
 –

it1≠¿22t¿e-jd E
 –

r2 = E
 –

it≠¿t¿e-jd

 E
 –

t1 = E
 –

itt¿ E
 –

r1 = E
 –

i≠

t¿≠¿

t≠

d

Ei Er1

Et1 Et2 Et3

Er2

E

D

B

CA

ut

ui
ui

ut

ui

Er3

n � 1

n � 1

n

FIGURE 9.20

Multiple reflections and transmissions for plane wave incidence on a plane dielectric slab.
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650 Chapter 9 Several Topics for Electronics and Photonics

is the additional phase shift undergone by successive reflected (or transmitted) waves.
Summing up all the reflected wave fields, we obtain the total reflected wave field to be

(9.111a)

Similarly, the total transmitted wave field is given by

(9.111b)

Although the specific expressions for and depend on the polarization of
and are given in Section 8.5 by the Fresnel coefficients, we can write, regardless of po-

larization (see Problem P9.28), that

(9.112a)

and

(9.112b)

Substituting (9.112a) and (9.112b) into (9.111a) and (9.111b), we obtain

(9.113a)

(9.113b)

The fractions of the incident intensity that are reflected and transmitted are given, re-
spectively, by

(9.114a)

(9.114b)

where

(9.115)

is called the finesse. Note that the sum of right sides of (9.114a) and (9.114b) is equal to
unity, as it should be.
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FIGURE 9.21

Plots of the transmission characteristics of
the arrangement of Fig. 9.20 for several
values of F.

The transmission characteristic of the arrangement of Fig. 9.20, a model for the
Fabry–Perot etalon, or interferometer, can now be discussed with the aid of the plot of
the right side of (9.114b) versus which is shown in Fig. 9.21, for several values of F and
hence It can be seen that maximum transmission of unity occurs for

(9.116)

with the sharpness of the maxima increasing with F. For given values of d, and n, the
plot can be thought of as variation of with (and hence ), thereby corresponding
to the interference pattern. For fixed values of d, n, and the peaks in Fig. 9.21 corre-
spond to two adjacent frequencies at which is unity. From (9.116), this frequency
separation can be seen to be equal to Also, for given values of d and n, dif-
ferent values of (and hence f) give rise to interference patterns of different periodici-
ties, thereby allowing resolution of closely spaced frequencies for high values of F (see
Problem P9.29).

When an object is placed between a source of light and an observation
screen, the shadow on the screen contains a fine structure of interference
fringes in the vicinity of the boundary separating the dark shadow from the rest
of the brightly illuminated screen, as compared to a simple sharp boundary be-
tween the dark and bright regions. This phenomenon, which occurs due to the
bending of a portion of the beam, is known as diffraction. Just as interference is
a manifestation of the superposition of light beams, diffraction is also a manifes-
tation of the superposition of light beams. Interference usually applies to the in-
teraction of only a few beams with one another, whereas diffraction usually
pertains to the superposition of a large number, even a continuous distribution
of beams, although the distinction is not sharp. The phenomenon of diffraction
is in contrast to the principle of geometrical optics, which has to do with light
traveling in straight lines, except for bending by reflection and refraction, and
which is strictly valid under certain conditions: (a) The dimensions of the object
in the path of light are very large compared to the wavelength and (b) the re-
gion of importance is not close to the boundary of the shadow.
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652 Chapter 9 Several Topics for Electronics and Photonics

Although the exact treatment of the phenomenon of diffraction involves
solution as a boundary value problem and is very difficult, it can be studied in
approximate but sufficiently accurate terms by using the Huygens–Fresnel prin-
ciple, as long as the distance from the diffracting object to the point of observa-
tion is more than about ten wavelengths. To explain this principle, let us
consider a plane monochromatic wave that is incident normally on a screen in
the xy-plane with an aperture cut into it, as shown in Fig. 9.22. Then, according
to this principle, the incident wave may be thought of as giving rise to secondary
(spherical) waves that emanate from every point in the aperture and interfere
with one another to the right of the screen. The scalar field at a point P is ap-
proximately given by

(9.117)

where S is the area of the aperture, and is the scalar field in the
aperture. We shall illustrate the application of (9.117) by means of an example.

Example 9.11 Diffraction of a uniform plane wave by a circular
aperture

Let us assume that the aperture of Fig. 9.22 is a circular hole of radius a having its center
at the origin and illuminated by a uniform plane wave of electric-field intensity at the
aperture, as shown in Fig. 9.23.We wish to investigate the diffracted field along the z-axis.
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diffraction by an aperture
on a screen.
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Applying (9.117) to the geometry in Fig. 9.23 and noting the circular symmetry
about the z-axis, we obtain

(9.118)

Making the change of variable and hence we obtain

(9.119)

Proceeding further, the intensity is given by

(9.120)

For (9.120) reduces to
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Geometry pertinent to diffraction by a
circular aperture illuminated by a plane
wave.

RaoCh09v3.qxd  12/18/03  5:19 PM  Page 653



654 Chapter 9 Several Topics for Electronics and Photonics

z

I

2E0
2

h0

a2

6l
a2

4l
a2

2l
a2

l

FIGURE 9.24

Variation of the intensity along the z-axis for the arrangement of Fig. 9.23.

A sketch of the result given by (9.121) is shown in Fig. 9.24. It can be seen that
for the intensity fluctuates between maxima of and minima of zero,
corresponding to constructive and destructive interference, respectively, of the spheri-
cal waves. The situation is said to correspond to Fresnel diffraction. For the
intensity decreases monotonically. For the diffraction is known as
Fraunhofer diffraction, and the evaluation of the integral in (9.117) becomes easier, be-
cause waves arriving at P from the aperture approach plane waves, thereby permitting
the simplifying plane wave approximation in the integrand. We shall not pursue the
topic here, however; instead, we defer the consideration to Section 10.6, where the de-
termination of the far field due to an aperture distribution is identical to that of the so-
lution for Fraunhofer diffraction. In practice, the boundary between the Fresnel and
Fraunhofer diffraction regions is taken to be where D is the diameter of the cir-
cular aperture, or in the case of a noncircular aperture it is its maximum linear dimen-
sion. (See Problem P9.30.)

K9.6. Intensity; Two-beam interference; Multiple-beam interference; Finesse; Fabry–
Perot etalon; Diffraction; Huygens–Fresnel principle; Circular aperture; Fresnel
diffraction; Fraunhofer diffraction.

D9.10. For a uniform plane wave incident from free space onto a plane dielectric slab
of thickness and refractive index at an angle find F
and for each of the two polarizations: (a) perpendicular and (b) parallel.
Ans. (a) 6.034, 0.2113; (b) 1.226, 0.8665.

9.7 WAVE PROPAGATION IN ANISOTROPIC MEDIUM

In Section 4.2, we learned that for certain dielectric materials known as anisotropic
dielectric materials, D is not in general parallel to E and the relationship between D
and E is expressed by means of a permittivity tensor consisting of a matrix.3 * 3

It>Ii

ui = 60°,n = 4d = 5.1l0

2D2>l,

z � a2>l,
z 7 a2>l,

2E0
2>h0z 6 a2>l,

Fresnel vs.
Fraunhofer
diffraction

Linear
characteristic
polarizations
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9.7 Wave Propagation in Anisotropic Medium 655

Let us consider an anisotropic dielectric medium characterized by the simple D
to E relationship given by

(9.122)

and having the permeability It is easy to see that the characteristic polariza-
tions for this case are all linear directed along the coordinate axes and having the
effective permittivities and for the x-, y-, and z-directed polarizations, re-
spectively.These axes are then known as the principal axes. Let us consider a uni-
form plane wave propagating along one of the principal axes, say, the z-direction.
The wave will then generally contain both x- and y-components of the fields. It
can be decomposed into two waves, one having an x-directed electric field and the
other having a y-directed electric field.These component waves travel individual-
ly in the anisotropic medium as though it is isotropic, but with different phase ve-
locities since the effective permittivities are different. In view of this, the phase
relationship between the two waves, and hence the polarization of the composite
wave, changes with distance along the direction of propagation. Also, when they
encounter a discontinuity, the component waves undergo reflection and transmis-
sion by different amounts.We shall illustrate by means of an example.

Example 9.12 Propagation of a uniform plane wave along a principal
axis of an anisotropic dielectric

Let us consider a uniform plane wave of frequency 1500 MHz incident from free space
normally onto an anisotropic perfect dielectric medium characterized

by the permittivity matrix

and We wish to discuss the reflected and transmitted waves for several cases of
incident waves.

Case 1. The incident wave has only an x-component of E as given by

Then the effective permittivity of the anisotropic medium is and from (4.146) and
(4.147), and The reflected and transmitted wave electric fields are

where we have made use of the fact that for the transmitted wave, the phase constant is
v1m0 – 4e0 = 2v1m0e0 = 2 * 10p = 20p.

 Et =
2E0

3
 cos 13 * 109pt - 20pz2 ax

 Er = -  

E0

3
 cos 13 * 109pt + 10pz2 ax

t = 2
3.≠ = -1

3

4e0,

Ei = E0 cos 13 * 109pt - 10pz2 ax

m = m0.

[e] = e0 C4 0 0
0 9 0
0 0 4

S
1z 7 02,1z 6 02

ezex, ey,

m0.

CDx

Dy

Dz

S = C ex 0 0
0 ey 0
0 0 ez

S CEx

Ey

Ez

S

Propagation
along a
principal axis
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656 Chapter 9 Several Topics for Electronics and Photonics

Case 2. The incident wave has only a y-component of E as given by

Then the effective permittivity of the anisotropic medium is and from (4.146) and
(4.147), and The reflected and transmitted wave electric fields are

where we have made use of the fact that for the transmitted wave, the phase constant is

Case 3. The incident wave has both x- and y-components of E and is linearly po-
larized, as given by

Then from superposition of cases 1 and 2, the reflected and transmitted wave electric
fields are given by

Note that is linearly polarized, although along a direction making an angle to that of
the direction of polarization of The polarization of on the other hand, varies with
z, since the phase difference between the x- and y-components of the electric field is

As the transmitted wave propagates in the z-direction, changes from
zero at to at to at and so on. Thus, the polarization
changes from linear at to elliptical for becoming linear again at 
but rotated by an angle as shown in Fig. 9.25, and so on.

z = 0.1 m,z 7 0,z = 0
z = 0.1 m,pz = 0.05 mp>2z = 0

¢f¢f = 10pz.

Et,Ei.
Er

 Et =
2E1

3
  cos 13 * 109pt - 20pz2 ax +

E2

2
  cos 13 * 109pt - 30pz2 ay

 Er = -  

E1

3
 cos 13 * 109pt + 10pz2 ax -

E2

2
 cos 13 * 109pt + 10pz2 ay

Ei = E1 cos 13 * 109pt - 10pz2 ax + E2 cos 13 * 109pt - 10pz2 ay

v1m0 – 9e0 = 3v1m0e0 = 3 * 10p = 30p.

 Et =
E0

2
  cos 13 * 109pt - 30pz2 ay

 Er = -  

E0

2
  cos 13 * 109pt + 10pz2 ay

t = 1
2.≠ = -1

2

9e0,

Ei = E0 cos 13 * 109pt - 10pz2 ay

E1
2
3

x

z � 0

y
E2

1
2

E1
2
3

x

z � 0.1 m

y
E2

1
2

�

E1
2
3

x

z � 0.05 m

y
E2

1
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FIGURE 9.25

Change in polarization versus z of the transmitted wave electric field of Example 9.12.
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9.7 Wave Propagation in Anisotropic Medium 657

The simple form of permittivity tensor given by (9.122) can be realized for
certain anisotropic crystals by an appropriate choice of the coordinate system. If
the permittivities and are all different, then the crystal is said to be
biaxial. If two of the three are equal, then it is said to be uniaxial.

To generalize the observation in Example 9.12, the phase difference between
the x- and y-components of E in the anisotropic medium can be expressed as

(9.123)

where is the free-space wavelength, and and are the refractive indices.
The result given by (9.123) is the basis behind wave plates or retardation plates.
The word retardation refers to the fact that the phase of one of the two compo-
nents lags that of the second component. If where m is an integer,
the plate is called a full-wave plate. If reflections from the surfaces of the plate
are considered to be negligible, as is usually the case, then it can be seen that the
state of polarization of the wave at the output plane of the plate is the same as
that at the input plane. For and the arrange-
ment corresponds to half-wave plate and quarter-wave plate, respectively. A half-
wave plate results in a rotation of the direction of linear polarization, as
illustrated in Fig. 9.25, which corresponds to Note that the direction has
shifted by twice the angle that it initially makes with the x- (or y-) direction. A
quarter-wave plate can transform a linearly polarized wave into a circularly po-
larized wave.

For a different example of an anisotropic medium than that characterized
by (9.122), let us consider the D to E relationship of the form

(9.124)

which is exhibited by certain materials when placed in a static magnetic field B,
where is a constant depending on the material. For a uniform plane wave
propagating in the z-direction, and we have

To find the characteristic polarizations, we set Thus,
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658 Chapter 9 Several Topics for Electronics and Photonics

Solving for we get

This result corresponds to equal amplitudes of and and phase differences
of Thus, the characteristic polarizations are both circular, rotating in op-
posite senses as viewed along the z-direction.

The effective permittivities of the medium corresponding to the charac-
teristic polarizations are

(9.125)

The phase constants associated with the propagation of the characteristic waves are

(9.126)

where the subscripts and refer to and respectively.
Let us now consider the electric field of the wave to be linearly polarized

in the x-direction at that is,

(9.127)

Then we can express (9.127) as the superposition of two circularly polarized
fields having opposite senses of rotation in the xy-plane in the manner

(9.128)

The circularly polarized field inside the first pair of parentheses on the right
side of (9.128) corresponds to

whereas that inside the second pair of parentheses corresponds to
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9.7 Wave Propagation in Anisotropic Medium 659

Assuming propagation in the positive z-direction, the field at an arbitrary
value of z is then given by

(9.129)

The result given by (9.129) indicates that the x- and y-components of the
field are in phase at any given value of z. Hence, the field is linearly polarized for
all values of z.The direction of polarization is, however, a function of z since 

the angle made by the field vector with the x-axis, is 
Thus, the direction of polarization rotates linearly with z at a rate of 
This phenomenon is known as Faraday rotation and is illustrated with the aid of
the sketches in Fig. 9.26. The sketches in any given column correspond to a fixed
value of z whereas the sketches in a given row correspond to a fixed value of t. At

the field is linearly polarized in the x-direction and is the superposition of
two counterrotating circularly polarized fields, as shown by the time series of
sketches in the first column. If the medium is isotropic, the two counterrotating cir-
cularly polarized fields undergo the same amount of phase lag with z and the field
remains linearly polarized in the x-direction, as shown by the dashed lines in the
second and third columns. For the case of the anisotropic medium, the two circu-
larly polarized fields undergo different amounts of phase lag with z. Hence, their
superposition results in a linear polarization making an angle with the x-direction
and increasing linearly with z, as shown by the solid lines in the second and third
columns.

The phenomenon of Faraday rotation that we have just discussed forms
the basis for a number of devices. A simple example is illustrated by the magne-
to-optical switch. The magneto-optical switch is a device for modulating a laser
beam by switching an electric current on and off. The electric current generates
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z � z0 > 0z � 0

t � 0

t � p
4v

z � 2z0

t �
x

y

p
2v

t � 3p
4v

t � p
v

FIGURE 9.26

For illustrating the phenomenon of Faraday rotation.
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9.7 Wave Propagation in Anisotropic Medium 661

a magnetic field that rotates the magnetization vector in a magnetic iron-garnet
film on a substrate of garnet in the plane of the film through which a light wave
passes. When it enters the film, the light wave field is linearly polarized normal to
the plane of the film. If the current in the electric circuit is off, the magnetization
vector is normal to the direction of propagation of the wave and the wave emerges
out of the film without change of polarization, as shown in Fig. 9.27(a). If the cur-
rent in the electric circuit is on, the magnetization vector is parallel to the direction
of propagation of the wave, and the light wave undergoes Faraday rotation and
emerges out of the film with its polarization rotated by 90°, as shown in Fig. 9.27(b).
After it emerges out of the film, the light beam is passed through a polarizer, which
has the property of absorbing light of the original polarization but passing through
the light of the 90°-rotated polarization. Thus, the beam is made to turn on and off
by the switching on and off of the current in the electric circuit. In this manner, any
coded message can be made to be carried by the light beam.

K9.7. Anisotropic dielectric materials; Characteristic polarizations;Wave plates; Fara-
day rotation.

D9.11. At the refractive indices of mica are given by (fast
axis) and (slow axis). Find the following: (a) the minimum thickness
of a mica sheet to act as a half-wave plate; (b) the number of wavelengths under-
gone by the wave in the thickness of the plate for the x-polarization; and (c) the
number of wavelengths undergone by the wave in the thickness of the plate for
the y-polarization.
Ans. (a) (b) 159.4; (c) 159.9.63.3 mm;

ny = 1.599
nx = 1.594l0 = 0.633 mm,

Polarization

Film

Light
Beam

Light
Beam

Magnetization
Vector

Magnetization
Vector

(a)

Polarization

Film

(b)

FIGURE 9.27

For illustrating the
principle of operation of
a magneto-optical switch.
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662 Chapter 9 Several Topics for Electronics and Photonics

SUMMARY

In this chapter, we extended the treatment of the parallel-plate waveguide to
the rectangular waveguide, which is a metallic pipe of rectangular cross section.
By considering a rectangular waveguide of cross-sectional dimensions a and b,
we discussed transverse electric, or TE, modes, as well as transverse magnetic or
TM modes, and learned that although modes can include values of m or n
equal to zero, modes require that both m and n be nonzero, where m and
n refer to the number of one-half sinusoidal variations of the fields along the di-
mensions a and b, respectively. The cutoff wavelengths for the or 
modes are given by

The mode that has the largest cutoff wavelength or the lowest cutoff frequency
is the dominant mode, which here is the mode.

By placing perfect conductors in two transverse planes of a rectangular
waveguide separated by an integer multiple of one-half the guide wavelength,
we introduced the cavity resonator, which is the microwave counterpart of the
lumped parameter resonant circuit encountered in low-frequency circuit theory.
For a rectangular cavity resonator having dimensions a, b, and d, the frequencies
of oscillation for the or modes are given by

where l refers to the number of one-half sinusoidal variations of the fields along
the dimension d.

Next we introduced the cylindrical waveguide, which is a metallic pipe of
cylindrical cross section. We learned that guided modes in the cylindrical wave-
guide are characterized by field variations in the radial direction in accordance
with Bessel functions and sinusoidal variations in the angular direction. The
modes are designated as and where the first subscript refers to
the angular variations and the second to the radial variations.The mode is
the dominant mode. We also discussed the cylindrical cavity resonator formed
by placing perfect conductors in two transverse planes of the guide, as in the
case of the rectangular cavity resonator.

We then considered losses in waveguides and resonators and discussed by
means of examples the determination of the attenuation constant for a propa-
gating mode in a waveguide and the Q factor, a measure of frequency selectivity,
for an oscillating mode in a resonator.

Proceeding further, we introduced the optical fiber, which consists typi-
cally of a core and a cladding having circular cross sections. By assuming the
cladding region to extend to infinity so that the situation corresponds to one of
a cylindrical dielectric rod, we carried out the field analysis and learned that in
addition to and modes, the fields correspond to theTM 1Hz = 02TE 1Ez = 02

TE1,1

TMn,m,TEn,m

fosc =
11me  Bam

2a
b2

+ a n

2b
b2

+ a l

2d
b2

TMm,n,lTEm,n,l

TE1,0

lc =
121m>2a22 + 1n>2b22

TMm,nTEm,n

TMm,n

TEm,n
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so-called hybrid modes, designated HE and EH. For the hybrid modes, both 
and are not equal to zero; however, for the HE modes, is predominant,
whereas for the EH modes, is predominant. In fact, the dominant mode is the

mode, having no cutoff. For single-mode operation at a given wavelength
the condition is given by

where a is the radius of the core, and NA is the numerical aperture given by

and being the refractive indices of the core and the cladding, respectively.
For weak guidance the modes are designated LP, with mode
corresponding to the mode.

We then extended our discussion of dispersion in the previous chapter to
the propagation of a signal with a pulse envelope, to study the phenomenon of
pulse broadening in a dispersive medium. In particular, we considered a signal
with a Gaussian pulse envelope and derived the expression for the pulse broad-
ening parameter, which governs the pulse spread with distance in the medium.
Following a brief discussion of the types of dispersion in optical waveguides, we
derived the expression for the pulse broadening parameter for the case of ma-
terial dispersion and discussed dispersion characteristics due to material disper-
sion in fused silica.

Next we turned our attention to two related topics, interference and dif-
fraction, which are both based on superposition of waves. Although the distinc-
tion is not sharp, interference usually applies to the interaction of only a few
light beams with one another, whereas diffraction usually pertains to the super-
position of a large number, even a continuous distribution, of beams. We dis-
cussed interference by considering (a) the two-beam interference experiment of
Thomas Young and (b) multiple-beam interference due to plane wave incidence
obliquely on a plane dielectric slab, the latter arrangement constituting a model
for the Fabry–Perot etalon or interferometer. For diffraction, we introduced the
Huygens–Fresnel principle, according to which each point on a wavefront gen-
erates a spherical wave, and illustrated its application by considering the exam-
ple of a plane wave incident on a circular aperture in a screen. By investigating
diffraction along the axis of the aperture, we discussed briefly Fresnel versus
Fraunhofer diffraction.

Finally, we discussed the topic of wave propagation in an anisotropic
medium. By considering the example of a uniform plane wave that is incident
normally along a principal axis of a uniaxial crystal, thereby resulting in the char-
acteristic polarizations to be linear, we illustrated the principle behind wave
plates or retardation plates. By means of another example of an anisotropic medi-
um for which the characteristic polarizations are circular, we introduced Faraday
rotation, which is the phenomenon of rotation of the direction of polarization of

HE1,1

LP0,11n1 L n22,
n2n1

NA = 2n1
2 - n2

2

V =
2pa

l0
 1NA2 6 2.405

l0,
HE1,1

Ez

HzHz

Ez
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a linearly polarized wave as it propagates in the medium, and discussed the op-
eration of a magneto-optical switch, a device employing Faraday rotation for
modulating a light beam.

REVIEW QUESTIONS

Q9.1. Discuss the nomenclature associated with the modes of propagation in a rectan-
gular waveguide.

Q9.2. Explain the relationship between the cutoff wavelength and the dimensions of a
rectangular waveguide based on the phenomenon at cutoff.

Q9.3. Briefly outline the procedure for deriving the expressions for TE mode fields in
a rectangular waveguide.

Q9.4. Compare and contrast TE and TM modes in a rectangular waveguide.
Q9.5. What is the dominant mode? Which one of the rectangular waveguide modes is

the dominant mode?
Q9.6. Why is the dimension b of a rectangular waveguide generally chosen to be less

than or equal to one-half the dimension a?
Q9.7. What is a cavity resonator?
Q9.8. How do the dimensions of a rectangular cavity resonator determine the fre-

quencies of oscillation of the resonator?
Q9.9. Briefly outline the procedure for deriving the expressions for the TE and TM

mode fields in a cylindrical waveguide.
Q9.10. Compare and contrast TE and TM modes in a cylindrical waveguide.
Q9.11. Which one of the cylindrical waveguide modes is the dominant mode?
Q9.12. Discuss the basis for the computation of power loss associated with slightly im-

perfect conductors making up the walls of a waveguide.
Q9.13. Briefly outline the procedure for determining the attenuation constant for a

propagating mode in a waveguide with slightly imperfect conductors.
Q9.14. How is the Q factor of a resonator defined? Briefly outline the procedure for

the determination of the Q factor of a cavity resonator with slightly imperfect
conductors.

Q9.15. Provide a brief description of the optical fiber.
Q9.16. Outline the steps involved in obtaining the guidance condition for a wave

along a cylindrical dielectric rod surrounded by a cladding region extending to
infinity.

Q9.17. What are hybrid modes? Why do they arise for guided waves in an optical fiber
but not for those in a cylindrical metallic waveguide?

Q9.18. Discuss the condition for single-mode operation of an optical fiber.
Q9.19. Discuss the heuristic explanation for pulse broadening in a dispersive medium.
Q9.20. Outline the analysis for a signal with a Gaussian envelope for studying pulse

broadening in a dispersive medium.
Q9.21. Discuss the pulse broadening parameter associated with the propagation of a

signal with Gaussian envelope in a dispersive medium.
Q9.22. Briefly discuss the types of dispersion in optical waveguides.
Q9.23. Outline the derivation of the pulse broadening parameter for material dispersion.
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Q9.24. Discuss the dispersion coefficient associated with material dispersion, by consid-
ering the example of fused silica.

Q9.25. What is interference? Under what condition(s) do two waves not produce
interference?

Q9.26. Describe Young’s two-beam interference experiment.
Q9.27. Discuss the phenomenon of multiple-beam interference resulting from the inci-

dence of a uniform plane wave obliquely on a plane dielectric slab and its appli-
cation to the Fabry–Perot etalon.

Q9.28. What is diffraction? Compare and contrast the phenomenon of diffraction with
the principle of geometrical optics.

Q9.29. Describe the Huygens–Fresnel principle for the solution of a diffraction problem.
Q9.30. Using the example of diffraction along the axis of a circular aperture in a plane

screen, discuss Fresnel versus Fraunhofer diffraction.
Q9.31. When does a wave propagate in an anisotropic medium without change in its

polarization?
Q9.32. Discuss the principle behind wave plates, providing specific examples.
Q9.33. What is Faraday rotation? When does Faraday rotation take place in an

anisotropic medium?
Q9.34. Consult appropriate reference books and list three applications of Faraday rotation.
Q9.35. What is a magneto-optical switch? Discuss its operation.

PROBLEMS

Section 9.1

P9.1. Finding propagating modes and their characteristics for a rectangular waveguide.
For a rectangular waveguide of dimensions and and
having a dielectric of and find all propagating modes for

and, for each mode, find the values of and 
P9.2. Design of a square waveguide for mode propagation. Consider propaga-

tion of TM waves of frequency in an air-dielectric waveguide of
square cross section Find the range of a for which the mode
propagates with a 20% safety factor but also such that f is at least
20% below the of the next higher-order mode.

P9.3. Application of transmission-line analogy to a rectangular waveguide system. A
rectangular waveguide of dimensions and has a dielectric
discontinuity, as shown in Fig. 9.28.A wave of frequency 6000 MHz is inci-
dent on the discontinuity from the free-space side. (a) Find the SWR in the free-
space section. (b) Find the length and the permittivity of a quarter-wave section
required to achieve a match between the two media. Assume for the
quarter-wave section.

m = m0

TE1,0

b = 1.5 cma = 3 cm

fc

1f 7 1.20fc2
TM1,11b = a2.

f = 6000 MHz
TM1,1

hg.bz, lg, vpz,f = 5000 MHz,
m = m0,e = 6.25e0

b = 1.25 cm,a = 3.75 cm

3 cm

1.5 cm
y

Section 1
m0, e0

Section 2
m0, 4e0

x z
FIGURE 9.28

For Problem P9.3.
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4 cm

2 cm
y

Section 1
m0, e0

Section 2
m0, 9e0

x z

FIGURE 9.29

For Problem P9.4.

P9.4. Application of transmission-line analogy to a rectangular waveguide system. A
rectangular waveguide of dimensions and has dielectric dis-
continuity, as shown in Fig. 9.29. A wave of frequency 10,000 MHz is inci-
dent on the discontinuity form the free-space side. (a) Find the SWR in the
free-space section. (b) Find the length and the permittivity of a quarter-wave
section required to achieve a match between the two media.Assume for
the quarter-wave section.

m = m0

TM1,1

b = 2 cma = 4 cm

P9.5. Alternated-section transformer matching arrangement in a rectangular wave-
guide system. Consider the use of the alternated-section transformer arrange-
ment (see Problem P7.23) to achieve a match between two sections of a
rectangular waveguide, as shown in Fig. 9.30. Find the minimum values of and

in centimeters to achieve the desired match for mode at a frequency
f = 6000 MHz.

TE1,0l3

l2

3 cm

1.5 cm
y

Section 1
m0, e0

Section 2
m0, 4e0

Section 3
m0, e0

x z

Section 4
m0, 4e0

l2 l3

FIGURE 9.30

For Problem P9.5.

P9.6. Transparency of dielectric slab in an air–dielectric rectangular waveguide. A
dielectric slab of thickness 4 cm and permittivity exists in an air-di-
electric rectangular waveguide of dimensions and as
shown in Fig. 9.31. Find the lowest frequency for which the dielectric slab is

b = 1.5 cm,a = 3 cm
2.25e0

3 cm

1.5 cm
y

x z4 cm

m0, e0 m0, e02.25e0, m0

FIGURE 9.31

For Problem P9.6.
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transparent (i.e., allows complete transmission) for mode propagation in
the waveguide.

P9.7. Finding the frequencies of oscillation for a rectangular cavity resonator. For a
rectangular cavity resonator having the dimensions and

and filled with a dielectric of and find the five
lowest frequencies of oscillation. Identify the mode(s) for each frequency.

P9.8. Finding the frequencies of oscillation for a cubical cavity resonator. For an air-
dielectric cubical cavity resonator having the dimensions 
find the three lowest frequencies of oscillation. Identify the mode(s) for each
frequency.

Section 9.2

P9.9. Finding propagating modes and their characteristics for a cylindrical wave-
guide. For a cylindrical waveguide of radius and having a dielectric
of and find the propagating modes for a signal of frequency
5.0 GHz. For each of the propagating modes, find and tabulate the values of

and as in Table 9.4.
P9.10. Finding cutoff frequencies for a cylindrical sector waveguide. An air-dielectric

waveguide has the cross section shown in Fig. 9.32. For the radius 
determine the lowest two cutoff frequencies and identify the corresponding
modes.

a = 3 cm,

hg,fc, lc, lg, vpz,

m = m0,e = 2.25e0

a = 3 cm

d = 5 cm,a = b =

m = m0,e = 2.25e0d = 5 cm,
a = 2.5 cm, b = 2 cm,

TE1,0

P9.11. Alternated-section transformer matching arrangement in a cylindrical wave-
guide system. Consider the use of the alternated-section transformer arrange-
ment (see Problem P7.23) to achieve a match between two sections of a
cylindrical waveguide, as shown in Fig. 9.33. Find the minimum values of andl2

5 cm

z

l3l2

Section 2
m0, 4e0

Section 3
m0, e0

Section 4
m0, 4e0

Section 1
m0, e0

�

FIGURE 9.33

For Problem P9.11.

60

a

FIGURE 9.32

For Problem P9.10.
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668 Chapter 9 Several Topics for Electronics and Photonics

in centimeters to achieve the desired match for mode at a frequency

P9.12. Alternated-section transformer matching arrangement in a cylindrical wave-
guide system. Repeat Problem P9.11 for mode.

P9.13. Finding the frequencies of oscillation for a cylindrical cavity resonator. A cylin-
drical cavity resonator is formed by placing two perfectly conducting sheets 4
cm apart in the cross-sectional planes of the cylindrical waveguide of Problem
P9.9. Find the five lowest frequencies of oscillation and identify the mode(s) of
oscillation for each frequency.

P9.14. A cylindrical cavity resonator with three sections. Consider modes bounc-
ing between the walls and of a cylindrical cavity resonator of radius a
with the end regions and filled with a nonmagnetic

perfect dielectric of permittivity and the region 
filled with a nonmagnetic, perfect dielectric of permittivity (a) Obtain the condi-
tion for oscillation. (b) Compute the lowest resonant frequency for 

and 

Section 9.3

P9.15. Attenuation constant for TEM wave in a parallel-plate guide with imperfect
conductors. For a parallel-plate waveguide with imperfect but good conductors
of conductivity and spacing a, show that the attenuation constant for TEM
wave propagation along the guide is Compute the value of for

copper plates, and air-dielectric.

P9.16. Attenuation constant for TE wave in a parallel-plate guide with imperfect con-
ductors. Repeat Problem P9.15 for TE wave propagation to show that is
equal to and compute the value of for the data
specified in that problem and for the mode.

P9.17. Q factor of parallel-plate resonator with imperfect conductors. For a parallel-
plate resonator consisting of two infinite, plane, perfectly conducting plates in

TE1,0

ac21fc>f22>[sdah21 - 1fc>f22]
ac

f = 5000 MHz,a = 5 cm,
ac1>sdah.

acs

e2 = e0.d = 2 cm, t = 1 cm, e1 = 4e0,
a = 5 cm,

e2.
t 6 z 6 12d - t2e1,1m = m02,

12d - t2 6 z 6 2d0 6 z 6 t
z = 2dz = 0

TEn,m

TM0,1

f = 3 GHz.
TE1,1l3

m, e

E

H z

Perfect
Conductor

z z � lz � 0

y

x

FIGURE 9.34

For Problem P9.17.
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Problems 669

the and planes and separated by a perfect dielectric, as shown in
Fig. 9.34, the electric and magnetic fields are given by

where (a) Show that the energy stored in the resonator per unit
area of the plates is (b) If the plates are made of imperfect but good con-
ductors, show that the Q of the resonator is (c) Compute the value of Q for
the fundamental mode of oscillation for assuming air-dielectric
and copper plates.

P9.18. Q factor of parallel-plate resonator with lossy dielectric and imperfect conduc-
tors. For the parallel-plate resonator of Problem P9.17, assume that the dielec-
tric is slightly lossy with conductivity (a) Assuming the plates to be
perfect conductors, show that the Q of the resonator is given by 
(b) If in addition to the slightly lossy dielectric, the plates are made up of imper-
fect but good conductors, show that the Q of the resonator is given by

where is as given in part (a) and is equal to as in Problem P9.17.
P9.19. Q factor for mode in a cubical cavity resonator. Obtain the expression

for the Q factor for mode in a cubical cavity resonator of sides a
and show that it is equal to 

Section 9.4

P9.20. Derivation of characteristic equation for guidance of hybrid modes in an optical
fiber. Supply the missing steps in the derivation of the characteristic equation
(9.81) for the case of from the boundary conditions 

and at 
P9.21. Consistency of guidance conditions for optical fiber modes with boundary con-

ditions. Show that the guidance conditions (9.79)–(9.81) are consistent with the
boundary conditions for r-components of the fields given by (9.77c), (9.77d),
(9.78c), and (9.78d).

P9.22. Numerical aperture of an optical fiber. Assume that a wave is incident from air
onto the core of an optical fiber at an angle as shown by the cross-sectional
view in Fig. 9.35. Show that the maximum allowable value of for guiding of
the wave in the core by total internal reflection is given by

which is defined to be the numerical aperture (NA) of the optical fiber. This
provides the physical interpretation for NA.

sin [ua]max = 2n1
2 - n2

2

ua

ua,

r = a.E
 –
f1>H –z1 = E

 –
f2>H –z2 E

 –
z1>H –f1 = E

 –
z2>H –f2,

E
 –

z1 = E
 –

z2, H
 –

z1 = H
 –

z2,l Z 0

a>4d.
TMm,n,l 1l Z 02

TMm,n,l

l>2d,Q2Q1

1
Q

=
1

Q1
+

1
Q2

Q1 = ve>sd.
sd � ve.

l = 1 cm,1n = 12,
l>2d.

1
4 dE0

2l.
n = 1, 2, 3, Á .

 H =
E01m>e   cos  

npz

l
 cos  

npt

l1me   ay

 E = E0 sin  
npz

l
  sin  

npt

l1me   ax

z = lz = 0
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670 Chapter 9 Several Topics for Electronics and Photonics

P9.23. Alternate characteristic equation for guidance of hybrid modes in an optical
fiber. Supply the missing steps in the derivation of (9.86) from (9.81) by using
(9.85a)–(9.85d). [Hint: Use (9.85b) and (9.85c) for the left side of (9.81) and
(9.85a) and (9.85d) for the right side of (9.81).]

P9.24. Maximum value of core radius for single-mode propagation in an optical fiber.
For an optical fiber with core and cladding refractive indices and

find the maximum value of for single-mode operation.

Section 9.5

P9.25. Minimizing pulse half-width for a Gaussian-enveloped signal in a dispersive
medium. With reference to the result given by (9.96), show that there is an op-
timum pulse half-width for which the transmitted pulse half-width at a given
value of z is minimized. Find the expression for this optimum pulse half-width
and the corresponding transmitted pulse half-width.

P9.26. Pulse spread due to intermodal dispersion in an optical fiber. A measure of the
pulse spread due to intermodal dispersion is provided by the difference in trav-
el times between the longest ray path and the shortest ray path. Show that this
difference per unit distance along the fiber is approximately equal to 
where 

P9.27. Propagation of a signal with Gaussian envelope in an optical fiber. A signal
with a Gaussian pulse envelope of half-width 5 ps propagates in an optical fiber
made of fused silica with the characteristics shown in Fig. 9.18. If the wavelength
of the signal is obtain approximate values for (a) the time taken by the
signal to propagate 1 km and (b) the half-width of the Gaussian pulse envelope
of the signal at the distance of 1 km.

Section 9.6

P9.28. Satisfaction of certain relations by Fresnel coefficients. Verify that the Fres-
nel coefficients given in Section 8.5 satisfy (9.112a) and (9.112b) for both
cases of the polarization of (a) perpendicular and (b) parallel. Further
show that (9.112b) is consistent with conservation of power flow normal to
the dielectric slab.

P9.29. Limiting frequency resolution of Fabry–Perot etalon. Assume that the limit-
ing frequency resolution of the Fabry–Perot etalon is defined as the separa-
tion between the two frequencies at which is Then, assuming further1

2.It>Ii

Ei:

0.8 mm,

¢ = 1n1 - n22.
¢>c,

a>l0n2 = 1.40,
n1 = 1.50

ua

Claddinge2 	 e1

e2 	 e1

Core

Cladding

e1

FIGURE 9.35

For Problem P9.22.
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that this frequency difference is small compared to the frequency range,
between two adjacent peaks of the interference pattern for

fixed d and show that it is equal to 

P9.30. Boundary between Fresnel and Fraunhofer diffraction regions. The bound-
ary between the Fresnel and Fraunhofer diffraction regions is determined by
the maximum allowable departure of the phase of the waves emanating from
the aperture and arriving at the observation point (and hence, vice versa)
from that of a plane wave. For a maximum allowable departure of which
is the value used in practice, show by considering the circular aperture that
the boundary between the two regions is where D is the diameter of
the hole.

Section 9.7

P9.31. Propagation of a uniform plane wave along a principal axis of an anisotropic di-
electric. For all three cases in Example 9.12, find the expressions for the inci-
dent, reflected, and transmitted wave magnetic fields.

P9.32. Angle between E and H for plane-wave propagation in an anisotropic medium.
Show that for plane wave propagation in an anisotropic medium, the angle be-
tween E and H is not in general equal to 90°. For the anisotropic medium of Ex-
ample 9.12, find the angle between E and H at for in
case 3.

P9.33. Normal incidence of a uniform plane wave on an anisotropic perfect dielectric.
Medium 1 is free space, whereas medium 2 is a nonmagnetic

anisotropic perfect dielectric characterized by

For a uniform plane wave having the electric field

incident on the interface from medium 1, find the following: (a) the re-
flected wave electric and magnetic fields; and (b) the transmitted wave electric
and magnetic fields.

P9.34. Normal incidence of a uniform plane wave on an anisotropic perfect dielectric.
Medium 1 is free space, whereas medium 2 is a nonmagnetic

anisotropic perfect dielectric characterized by

[e] = e0 C8 2 0
2 5 0
0 0 4

S
1m = m02

1z 7 02,1z 6 02

z = 0

Ei = E0[cos 16p * 108t - 2pz2 ax + sin 16p * 108t - 2pz2 ay]

[e] = e0 C6.25 0 0
0 2.25 0
0 0 6.25

S
1m = m02,

1z 7 021z 6 02

E2 = E1 = E0z = 0+ , 

2D2>l,
p>8,

¢f>F.ut,
c>12nd cos ut2,

¢f =
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672 Chapter 9 Several Topics for Electronics and Photonics

A uniform plane wave having the electric field

is incident on the interface from medium 1. Obtain the reflected and
transmitted wave electric and magnetic fields.

P9.35. Uniform plane-wave propagation through an anisotropic perfect dielectric slab.
In Fig. 9.36, medium 2 is a nonmagnetic anisotropic perfect dielectric
characterized by

A circularly polarized uniform plane wave having the electric field

is incident normally onto medium 2 from medium 1. (a) Find the minimum value
of L, the thickness of medium 2, for which the reflected wave is linearly polar-
ized. (b) Find the reflected wave electric field for the value of L in (a). (c) Find
the minimum value of L for which there is no reflected wave.

Ei = E0[cos 16p * 109t - 2pz2 ax + sin 16p * 109t - 2pz2 ay]

[e] = e0 C4 0 0
0 16 0
0 0 4

S

1m = m02,

z = 0

Ei = E0 cos 16p * 109t - 20pz2 ax

P9.36. Faraday rotating power of anisotropic medium with circular characteristic polar-
izations. Show that for the Faraday rotating power of
the medium characterized by (9.124) is approximately equal to 

REVIEW PROBLEMS

R9.1. Number of propagating modes in a square waveguide. Show that for a wave-
guide of square cross section the number of propagating modes at a
frequency f many times the cutoff frequency of the dominant mode is approxi-
mately equal to 2pmef2a2.

1a = b2,

pgB0>1l0 2e>e02.
1b- - b +2>2gB0 � e>e0,

Medium 2
m0, [e]

Medium 3
m0, e0

Medium 1
m0, e0

(
)

L
FIGURE 9.36

For Problem P9.35.
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4 cm

2 cm
y

Section 1
m0, e0

Section 2
m0, 9e0

x z

FIGURE 9.37

For Problem R9.2.

R9.2. Minimizing SWR in a rectangular waveguide system using a quarter-wave sec-
tion. A rectangular waveguide system consisting of two sections is shown in
Fig. 9.37. For waves of frequency 5000 MHz incident from Section 1 onto
the discontinuity, find the SWR in Section 1. It is desired to minimize the SWR
in Section 1 by placing a section of and at a distance d to
the left of the discontinuity. (a) What is the length of the section? (b) Using
the Smith chart, find the minimum value of d and the value of the minimum
SWR to the left of the section.lg>4

lg>4
m = m0e = 4e0lg>4

TE1,0

R9.3. Frequencies of oscillation for a cylindrical sector cavity resonator. Consider an air-
dielectric cavity resonator made up by placing conductors in the and 
planes of the waveguide of Problem P9.10. Determine the two lowest frequencies
of oscillation for and and identify the corresponding modes.

R9.4. Attenuation constant for TM wave in a parallel-plate guide with imperfect con-
ductors. Repeat Problem P9.15 for TM wave propagation to show that is
equal to and compute the value of for the data speci-
fied in that problem and for the mode.

R9.5. Maximum value of core radius for single-mode propagation in an optical fiber.
For an optical fiber with core and cladding refractive indices and

find the maximum value of the core radius for single-mode operation
at 

R9.6. Pulse broadening due to material dispersion in a single-mode optical fiber. A
light-emitting diode at the wavelength with spectral width 25 nm excites
a single-mode fiber made of fused silica with the characteristics shown in Fig.
9.18. Find the approximate pulse width after broadening due to material disper-
sion over a distance of 1 km.

R9.7. Diffraction of a uniform plane wave by a circular disk. Consider the arrange-
ment complementary to that in Example 9.11, that is, a circular disk of radius a
having its center at the origin and illuminated by a plane wave of electric field in-
tensity Obtain the expression for the diffracted field along the axis of the disk
and show that the intensity is a constant, independent of distance from the center
of the disk. (Hint: Use the fact that for two complementary screens placed to-
gether in the same plane, no aperture exists so that no diffraction results.)

R9.8. Uniform plane wave propagation through an anisotropic perfect dielectric slab.
In Fig. 9.38, medium 2 is a nonmagnetic anisotropic perfect dielectric
characterized by

[e] = e0C8 2 0
2 5 0
0 0 9

S

1m = m02,

E0.

0.9 mm

l0 = 1.2 mm.
n2 = 3.5,

n1 = 3.503

TM1,0

ac2>[sdah21 - 1fc>f22]
ac

d = 5 cm,a = 3 cm

z = dz = 0
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674 Chapter 9 Several Topics for Electronics and Photonics

For a uniform plane wave with the electric field

incident on medium 2 normally on medium 1, find the following: (a) the re-
flected wave electric and magnetic fields if the thickness l of medium 2 is 
and (b) the minimum value of l for which medium 2 is transparent for the inci-
dent wave.

1
4 m

Ei = E0 ax cos 16p * 108t - 2pz2

Medium 2
m0, [e]

Medium 3
m0, e0

Medium 1
m0, e0

(
)

l
FIGURE 9.38

For Problem R9.8.
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Principles of Radiation 
and Antennas

In Chapters 3, 4, 6, 7, 8, and 9, we studied the principles and applications of prop-
agation and transmission of electromagnetic waves. The remaining important
topic pertinent to electromagnetic wave phenomena is radiation of electromag-
netic waves. We have, in fact, touched on the principle of radiation of electro-
magnetic waves in Chapter 3 when we derived the electromagnetic field due to
the infinite plane sheet of time-varying, spatially uniform current density. We
learned that the current sheet gives rise to uniform plane waves radiating away
from the sheet to either side of it. We pointed out at that time that the infinite
plane current sheet is, however, an idealized, hypothetical source. With the ex-
perience gained thus far in our study of the elements of engineering electro-
magnetics, we are now in a position to learn the principles of radiation from
physical antennas, which is our goal in this chapter.

We begin the chapter with the derivation of the electromagnetic field due
to an elemental wire antenna, known as the Hertzian dipole. After studying the
radiation characteristics of the Hertzian dipole, we consider the example of a
half-wave dipole to illustrate the use of superposition to represent an arbitrary
wire antenna as a series of Hertzian dipoles to determine its radiation fields.We
also discuss the principles of arrays of physical antennas and the concept of
image antennas to take into account ground effects. Next we study radiation
from aperture antennas. Finally, we consider briefly the receiving properties of
antennas and learn of their reciprocity with the radiating properties.

10.1 HERTZIAN DIPOLE

The Hertzian dipole is an elemental antenna consisting of an infinitesimally
long piece of wire carrying an alternating current I(t), as shown in Fig. 10.1. To
maintain the current flow in the wire, we postulate two point charges andQ11t2

675
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I(t)dl

Q1(t)

Q2(t) � �Q1(t)

�

�
FIGURE 10.1

Hertzian dipole.

terminating the wire at its two ends, so that the law of conservation of
charge is satisfied. Thus, if

(10.1)

then

(10.2a)

(10.2b)

and

(10.3a)

(10.3b)

The time variations of I, and given by (10.1), (10.3a) and (10.3b), respec-
tively, are illustrated by the curves and the series of sketches for the dipoles in
Fig. 10.2, corresponding to one complete period.The different sizes of the arrows
associated with the dipoles denote the different strengths of the current, where-
as the number of the plus or minus signs indicates the strength of the charges.

To determine the electromagnetic field due to the Hertzian dipole, we
consider the dipole to be situated at the origin and oriented along the z-axis, in
a perfect dielectric medium. We shall use an approach based on the magnetic
vector potential and obtain electric and magnetic fields consistent with
Maxwell’s equations, while fulfilling certain other pertinent requirements. We
shall begin with the magnetic vector potential for the static case and then ex-
tend it to the time-varying current element. To do this, we recall from Section
5.2 that for a current element of length situated at the origin, as
shown in Fig. 10.3 and carrying current I, the magnetic field at a point 
is given by

(10.4)A =
mI dl
4pr

=
mI dl

4pr
 az

P1r, u, f2dl = dl az

Q2,Q1,

 Q21t2 = -  

I0

v
  sin vt = -Q11t2

 Q11t2 =
I0

v
  sin vt

 
dQ2

dt
= -I1t2 = -I0 cos vt

 
dQ1

dt
= I1t2 = I0 cos vt

I1t2 = I0 cos vt

Q21t2
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v

FIGURE 10.2

Time variations of charges and current associated with the Hertzian dipole.

If the current in the element is now assumed to be time varying in the
manner we might expect the corresponding magnetic vector
potential to be that in (10.4) with I replaced by Proceeding in this
manner would however lead to fields inconsistent with Maxwell’s equa-
tions. The reason is that time-varying electric and magnetic fields give rise
to wave propagation, according to which the effect of the source current at
a given value of time is felt at a distance r from the origin after a time delay
of where is the velocity of propagation of the wave. Conversely, the
effect felt at a distance r from the origin at time t is due to the current that
existed at the origin at an earlier time Thus, for the time-varying1t - r>vp2.

vpr>vp,

I0 cos vt.
I = I0 cos vt,

Retarded
potential
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z

x

d l � dl az

au

Au au

P

A
ar

Ar ar

y

r

u

f

FIGURE 10.3

For finding the magnetic vector
potential due to an infinitesimal
current element.

current element situated at the origin, the magnetic vector
potential is given by

(10.5)

where we have replaced by the phase constant. The result given by
(10.5) is known as the retarded magnetic vector potential in view of the phase-
lag factor contained in it.

To augment the reasoning behind the retarded magnetic vector potential,
recall that in Section 5.1, we derived differential equations for the electromag-
netic potentials. For the magnetic vector potential, we obtained

(10.6)

which reduces to

(10.7)

for and Equation (10.7) has the form of the wave equation,
except in three dimensions and with the source term on the right side. Thus, the
solution for must be of the form of a traveling wave while reducing to the
static field case for no time variations.

Az

J = Jz az.A = Az az

§2Az - me  

02Az

0t2 = -mJz

§2A - me  
02A
0t2 = -mJ

br

b,v>vp

 =
mI0 dl

4pr
  cos 1vt - br2 az

 A =
mI0 dl

4pr
  cos va t -

r
vp
b  az

I0 dl cos vt az
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10.1 Hertzian Dipole 679

Expressing A in (10.5) in terms of its components in spherical coordinates,
as shown in Fig. 10.3, we obtain

(10.8)

The magnetic field due to the Hertzian dipole is then given by

or

(10.9)

Using Maxwell’s curl equation for H with J set equal to zero in view of perfect
dielectric medium, we then have

or

(10.10)

  -
b2 sin 1vt - br2

r
dau

  +
I0 dl sin u

4pev
  c sin 1vt - br2

r3 +
b cos 1vt - br2

r2

E =
2I0 dl cos u

4pev
  c sin 1vt - br2

r3 +
b cos 1vt - br2

r2 dar

 =
1

er2 sin u
  

0
0u

 1r sin u Hf2 ar -
1

er sin u
  

0
0r

 1r sin u Hf2 au

 =
1
e
5

ar

r2 sin u

au
r sin u

af
r

0
0r

0
0u

0
0f

0 0 r sin u Hf
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0E
0t

=
1
e

 � � H

H =
I0 dl sin u

4p
  c cos 1vt - br2

r2 -
b sin 1vt - br2

r
daf

 =
1
m
5

ar

r2 sin u

au
r sin u
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0
0r

0
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0
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Ar rAu 0
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1
mr

 c 0
0r

 1rAu2 -
0Ar

0u
daf

 H =
B
m

=
1
m

 � � A

A =
mI0 dl cos 1vt - br2

4pr
 1cos u ar - sin u au2

Fields due to
Hertzian
dipole
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680 Chapter 10 Principles of Radiation and Antennas

Equations (10.10) and (10.9) represent the electric and magnetic fields, re-
spectively, due to the Hertzian dipole. The following observations are pertinent
to these field expressions:

1. They satisfy the two Maxwell’s curl equations. In fact, we have obtained
(10.10) from (10.9) by using the curl equation for H.The reader is urged to
verify that (10.9) follows from (10.10) through the curl equation for E.

2. They contain terms involving and 1/r. Far from the dipole
such that the and terms are negligible compared to
the 1/r terms so that the fields vary inversely with r. Furthermore, for
any value of r, the time-average value of the of the Poynting
vector due to the fields is zero, and the contribution to the time-average
value of the r-component is completely from the 1/r terms (see Problem
P10.2). Thus, the time-average Poynting vector varies proportionately
to and is directed entirely in the radial direction. This is consistent
with the physical requirement that for the time-average power crossing
all possible spherical surfaces centered at the dipole to be the same, the
power density must be inversely proportional to since the surface
areas of the spherical surfaces are proportional to the squares of their
radii.

3. For the terms dominate the terms which in turn
dominate the 1/r terms. Also, and

so that

(10.11)

(10.12)

Equation (10.11) is the same as (5.37) with Q replaced by 
that is, in Fig. 10.1, and d replaced by dl. Equation (10.12) gives the
same B as the magnetic field given by Biot–Savart law applied to a current
element at the origin and then I replaced by that is, I(t) in
Fig. 10.1. Thus, electrically close to the dipole, where retardation effects
are negligible, the field expressions approach toward the corresponding
static field expressions with the static source terms simply replaced by the
time-varying source terms.

Example 10.1 Electric and magnetic fields of a Hertzian dipole

Let us consider in free space a Hertzian dipole of length 0.1 m situated at the origin and
along the z-axis, carrying the current A. We wish to obtain the electric
and magnetic fields at the point 15, p>6, 02.

10 cos 2p * 107t

I0 cos vt,I dl az

Q11t2
1I0>v2 sin vt,

H L
I0 dl cos vt

4pr2   sin u af

E L
I0 dl sin vt

4pevr3   12 cos u ar + sin u au2

cos 1vt - br2 L 1cos vt + br sin vt2,sin 1vt - br2 L 1sin vt - br cos vt21>r21>r3br � 1,

r2,

1>r2

u-component

1>r21>r3br � 1,
1>r3, 1>r2,
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10.1 Hertzian Dipole 681

For convenience in computation of the amplitudes and phase angles of the field
components, we shall express the field components in phasor form. Thus, replacing

by and by we have

(10.13)

(10.14)

(10.15)

where is the intrinsic impedance of the medium. Using 
and and carrying

out the computations, we obtain

Thus, the required fields are

K10.1. Hertzian dipole; Retarded magnetic vector potential; Complete electromagnet-
ic field; Behavior far from the dipole Behavior close to the dipole

D10.1. Consider a Hertzian dipole of length carrying sinusoidally time-varying
current of amplitude Find the magnitude of the electric dipole moment
for each of the following cases: (a) medium is free space; (b)

medium is free space; and (c) medium is seawater (
and ).

Ans. (a) (b) (c) 8 * 10-5 C-m.6 * 10-3 C-m;6 * 10-7 C-m;
m = m0e = 80e0,4 S>m,

s =  f = 25 kHz,100 kHz,
f =  f = 10 MHz,

4p A.
0.1l

1br � 12.
1br � 12;

 H = 0.0023 cos 12p * 107t - 0.076p2 af A>m
 + 0.6025 cos 12p * 107t - 0.304p2 au V>m

 E = 2.8739 cos 12p * 107t - 0.576p2 ar

 H
 –
f = 0.0023l -13.679° A>m

 E
 –
u = 0.6025l -54.728° V>m

 E
 –

r = 2.8739l -103.679° V>m

u = p>6,f = 107 Hz, m = m0, e = e0, b = p>15, h = 120p, r = 5 m,
I0 = 10 A, dl = 0.1 m,h = 2m>e  =

b2I0 dl sin u

4p
 c 1

1br22 + j 
1
br
d  e-jbr

 H
 –
f =

I0 dl sin u

4p
 a 1

r2 +
jb

r
b  e-jbr

 =
b2hI0 dl sin u

4p
 c -j 

1

1br23 +
1

1br22 + j 
1
br
d  e-jbr

 E
 –
u =

I0 dl sin u

4pev
 a -  

j

r3 +
b

r2 +
jb2

r
b  e-jbr

 =
2b2hI0 dl cos u

4p
 c -j 

1

1br23 +
1

1br22 d  e
-jbr

 E
 –

r =
2I0 dl cos u

4pev
 a -  

j

r3 +
b

r2 be-jbr

-je-jbr,sin 1vt - br2e-jbrcos 1vt - br2
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682 Chapter 10 Principles of Radiation and Antennas

D10.2. Three Hertzian dipoles of lengths 1, 1, and 2 m are situated at the origin orient-
ed along the positive x-, y-, and z-axes, respectively, and carrying currents

and A, respectively.The medi-
um is free space. Find the following at (0, 0, 50) in Cartesian coordinates: (a)
(b) and (c)
Ans. (a) (b)

(c)

10.2 RADIATION RESISTANCE AND DIRECTIVITY

In the preceding section, we derived the expressions for the complete electromag-
netic field due to the Hertzian dipole. These expressions look very complicated.
Fortunately, it is seldom necessary to work with the complete field expressions
because one is often interested in the field far from the dipole that is governed pre-
dominantly by the terms involving 1/r. Thus, from (10.10) and (10.9), we find that
for a Hertzian dipole of length dl oriented along the z-axis and carrying current

(10.16a)

the electric and magnetic fields at values of r far from the dipole are given by

(10.17a)

(10.17b)

These fields are known as the radiation fields, since they are the components of
the total fields that contribute to the time-average radiated power away from the
dipole. Before we discuss the nature of these fields, let us find out quantitatively
what we mean by far from the dipole.To do this, we look at the expression for the
complete magnetic field given by (10.9) and note that the ratio of the amplitudes
of the and 1/r terms is equal to Hence, for the term is
negligible compared to the 1/r term, as already pointed out in the previous sec-
tion. This means that for or that is, even at a distance of a
few wavelengths from the dipole, the fields are predominantly radiation fields.

Returning now to the expressions for the radiation fields given by (10.17a)
and (10.17b), we note that at any given point, (1) the electric field the
magnetic field and the direction of propagation (r) are mutually perpen-
dicular, and (2) the ratio of to is equal to which are characteristic of
uniform plane waves. The phase of the field, however, is uniform over the sur-
faces that is, spherical surfaces centered at the dipole, whereas the
amplitude of the field is uniform over surfaces Hence, the
fields are only locally uniform plane waves, that is, over any small area normal
to the r-direction at a given point.

1sin u2>r = constant.
r = constant,

h,HfEu

1Hf2
1Eu2,

r � l>2p,r � 1>b,

1>r2br � 1,1>br.1>r2

 H = -  

bI0 dl sin u
4pr

  sin 1vt - br2 af
 = -  

hbI0 dl sin u
4pr

  sin 1vt - br2 au
 E = -  

b2I0 dl sin u
4pevr

  sin 1vt - br2 au

I = I0 cos vt

0.1327 cos 12p * 106t - 0.576p2 V>m.0.196p2 mV>m;
24.102 cos 12p * 106t +12.051 cos 12p * 106t + 0.696p2 mV>m;

Ez.Ey;
Ex;

2 cos 2p * 106t1 cos 2p * 106t, 2 sin 2p * 106t,

Radiation
fields
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10.2 Radiation Resistance and Directivity 683

z

x

y

r du

r sin u df
P

H

E

FIGURE 10.4

For computing the power radiated by the
Hertzian dipole.

The Poynting vector due to the radiation fields is given by

(10.18)

By evaluating the surface integral of the Poynting vector over any surface en-
closing the dipole, we can find the power flow out of that surface, that is, the
power “radiated” by the dipole. For convenience in evaluating the surface inte-
gral, we choose the spherical surface of radius r and centered at the dipole, as
shown in Fig. 10.4. Thus, noting that the differential surface area on the spheri-
cal surface is or we obtain the instanta-
neous power radiated to be

(10.19)

 =
2phI0

2

3
 adl

l
b2

 sin2 1vt - br2
 =
hb2I0

2 1dl22
6p

  sin2 1vt - br2

 =
hb2I0

2 1dl22
8p

  sin2 1vt - br2L
p

u= 0
 sin3 u du

 = L
p

u= 0L
2p

f= 0
 

hb2I0
2 1dl22 sin3 u

16p2   sin2 1vt - br2 du df

 P rad = L
p

u= 0L
2p

f= 0
P # r2 sin u du df ar

r2 sin u du df ar,1r du2 1r sin u df2 ar

 =
hb2I0

2 1dl22 sin2 u

16p2r2  sin21vt - br2 ar

 = Eu au � Hf af = EuHf ar

 P = E � H
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684 Chapter 10 Principles of Radiation and Antennas

The time-average power radiated by the dipole, that is, the average of over
one period of the current variation, is

(10.20)

We now define a quantity known as the radiation resistance of the antenna,
denoted by the symbol as the value of a fictitious resistor that dissipates the
same amount of time-average power as that radiated by the antenna when a cur-
rent of the same peak amplitude as that in the antenna is passed through it. Re-
calling that the average power dissipated in a resistor R when a current 
is passed through it is we note from (10.20) that the radiation re-
sistance of the Hertzian dipole is

(10.21)

For free space, and

(10.22)

As a numerical example, for equal to 0.01,
Thus, for a current of peak amplitude 1 A, the time-average radiated power is
equal to 0.04 W. This indicates that a Hertzian dipole of length is not a
very effective radiator.

We note from (10.21) that the radiation resistance and, hence, the radiated
power are proportional to the square of the electrical length, that is, the physical
length expressed in terms of wavelength, of the dipole. The result given by
(10.21) is, however, valid only for small values of since if is not small,
the amplitude of the current along the antenna can no longer be uniform and its
variation must be taken into account in deriving the radiation fields and hence
the radiation resistance. We shall do this in the following section for a half-wave
dipole, that is, for a dipole of length equal to 

Let us now examine the directional characteristics of the radiation from the
Hertzian dipole. We note from (10.17a) and (10.17b) that, for a constant r, the
amplitude of the fields is proportional to Similarly, we note from (10.18) that
for a constant r, the power density is proportional to Thus, an observer wan-
dering on the surface of an imaginary sphere centered at the dipole views different

sin2 u.
sin u.

l>2.

dl>ldl>l

0.01l

Rrad = 80p210.0122 = 0.08 Æ.1dl>l2

Rrad = 80p2
 adl

l
b2

Æ

h = h0 = 120p Æ,

Rrad =
2ph

3
 adl

l
b2

Æ

1
2 I0

2R,
I0 cos vt

Rrad,

 =
1
2

 I0
2

 c2ph
3

 adl

l
b2 d

 =
phI0

2

3
 adl

l
b2

 8Prad9 =
2phI0

2

3
 adl

l
b28sin2 1vt - br29

P rad

Radiation
pattern

Radiation
resistance
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u � 0

90 90

(a)

(b)

(c)

180

FIGURE 10.5

Directional characteristics of radiation from the Hertzian dipole.

amplitudes of the fields and of the power density at different points on the surface.
The situation is illustrated in Fig. 10.5(a) for the power density by attaching to dif-
ferent points on the spherical surface vectors having lengths proportional to the
Poynting vectors at those points. It can be seen that the power density is largest for

that is, in the plane normal to the axis of the dipole, and decreases con-
tinuously toward the axis of the dipole, becoming zero along the axis.
u = p>2,
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686 Chapter 10 Principles of Radiation and Antennas

It is customary to depict the radiation characteristic by means of a
radiation pattern, as shown in Fig. 10.5(b), which can be imagined to be obtained
by shrinking the radius of the spherical surface in Fig. 10.5(a) to zero with the
Poynting vectors attached to it and then joining the tips of the Poynting vectors.
Thus, the distance from the dipole point to a point on the radiation pattern is
proportional to the power density in the direction of that point. Similarly, the ra-
diation pattern for the fields can be drawn as shown in Fig. 10.5(c), based on the

dependence of the fields. In view of the independence of the fields from 
the patterns of Figs. 10.5(b) and (c) are valid for any plane containing the axis of
the dipole. In fact, the three-dimensional radiation patterns can be imagined to
be the figures obtained by revolving these patterns about the dipole axis. For a
general case, the radiation may also depend on and hence it will be necessary
to draw a radiation pattern for the plane. Here, this pattern is merely a
circle centered at the dipole.

We now define a parameter known as the directivity of the antenna, denoted
by the symbol D, as the ratio of the maximum power density radiated by the an-
tenna to the average power density. To elaborate on the definition of D, imagine
that we take the power radiated by the antenna and distribute it equally in all di-
rections by shortening some of the vectors in Fig. 10.5(a) and lengthening the oth-
ers so that they all have equal lengths. The pattern then becomes nondirectional,
and the power density, which is the same in all directions, will be less than the
maximum power density of the original pattern. Obviously, the more directional
the radiation pattern of an antenna is, the greater is the directivity.

From (10.18), we obtain the maximum power density radiated by the
Hertzian dipole to be

(10.23)

By dividing the radiated power given by (10.19) by the surface area of the
sphere of radius r, we obtain the average power density to be

(10.24)

Thus, the directivity of the Hertzian dipole is given by

(10.25)

To generalize the computation of directivity for an arbitrary radiation pat-
tern, let us consider

(10.26)Pr =
P0 sin2 1vt - br2

r2  f1u, f2

D =
[Pr]max

[Pr]av
= 1.5

[Pr]av =
Prad

4pr2 =
hb2I0

2 1dl22
24p2r2   sin2 1vt - br2

4pr2

 =
hb2I0

21dl22
16p2r2   sin2 1vt - br2

 [Pr]max =
hb2I0

21dl22 [sin2 u]max

16p2r2   sin2 1vt - br2

u = p>2 f,

f,sin u

Directivity
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10.2 Radiation Resistance and Directivity 687

where is a constant, and is the power density pattern. Then

(10.27)

Example 10.2 Computation of directivity of an antenna for a given
power density radiation pattern

Let us compute the directivity corresponding to the power density pattern function

From (10.27),

The ratio of the power density radiated by the antenna as a function of di-
rection to the average power density is given by This quantity is
known as the directive gain of the antenna. Another useful parameter is the
power gain of the antenna, which takes into account the ohmic power losses in
the antenna. It is denoted by the symbol G and is proportional to the directive
gain, the proportionality factor being the power efficiency of the antenna, which
is the ratio of the power radiated by the antenna to the power supplied to it by
the source of excitation.

Df1u, f2.

 = 1 
7
8

 =
1
2

  
1

14>32 - 116>152

 = 4p  

[1
4 

 
sin2 2u]max

2pL
p

u= 0
1sin3 u - sin5 u2 du

 D = 4p  

[sin2 u cos2 u]max

1pu= 012p
f= 0 sin3 u cos2 u du df

f1u, f2 = sin2 u cos2 u.

D = 4p  

[f1u, f2]max

1pu= 012p
f= 0 f1u, f2 sin u du df

 =
P0 sin2 1vt - br2

4pr2 L
p

u= 0L
2p

f= 0
f1u, f2 sin u du df

 =
1

4pr2L
2p

u= 0L
p

f= 0
 

P0 sin2 1vt - br2
r2  f1u, f2 ar

# r2 sin u du df ar

 [Pr]av =
Prad

4pr2

 [Pr]max =
P0 sin2 1vt - br2

r2  [f1u, f2]max

f1u, f2P0
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688 Chapter 10 Principles of Radiation and Antennas

K10.2. Radiation fields; 1/r terms;Time-average radiated power; Radiation re-
sistance; Radiation pattern; Power density; Directivity.

D10.3. Three Hertzian dipoles of lengths 1, 2, and 2 m are situated at the origin orient-
ed along the positive x-, y-, and z-axes, respectively, carrying currents

and respectively. Deter-
mine the polarizations (including right-hand or left-hand sense in the case of
circular and elliptical) of the radiation field at each of the following points: (a) a
point on the x-axis; (b) a point on the y-axis; and (c) a point on the z-axis.
Ans. (a) right circular; (b) left elliptical; (c) linear.

D10.4. Compute the directivity corresponding to each of the following functions
in (10.27):

(a)

(b)

(c)

Ans. (a) 2; (b) 3; (c) 1.2.

10.3 LINEAR ANTENNAS

In the preceding section, we found the radiation fields due to a Hertzian dipole,
which is an elemental antenna of infinitesimal length. If we now have an anten-
na of any length having a specified current distribution, we can divide it into a
series of Hertzian dipoles, and by applying superposition, we can find the radia-
tion fields for that antenna. We illustrate this procedure in this section by first
considering the half-wave dipole, which is a commonly used form of antenna.

The half-wave dipole is a center-fed, straight-wire antenna of length L
equal to and having the current distribution

(10.28)

where the dipole is assumed to be oriented along the z-axis with its center at the
origin, as shown in Fig. 10.6(a). As can be seen from Fig. 10.6(a), the amplitude
of the current distribution varies cosinusoidally along the antenna with zeros at
the ends and maximum at the center. To see how this distribution comes about,
the half-wave dipole may be imagined to be the evolution of an open-circuited
transmission line with the conductors folded perpendicularly to the line at
points from the end of the line. The current standing wave pattern for an
open-circuited line is shown in Fig. 10.6(b). It consists of zero current at the
open circuit and maximum current at from the open circuit, that is, at points
a and Hence, it can be seen that when the conductors are folded perpendicu-
larly to the line at a and the half-wave dipole shown in Fig. 10.6(a) results.a¿,

a¿.
l>4

l>4

I1z2 = I0 cos  
pz

L
  cos vt for -L>2 6 z 6 L>2

l>2

f1u, f2 = e1 for 0 6 u 6 p>2
sin2 u for p>2 6 u 6 p

f1u, f2 = e sin2 u for 0 6 u 6 p>2
0 otherwise

f1u, f2 = e1 for 0 6 u 6 p>2
0 otherwise

f1u, f2

2 sin 2p * 106t A,1 cos 2p * 106t, 2 cos 2p * 106t,

br � 1;

Half-wave
dipole
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10.3 Linear Antennas 689

Now to find the radiation field due to the half-wave dipole, we divide it
into a number of Hertzian dipoles, each of length as shown in Fig. 10.7. If
we consider one of these dipoles situated at distance from the origin, then
from (10.28), the current in this dipole is From (10.17a)
and (10.17b), the radiation fields due to this dipole at point P situated at dis-
tance from it are given by

(10.29a)

(10.29b)

where is the angle between the z-axis and the line from the current element
to the point P and is the unit vector perpendicular to that line, as shown in
Fig. 10.7.The fields due to the entire current distribution of the half-wave dipole
are then given by

(10.30a)

(10.30b)

where and are functions of z¿.au¿r¿, u¿,

 = -L
L>2

z¿ = -L>2
 

bI0 cos 1pz¿>L2 sin u¿  dz¿
4pr¿

  sin1vt - br¿2 af

 H = L
L>2

z¿ = -L>2
 dH

 = -L
L>2

z¿ = -L>2
 

hbI0 cos 1pz¿>L2 sin u¿  dz¿
4pr¿

  sin1vt - br¿2 au¿

 E = L
L>2

z¿ = -L>2
 dE

au¿
u¿

 dH = -  

bI0 cos 1pz¿>L2 dz¿ sin u¿
4pr¿

  sin1vt - br¿2 af
 dE = -  

hbI0 cos 1pz¿>L2 dz¿ sin u¿
4pr¿

  sin1vt - br¿2 au¿
r¿

I0 cos 1pz¿>L2 cos vt.
z¿

dz¿,

Amplitude
of Current
Distribution

z � L
2

z � �

I

I

z � 0
a

a'

L
2

l

4

(a) (b)

FIGURE 10.6

(a) Half-wave dipole. (b) Open-circuited transmission line for illustrating the
evolution of the half-wave dipole.

RaoCh10v3.qxd  12/18/03  5:39 PM  Page 689



690 Chapter 10 Principles of Radiation and Antennas

For radiation fields, is at least equal to several wavelengths and hence
We can therefore set and since they do not vary signifi-

cantly for We can also set in the amplitude factors for
the same reason, but for in the phase factors, we substitute since
the phase angle in can vary appreciably over
the range For example, if and

then varies from 11 for to 9 for and varies
from for to for Thus, we have

where

Evaluating the integral, we obtain

(10.31a)Eu = -  

hI0

2pr
  

cos [1p>22 cos u]

sin u
  sin avt -

p

L
 rb

 = -  

h1p>L2I0 sin u

4pr L
L>2

z¿ = -L>2
 cos  
pz¿
L

  sin avt -  
p

L
 r +

p

L
 z¿ cos ub  dz¿

 Eu = -  L
L>2

z¿ = -L>2
 

hbI0 cos 1pz¿>L2 sin u

4pr
  sin 1vt - br + bz¿ cos u2 dz¿

E =  Euau

z¿ = L>2.4.5pz¿ = -L>25.5p
pr¿>Lz¿ = L>2,z¿ = -L>2r¿r = 10,

L = 2 m 1l = 4 m2, u = 0,-L>2 6 z¿ 6 L>2.
sin 1vt - br¿2 = sin 1vt - pr¿>L2 r - z¿ cos ur¿

r¿ L r-L>2 6 z¿ 6 L>2.
u¿ L uau¿ L au� L.

r¿

z

x

u�

u

r�

z�

dz�

z� cos u

r

y

af

au�

P

L
2

�

L
2

FIGURE 10.7

For the determination of the
radiation field due to the half-
wave dipole.
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10.3 Linear Antennas 691

Similarly,

where

(10.31b)

The Poynting vector due to the radiation fields of the half-wave dipole is
given by

(10.32)

The power radiated by the half-wave dipole is given by

(10.33)

where we have used the result

obtainable by numerical integration. The time-average radiated power is

(10.34)

Thus, the radiation resistance of the half-wave dipole is

(10.35)Rrad =
0.609h
p

  Æ

 =
1
2

 I0
2

 a0.609h
p
b

 8Prad9 =
0.609hI0

2

p
 h sin2

 avt -
p

L
 rb i

L
p>2

u= 0
 

cos2 [1p>22 cos u]

sin u
 du = 0.609

 =
0.609hI0

2

p
  sin2

 avt -
p

L
 rb

 =
hI0

2

p
  sin2

 avt -
p

L
 rbL

p>2

u= 0
 

cos2 [1p>22 cos u]

sin u
 du

 = L
p

u= 0L
2p

f= 0
 

hI0
2

4p2  

cos2 [1p>22 cos u]

sin u
  sin2

 avt -
p

L
 rb  du df

 Prad = L
p

u= 0L
2p

f= 0
P # r2 sin u du df ar

 =
hI0

2

4p2r2  

cos2 [1p>22 cos u]

sin2 u
  sin2

 
 avt -

p

L
 rb  ar

 P = E � H = EuHf ar

Hf = -  

I0

2pr
  

cos [1p>22 cos u]

sin u
  sin avt -

p

L
 rb

H = Hfaf
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(a)

(b)

FIGURE 10.8

Radiation patterns for (a) the fields and
(b) the power density due to the half-
wave dipole.

For free space, and

(10.36)

Turning our attention now to the directional characteristics of the half-
wave dipole, we note from (10.31a) and (10.31b) that the radiation pattern for
the fields is whereas for the power density, it is

These patterns, shown in Fig. 10.8(a) and (b), are
slightly more directional than the corresponding patterns for the Hertzian
dipole. The directivity of the half-wave dipole may now be found by using
(10.27). Thus,

or

(10.37)

For a center-fed linear antenna of length L equal to an arbitrary number
of wavelengths, the current distribution can be written as

(10.38)I1z2 = d I0 sin b aL

2
+ zb  cos vt for -  

L

2
6 z 6 0

I0 sin b aL

2
- zb  cos vt for 0 6 z 6

L

2

D = 1.642

 = 4p  
1

2p * 2 * 0.609

 D = 4p  

5cos2 [1p>22 cos u]>sin2 u6max

1u= 0
p 1f= 0

2p 5cos2 [1p>22 cos u]>sin2 u6 sin u du df

5cos2 [1p>22 cos u]6>sin2 u.
5cos [1p>22 cos u]6>sin u,

Rrad = 0.609 * 120 = 73Æ

h = h0 = 120p Æ,

Linear
antenna of
arbitrary
length
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where once again the antenna is assumed to be oriented along the z-axis with its
center at the origin. Note that the current distribution is such that the amplitude
of the current goes to zero at the two ends of the antenna and varies sinusoidal-
ly along the antenna with phase reversals every half wavelength from the ends,
as shown, for example, for in Fig. 10.9. Note also that for 
(10.38) reduces to (10.28). Using (10.38) and proceeding in the same manner as
for the half-wave dipole, the components of the radiation fields, the radiation
resistance, and the directivity for the linear antenna of arbitrary electrical
length can be obtained. The results are

(10.39a)

(10.39b)

(10.39c)

(10.39d)

where

(10.40)

is the radiation pattern for the fields. For (10.40) reduces to

(10.41)F1u2 =
cos 1kp cos u2 - cos 1kp2

sin u

L = kl,

F1u2 =
cos [1bL>22 cos u] - cos 1bL>22

sin u

 D =
[F21u2]max

1u= 0
p>2 F21u2 sin u du

 Rrad =
h

pL
p>2

u= 0
F21u2 sin u du

 Hf = -  

I0

2pr
 F1u2 sin 1vt - br2

 Eu = -  

hI0

2pr
 F1u2 sin 1vt - br2

L = l>2,L = 5l>2
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Variations of amplitude and
phase of current distribution
along a linear antenna of
length L = 5l>2.
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FIGURE 10.10

Computer-generated plot of radiation
pattern for a linear antenna of length 2.5l.

For a specified value of k, the radiation pattern can be obtained by substituting
(10.41) for As an example, Fig. 10.10 shows a computer-generated
plot of the radiation pattern for The radiation resistance and directivi-
ty can be computed by evaluating numerically the integrals in (10.39c) and
(10.39d), respectively. For these are 120.768 and 3.058, respectively.

K10.3. Half-wave dipole; Radiation fields; Radiation characteristics; Linear antenna;
Arbitrary length.

D10.5. A center-fed linear antenna in free space has the current distribution of the
form given by (10.38), where Find the amplitude of at 
for each of the following cases: (a) (b)

and (c)
Ans. (a) 0.49 V/m; (b) 0 V/m; (c) 1.335 V/m.

10.4 ANTENNA ARRAYS

In Section 3.5, we illustrated the principle of an antenna array by considering
an array of two parallel, infinite plane, current sheets of uniform densities. We
learned that by appropriately choosing the spacing between the current sheets
and the amplitudes and phases of the current densities, a desired radiation
characteristic can be obtained. The infinite plane current sheet is, however, a
hypothetical antenna for which the fields are truly uniform plane waves propa-
gating in the one dimension normal to the sheet. Now that we have gained
some knowledge of physical antennas, in this section we consider arrays of such
antennas.

The simplest array we can consider consists of two Hertzian dipoles, ori-
ented parallel to the z-axis and situated at points on the x-axis on either side of
and equidistant from the origin, as shown in Fig. 10.11. We shall consider the
amplitudes of the currents in the two dipoles to be equal, but we shall allow a
phase difference between them. Thus, if and are the currents in theI21t2I11t2a

L = 4 m, f = 300 MHz, u = 30°.f = 200 MHz, u = 60°;
L = 2 m,L = 2 m, f = 75 MHz, u = 60°;

r = 100 mEuI0 = 1 A.

k = 2.5,

k = 2.5.
0 6 u 6 p.

Array of two
Hertzian
dipoles
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dipoles situated at (d/2, 0, 0) and respectively, then

(10.42a)

(10.42b)

For simplicity, we consider a point P in the xz-plane and compute the radiation
field at that point due to the array of the two dipoles. To do this, we note from
(10.17a) that the electric field intensities at the point P due to the individual
dipoles are given by

(10.43a)

(10.43b)

where and are as shown in Fig. 10.11.
For that is, for points far from the array, which is the region of in-

terest, we can set and Also, we can set in
the amplitude factors, but for and in the phase factors, we substitute

(10.44a)

(10.44b) r2 L r +
d

2
  cos c

 r1 L r -
d

2
  cos c

r2r1

r1 L r2 L rau1
L au2

L au.u1 L u2 L u
r � d,

au2
u1, u2, r1, r2, au1

,

 E2 = -  

hbI0 dl sin u2

4pr2
  sin avt - br2 -

a

2
b  au2

 E1 = -  

hbI0 dl sin u1

4pr1
  sin avt - br1 +

a

2
b  au1

 I2 = I0 cos avt -
a

2
b

 I1 = I0 cos avt +
a

2
b

1-d>2, 0, 02,
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For computing the
radiation field due to an
array of two Hertzian
dipoles.
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where is the angle made by the line from the origin to P with the axis of the array,
that is, the x-axis, as shown in Fig. 10.11.Thus, we obtain the resultant field to be

(10.45)

Comparing (10.45) with the expression for the electric field at P due to a sin-
gle dipole situated at the origin, we note that the resultant field of the array is sim-
ply equal to the single dipole field multiplied by the factor 

known as the array factor. Thus, the radiation pattern of the resultant field is
given by the product of which is the radiation pattern of the single dipole
field, and which is the radiation pattern of the array if the
antennas were isotropic.We shall call these three patterns the resultant pattern, the
unit pattern, and the group pattern, respectively. It is apparent that the group pat-
tern is independent of the nature of the individual antennas as long as they have
the same spacing and carry currents having the same relative amplitudes and
phase differences. It can also be seen that the group pattern is the same in any
plane containing the axis of the array. In other words, the three-dimensional group
pattern is simply the pattern obtained by revolving the group pattern in the xz-
plane about the x-axis, that is, the axis of the array.

Example 10.3 Group patterns for several cases of an array of two
antennas

For the array of two antennas carrying currents having equal amplitudes, let us consider
several pairs of d and and investigate the group patterns.

Case 1: The group pattern is

This is shown in Fig. 10.12(a). It has maxima perpendicular to the axis of the array and
nulls along the axis of the array. Such a pattern is known as a broadside pattern.

Case 2: The group pattern is

This is shown in Fig. 10.12(b). It has maxima along the axis of the array and nulls per-
pendicular to the axis of the array. Such a pattern is known as an endfire pattern.

` cos a bl
4

  cos c +
p

2
b ` = ` sin ap

2
  cos cb `

d � L/2, A � P.

` cos a bl
4

  cos cb ` = cos ap
2

  cos cb

d � L/2, A � 0.

a

cos [1bd cos c + a2>2],
sin u,

a2>2],
2 cos [1bd  cos c +

 = -  

2hbI0 dl sin u
4pr

  cos a bd cos c + a
2

b  sin 1vt - br2 au

 + sin avt - br -
bd

2
 cos c -

a

2
b d  au

 = -  

hbI0 dl sin u
4pr

 csin avt - br +
bd

2
 cos c +

a

2
b

 E = E1 + E2

c
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Unit, group,
and resultant
patterns
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(a) (b) (c) (d)

FIGURE 10.12

Group patterns for an array of two antennas carrying currents of equal amplitude for
(a) (b) (c) and (d) d = l, a = 0.d = l>4, a = -p>2,d = l>2, a = p,d = l>2, a = 0,

Case 3: The group pattern is

This is shown in Fig. 10.12(c). It has a maximum along and null along 
Again, this is an endfire pattern, but directed to one side.This case is the same as the one
considered in Section 3.5.

Case 4: The group pattern is

This is shown in Fig. 10.12(d). It has maxima along and 180° and nulls along
and 120°.

Proceeding further, we can obtain the resultant pattern for an array of two Hertz-
ian dipoles by multiplying the unit pattern by the group pattern. Thus, recalling that the
unit pattern for the Hertzian dipole is in the plane of the dipole and considering val-
ues of and 0 for d and respectively, for which the group pattern is given in Fig.
10.12(a), we obtain the resultant pattern in the xz-plane, as shown in Fig. 10.13(a). In the

a,l>2
sin u

c = 60°
c = 0°, 90°,

` cos a bl
2

  cos cb ` = ƒcos 1p cos c2 ƒ
d � L, A � 0.

c = p.c = 0

` cos a bl
8

  cos c -
p

4
b ` = cos ap

4
  cos c -

p

4
b

d � L>4, A � �P>2.

�

(a)

�

�

(b)

� FIGURE 10.13

Determination of the resultant
pattern of an antenna array by
multiplication of unit and group
patterns.
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FIGURE 10.14

Determination of the resultant pattern for a
linear array of four isotropic antennas.

xy-plane, that is, the plane normal to the axis of the dipole, the unit pattern is a circle,
and, hence, the resultant pattern is the same as the group pattern, as illustrated in
Fig. 10.13(b).

Example 10.4 Pattern multiplication technique for obtaining the
resultant pattern of an antenna array

The procedure of multiplication of the unit and group patterns to obtain the resultant
pattern illustrated in Example 10.3 is known as the pattern multiplication technique. Let
us consider a linear array of four isotropic antennas spaced apart and fed in phase, as
shown in Fig. 10.14(a), and obtain the resultant pattern by using the pattern multiplica-
tion technique.

To obtain the resultant pattern of the four-element array, we replace it by a two-
element array of spacing as shown in Fig. 10.14(b), in which each element forms a
unit representing a two-element array of spacing The unit pattern is then the pat-
tern shown in Fig. 10.12(a). The group pattern, which is the pattern of two isotropic ra-
diators having and is the pattern given in Fig. 10.12(d). The resultant
pattern of the four-element array is the product of these two patterns, as illustrated in
Fig. 10.14(c). If the individual elements of the four-element array are not isotropic,
then this pattern becomes the group pattern for the determination of the new resultant
pattern.

a = 0,d = l

l>2.
l,

l>2

Uniform
linear array
of n antennas

Pattern
multiplication

Let us now consider a uniform linear array of n antennas of spacing d, as
shown in Fig. 10.15.Then assuming currents of equal amplitude and progressive
phase shift that is, in the manner 
for antennas 1, 2, 3, respectively, we can obtain the far field as fol-
lows. If the complex electric field at the point due to element 1 is assumed
to be then the complex electric fields at that point due to elements 2, 3, Á1e-jbr0,

1r0, c2
1r � nd2Á ,

I0 cos 1vt + 2a2, ÁI0 cos vt, I0 cos 1vt + a2,a,
I0
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FIGURE 10.15

For obtaining the group pattern for a
uniform linear array of n antennas.

are so that the field due to the n-element
array is

(10.46)

The magnitude of is given by

(10.47)

which has a maximum value of n for Thus, the
group pattern is

(10.48)

Note that for (10.48) reduces to which is the
group pattern obtained for the two-element array.The nulls of the pattern occur
for where m is any integer but not equal to 0,

For (10.48) reduces to

(10.49)F1c2 =
1
n

 ` sin n 1pk cos c + a>22
sin 1pk cos c + a>22 `

d = kl,n, 2n, Á .
n1bd cos c + a2 = 2mp,

cos [1bd cos c + a2>2],n = 2,

F1c2 =
1
n

 ` sin n[1bd cos c + a2>2]

sin [1bd cos c + a2>2]
`

bd cos c + a = 0, 2p, 4p, Á .

 = ` sin n[1bd cos c + a2>2]

sin [1bd cos c + a2>2]
`

 ƒE –1c2 ƒ = ` 1 - ejn1bd cos c +  a2
1 - ej1bd cos c +  a2 `

E
 –

 =
1 - ejn1bd cos c +  a2
1 - ej1bd cos c +  a2  e-jbr0

 + Á + ej1n - 12 1bd cos c +  a2]e-jbr0

 = [1 + ej1bd cos c +  a2 + ej21bd cos c +  a2
 + 1ej1n - 12ae-jb[r0 -1n - 12d cos c]
 + 1ej2ae-jb1r0 - 2d cos c2 + Á

 E
 –1c2 = 1e-jbr0 + 1ejae-jb1r0 -  d cos c2

1ejaejb1r0 - d cos c2, 1ej2aejb1r0 - 2d cos c2, Á ,
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c

a � 90

a � 0

a � 120

a � 30
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a �  60

a � �90

a � �180

a � �60

a � �150

a � �30

a � �120

FIGURE 10.16

Plots of group patterns for the uniform linear array of Fig. 10.15 for and 
The horizontal scale for for each plot is such that varies for 0 to 180°.cc

k = 0.5.n = 6

Figure 10.16 shows a computer-generated sequence of plots of F versus
for values of ranging from to 150° in steps of 30°, for

and It can be seen that as the value of is varied, the value of 
along which the principal maximum of the group pattern occurs varies in a con-
tinuous manner, as to be expected.

The behavior illustrated in Fig. 10.16 is the basis for the principle of
phased arrays. In a phased array, the phase differences between the elements of
the array are varied electronically to scan the radiation pattern over a desired
angle without having to move the antenna structure mechanically.

A type of array that is commonly seen is the log-periodic dipole array,
which is an example of a broadband array. To discuss briefly, we first note that
the directional properties of antennas and antenna arrays depend on their elec-
trical dimensions, that is, the dimensions expressed in terms of the wavelength
at the operating frequency. Hence, an antenna of fixed physical dimensions ex-
hibits frequency-dependent characteristics. This very fact suggests that for an
antenna to be frequency-independent, its electrical size must remain constant
with frequency, and hence, its physical size should increase proportionately to
the wavelength. Alternatively, for an antenna of fixed physical dimensions, the
active region, that is, the region responsible for the predominant radiation,
should vary with frequency, that is, scale itself in such a manner that its electrical
size remains the same. An example in which this is the case is the log-periodic
dipole array, shown in Fig. 10.17. As the name implies, it employs a number of

cak = 0.5.n = 6
-180°ac 10 … c … 180°2

Principle of
phased array

Log-periodic
dipole array
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FIGURE 10.17

Log-periodic dipole array.

dipoles. The dipole lengths and the spacings between consecutive dipoles in-
crease along the array by a constant scale factor such that

(10.50)

From the principle of scaling, it is evident that for this structure extending from
zero to infinity and energized at the apex, the properties repeat at frequencies
given by where n takes integer values. When plotted on a logarithmic scale,
these frequencies are equally spaced at intervals of It is for this reason
that the structure is called log periodic.

The log-periodic dipole array is fed by a transmission line, as shown in Fig.
10.17, such that a 180° phase shift is introduced between successive elements in
addition to that corresponding to the spacing between the elements. The result-
ing radiation pattern is directed toward the apex, that is, toward the source. Al-
most all the radiation takes place from those elements that are in the vicinity of
a half wavelength long. The operating band of frequencies is therefore bounded
on the low side by frequencies at which the largest elements are approximately
a half wavelength long and on the high side by frequencies corresponding to the
size of the smallest elements. As the frequency is varied, the radiating, or active,
region moves back and forth along the array. Since practically all the input

log t.
tnf,

li + 1

li
=

di + 1

di
= t
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702 Chapter 10 Principles of Radiation and Antennas

power is radiated by the active region, the larger elements to the right of it are
not excited. Furthermore, because the radiation is toward the apex, these larger
elements are essentially in a field-free region and hence do not significantly in-
fluence the operation.Although the shorter elements to the left of the active re-
gion are in the antenna beam, they have small influence on the pattern because
of their short lengths, close spacings, and the 180° phase shift.

K10.4. Antenna array; Unit pattern; Group pattern; Resultant pattern; Pattern multi-
plication; Uniform linear array; Image antenna concept; Corner reflector.

D10.6. For the array of two antennas of Example 10.3, assume that and
Find the three lowest values of for which the group pattern has

nulls.
Ans. 33.56°, 80.41°, 120°.

D10.7. Obtain the expression for the resultant pattern for each of the following cases of
linear array of isotropic antennas: (a) three antennas carrying currents with am-
plitudes in the ratio 1:2:1, spaced apart and fed in phase; (b) five antennas car-
rying currents with amplitudes in the ratio 1:2:2:2:1, spaced apart and with
progressive phase shift of 180°; and (c) five antennas carrying currents in the
ratio 1:2:3:2:1, spaced apart and fed in phase.
Ans. (a) (b)
(c)

10.5 ANTENNAS IN THE PRESENCE OF REFLECTORS

Thus far, we have considered the antennas to be situated in an unbounded
medium, so that the waves radiate in all directions from the antenna without
giving rise to reflections from any obstacles. In practice, however, we have to
consider the effect of reflections from the ground even if no other obstacles are
present. To do this, it is reasonable to assume that the ground is a perfect con-
ductor and use the concept of image antennas, which together with the actual
antennas form arrays.

To introduce this concept, let us consider a Hertzian dipole oriented verti-
cally and located at a height h above a plane, perfect conductor surface, as
shown in Fig. 10.18(a). Since no waves can penetrate into the perfect conductor,
as we learned in Section 4.5, the waves radiated from the dipole onto the con-
ductor give rise to reflected waves, as shown in Fig. 10.18(a) for two directions
of incidence. For a given incident wave onto the conductor surface, the angle of
reflection is equal to the angle of incidence, as can be seen intuitively from the
following reasons: (1) the reflected wave must propagate away from the con-
ductor surface, (2) the apparent wavelengths of the incident and reflected waves
parallel to the conductor surface must be equal, and (3) the tangential compo-
nent of the resultant electric field on the conductor surface must be zero, which
also determines the polarity of the reflected wave electric field. Also because of
(3), the reflected wave amplitude must equal the incident wave amplitude. If we
now extend the directions of propagation of the two reflected waves backward,

[sin2 13p cos c2]>[9 sin2  1p cos c2].
sin2 [1p>22 cos c] ƒcos 1p cos c2 ƒ ;cos2 1p cos c2;

l

l>2
l

ca = p>2.
d = 3l>2

Image
antennas
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FIGURE 10.18

For illustrating the concept of image antennas. (a) Vertical Hertzian dipole and (b)
horizontal Hertzian dipole above a plane perfect conductor surface.

they meet at a point that is directly beneath the dipole and at the same distance
h below the conductor surface as the dipole is above it.Thus, the reflected waves
appear to be originating from an antenna, which is the image of the actual an-
tenna about the conductor surface. This image antenna must also be a vertical
antenna since in order for the boundary condition of zero tangential electric
field to be satisfied at all points on the conductor surface, the image antenna
must have the same radiation pattern as that of the actual antenna, as shown in
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� �

FIGURE 10.19

Determination of radiation pattern in the vertical plane for a vertical Hertzian dipole
above a plane perfect conductor surface.

Fig. 10.18(a). In particular, the current in the image antenna must be directed in
the same sense as that in the actual antenna in order to be consistent with the
polarity of the reflected wave electric field. It can be seen, therefore, that the
charges associated with the image dipole have signs opposite to those of the
corresponding charges associated with the actual dipole.

A similar reasoning can be applied to the case of a horizontal Hertzian di-
pole above a perfect conductor surface, as shown in Fig. 10.18(b). Here it can be
seen that the current in the image antenna is directed in the opposite sense to
that in the actual antenna. This again results in charges associated with the
image dipole having signs opposite to those of the corresponding charges asso-
ciated with the actual dipole. In fact, this is always the case.

From the foregoing discussion, it can be seen that the field due to an an-
tenna in the presence of the conductor is the same as the resultant field of the
array formed by the actual antenna and the image antenna. There is, of course,
no field inside the conductor. The image antenna is only a virtual antenna that
serves to simplify the field determination outside the conductor. The simplifica-
tion results from the fact that we can use the knowledge gained on antenna ar-
rays to determine the radiation pattern.

For example, for a vertical Hertzian dipole at a height of above the
conductor surface, the radiation pattern in the vertical plane is the product of
the unit pattern, which is the radiation pattern of the single dipole in the plane
of its axis, and the group pattern corresponding to an array of two isotropic ra-
diators spaced apart and fed in phase. This multiplication and the resultant
pattern are illustrated in Fig. 10.19. The radiation patterns for the case of the
horizontal dipole can be obtained in a similar manner.

To discuss another example of the application of the image-antenna concept,
we consider the corner reflector, an arrangement of two plane perfect conductors
at an angle to each other, as shown by the cross-sectional view in Fig. 10.20 for the
case of the 90° angle. We shall assume that each conductor is semi-infinite in
extent. For a Hertzian dipole situated parallel to both conductors, the locations and
polarities of the images can be obtained to be as shown in the figure. By using the
pattern multiplication technique, the radiation pattern in the cross-sectional plane
can then be obtained.

l

l>2

Corner
reflector
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c

FIGURE 10.21

Radiation pattern in the cross-sectional plane for the case
of in the arrangement of Fig. 10.20.d1 = d2 = l>4

For an example, let Then using the notation in Fig. 10.20,
we can consider antennas 1 and 2 as constituting a unit for which the pattern is

which is that of case 2 in Example 10.3, except that is
measured from the line which is perpendicular to the axis of the array.Antennas 3
and 4 constitute a similar unit except for opposite polarity so that the group pat-
tern for the two units is Thus, the required radiation pattern is

which is shown plotted in Fig. 10.21.

K10.5. Image antenna concept; Corner reflector.
D10.8. For the Hertzian dipole in the presence of the corner reflector of Fig. 10.20, let r

be the ratio of the radiation field at a point in the cross-sectional plane and
along the line extending from the corner through the dipole, to the radiation
field at the same point in the absence of the corner reflector. Find the value of r
for each of the following cases: (a) (b) and
(c)
Ans. (a) 0; (b) 2; (c) 3.275.

d1 = 0.3l, d2 = 0.4l.
d1 = d2 = l>422;d1 = d2 = 22l;

` sin ap
2

 sin cb  sin ap
2

 cos cb `
ƒsin [1p>22 cos c] ƒ .

cƒsin [1p>22 sin c] ƒ ,

d1 = d2 = l>4.

c
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FIGURE 10.20

Application of image-antenna
concept to obtain the radiation
pattern for a Hertzian dipole in
the presence of a corner reflector.
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Geometry pertinent to the
determination of the far field for
radiation from an aperture antenna.

10.6 APERTURE ANTENNAS

An important class of antennas, called aperture antennas, is one for which the
radiation is computed from a knowledge of the field distribution in an aperture
instead of from a current distribution associated with the source of radiation, as
has been the case thus far.The corner reflector discussed in the previous section
is, in the practical case of finite-sized conductors (and, hence, defining an aper-
ture), an example of such an antenna. Besides reflectors such as the corner re-
flector, other examples of aperture antennas are horns extending from
waveguides, slots in conducting enclosures, and lenses. Essentially for an aper-
ture antenna, the primary source, which is elsewhere, sets up the field distribu-
tion in the aperture, which in turn is assumed to give rise to secondary waves in
accordance with the Huygens-Fresnel principle, introduced in Section 9.6.

In particular, as mentioned in Section 9.6, the determination of the far
field from an aperture antenna is the same as setting up the problem to solve for
Fraunhofer diffraction from the aperture. To review briefly, consider a plane
monochromatic wave incident normally on a screen in the xy-plane, with an
aperture cut into it, as shown in Fig. 10.22.Then, according to the Huygens-Fres-
nel principle, the incident wave may be thought of as giving rise to secondary
(spherical) waves emanating from every point in the aperture and that interfere
with one another to produce the field distribution away from the aperture. The
scalar field at a point P is approximately given by

(10.51)E
 –1P2 L

jb

2pLS
 

E
 –1x¿, y¿, 02

R
 e-jbR dS

Description
and examples

Far-field
determination

RaoCh10v3.qxd  12/18/03  5:39 PM  Page 706



10.6 Aperture Antennas 707

where S is the area of the aperture, and is the scalar field in the
aperture. For the Fraunhofer approximation, the waves arriving at P approach
plane waves, thereby permitting simplification of the integrand in (10.51) by
using the plane wave approximation. This consists of assuming that the lines
from points in the aperture to the observation point P(x, y, z) are all
parallel so that

(10.52)

For the R in the denominator in the integrand, further approximation can be
made as Thus, (10.51) reduces to

(10.53)

Equation (10.53) is the starting point for the determination of the far-field dis-
tribution for an aperture antenna. We shall illustrate by means of an example.

Example 10.5 Far field for a rectangular-aperture antenna with uniform
field distribution

Let us consider a rectangular aperture in the xy-plane and centered at the origin with a
uniform field distribution in it, as shown in Fig. 10.23, and investigate the char-
acteristics of the far field due to it.

Applying (10.53) to the rectangular aperture, we have at a point far
from the aperture

(10.54)

Evaluating the integrals, we obtain

(10.55)E
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Rectangular
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uniform
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where

(10.56a)

and

(10.56b)

The quantities of interest in (10.55) are the type of terms, which deter-
mine the radiation pattern. To discuss this, we consider the two coordinate planes 
and and find from (10.55) that the amplitudes of the fields in these two planes
are given by

(10.57a)

and

(10.57b)

 =
bE0 ab

2pr
 ` sin [1bb sin u2>2]

bb sin u2>2 `

 ƒE – ƒf= 90° =
bE0 ab

2pr
 ` sin c2

c2
`
f= 90°

 =
bE0 ab

2pr
 ` sin [1ba sin u2>2]

ba sin u2>2 `

 ƒE – ƒf= 0 =
bE0 ab

2pr
 ` sin c1

c1
`
f= 0

f = 90°
f = 0

1sin c2>c

c2 =
bb sin u sin f

2

c1 =
ba sin u cos f

2
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Radiation
characteristics

b

a

y

z

x
r

u

f

P

E
FIGURE 10.23

Rectangular aperture
antenna with a uniform
field distribution in the
aperture.
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10.6 Aperture Antennas 709

where we have used the fact that is equal to 1. Thus, in both planes, the
behavior is the same except for the appearance of the different dimensions a and b in the

factors in (10.57a) and (10.57b), respectively.
To examine this behavior, we consider the plot of versus which is

shown in Fig. 10.24. We note that it indicates a strong central maximum of unity at 
and a series of secondary (weaker) maxima on either side of it, with nulls occurring at

The secondary maxima, which occur at 
are successively less intense, having values 0.2172, 0.1284, 0.0913, respec-

tively. If we consider the fact that the power density is proportional to then the in-
significance of these maxima becomes more evident, since the successive maxima of

are 1, 0.0472, 0.0165, 0.0083, Thus, the quantity of interest is the beam
width between the first nulls (BWFN) between which the radiation is concentrated. The
BWFN is given by twice the value of corresponding to the first null. For the plane,
this value is given by

(10.58)

For narrow beams, which is the case in practice, in this range, so that (10.58) can
be written as

(10.59)

or

(10.60a)

Similarly,

(10.60b)[BWFN]f= 90° L
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[BWFN]f= 0 L
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 u L
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bau
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FIGURE 10.24

Variation of with pertinent to the
radiation pattern for the rectangular aperture
antenna of Fig. 10.23.
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710 Chapter 10 Principles of Radiation and Antennas

Finally, we consider the determination of the directivity of the rectangular aper-
ture antenna. To do this, it is convenient to use the basic definition that

(10.61)

instead of using (10.27), since the power radiated from the antenna, being the same
as that passing through the aperture, is much easier to compute from the aperture field
distribution as compared to the evaluation of the integral in (10.27). Thus, in view of the
uniform distribution of in the aperture,

(10.62)

and from (10.55),

(10.63)

Substituting (10.62) and (10.63) into (10.61), we obtain

(10.64)

This result tells us that the directivity of the rectangular aperture antenna is times
the physical aperture, ab.Although we have derived it here for the rectangular aperture, it
is true for an aperture of any shape with uniform excitation.

K10.5. Aperture antenna; Far field; Rectangular aperture; Uniform excitation; BWFN.
D10.9. For the rectangular aperture antenna of Fig. 10.23, the BWFN in the 

plane is 0.1 rad and the directivity is Find the following in degrees: (a) the
BWFN in the plane; (b) the half-power beamwidth (HPBW), that is,
twice the value of for which the power density is one-half of the maximum
power density in the plane; and (c) the beamwidth between the first sec-
ondary maxima in the plane.
Ans. (a) 11.46; (b) 2.54; (c) 8.19.

10.7 RECEIVING PROPERTIES

Thus far, we have considered the radiating, or transmitting, properties of anten-
nas. Fortunately, it is not necessary to repeat all the derivations for the discussion
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800p.
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z

x

y

E

dl

u

FIGURE 10.25

For investigating the receiving properties
of a Hertzian dipole.

of the receiving properties of antennas since reciprocity dictates that the receiv-
ing pattern of an antenna be the same as its transmitting pattern.To illustrate this
in simple terms without going through the general proof of reciprocity, let us
consider a Hertzian dipole situated at the origin and directed along the z-axis, as
shown in Fig. 10.25.We know that the radiation pattern is then given by and
that the polarization of the radiated field is such that the electric field is in the
plane of the dipole axis.

To investigate the receiving properties of the Hertzian dipole, we assume
that it is situated in the radiation field of a second antenna so that the incom-
ing waves are essentially uniform plane waves. Thus, let us consider a uniform
plane wave with its electric field E in the plane of the dipole and incident on
the dipole at an angle with its axis, as shown in Fig. 10.25. Then the compo-
nent of the incident electric field parallel to the dipole is Since the di-
pole is infinitesimal in length, the voltage induced in the dipole, which is the
line integral of the electric-field intensity along the length of the dipole, is sim-
ply equal to or to This indicates that for a given ampli-
tude of the incident wave field, the induced voltage in the dipole is
proportional to Furthermore, for an incident uniform plane wave having
its electric field normal to the dipole axis, the voltage induced in the dipole is
zero; that is, the dipole does not respond to polarization with electric field nor-
mal to the plane of its axis. These properties are reciprocal to the transmitting
properties of the dipole. Since an arbitrary antenna can be decomposed into a
series of Hertzian dipoles, it then follows that reciprocity holds for an arbi-
trary antenna. Thus, the receiving pattern of an antenna is the same as its
transmitting pattern.

Let us consider the loop antenna, a common type of receiving antenna. A
simple form of loop antenna consists of a circular loop of wire with a pair of
terminals. We shall orient the circular loop antenna with its axis aligned with
the z-axis, as shown in Fig. 10.26, and we shall assume that it is electrically short;

sin u.

E dl sin u.1E sin u2 dl

E sin u.
u

sin u

Loop
antenna
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712 Chapter 10 Principles of Radiation and Antennas

that is, its dimensions are small compared to the wavelength of the incident
wave, so that the spatial variation of the field over the area of the loop is negli-
gible. For a uniform plane wave incident on the loop, we can find the voltage in-
duced in the loop, that is, the line integral of the electric-field intensity around
the loop, by using Faraday’s law. Thus, if H is the magnetic-field intensity associ-
ated with the wave, the magnitude of the induced voltage is given by

(10.65)

where A is the area of the loop. Hence, the loop does not respond to a wave hav-
ing its magnetic field entirely parallel to the plane of the loop, that is, normal to
the axis of the loop.

For a wave having its magnetic field in the plane of the axis of the loop and
incident on the loop at an angle with its axis, as shown in Fig. 10.26,

and, hence, the induced voltage has a magnitude

(10.66)

Thus, the receiving pattern of the loop antenna is given by the same as that
of a Hertzian dipole aligned with the axis of the loop antenna. The loop anten-
na, however, responds best to polarization with the magnetic field in the plane
of its axis, whereas the Hertzian dipole responds best to polarization with the
electric field in the plane of its axis.

sin u,

ƒV ƒ = mA ` 0H

0t
`  sin u

H sin u
Hz =u

 = mA ` 0Hz

0t
`

 = ` -m 
d

dtLarea of
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H # dS az `

 ƒV ƒ = ` -  
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z
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H

FIGURE 10.26

Circular loop antenna.
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10.7 Receiving Properties 713

Example 10.6 Principle of radio source location using two loop
antennas

The directional properties of a receiving antenna can be used to locate the source of an
incident signal. To illustrate the principle, as already discussed in Section 2.3, let us con-
sider two vertical loop antennas, numbered 1 and 2, situated on the x-axis at and

respectively. By rotating the loop antennas about the vertical (z-axis), it is
found that no (or minimum) signal is induced in antenna 1 when it is in the xz-plane and
in antenna 2 when it is in a plane making an angle of 5° with the axis, as shown by the top
view in Fig. 10.27. Let us find the location of the source of the signal.

Since the receiving properties of a loop antenna are such that no signal is induced
for a wave arriving along its axis, the source of the signal is located at the intersection of
the axes of the two loops when they are oriented so as to receive no (or minimum) signal.
From simple geometrical considerations, the source of the signal is therefore located on
the y-axis at or 2.286 km.y = 200>tan 5°,

x = 200 m,
x = 0 m

�
�

ZA

ZL

Voc
FIGURE 10.28

Equivalent circuit for a receiving antenna connected to
a load.

2

1

x

y

200 m

5

FIGURE 10.27

Top view of two loop antennas used to locate the
source of an incident signal.

Effective areaA useful parameter associated with the receiving properties of an antenna
is the effective area, denoted and defined as the ratio of the time-average
power delivered to a matched load connected to the antenna to the time-average
power density of the appropriately polarized incident wave at the antenna. The
matched condition is achieved when the load impedance is equal to the complex
conjugate of the antenna impedance.

Let us consider the Hertzian dipole and derive the expression for its effec-
tive area. First, with reference to the equivalent circuit shown in Fig. 10.28, where

is the open-circuit voltage induced between the terminals of the antenna,Voc

Ae
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714 Chapter 10 Principles of Radiation and Antennas

is the antenna impedance, and is the load impedance,
we note that the time-average power delivered to the matched load is

(10.67)

For a Hertzian dipole of length l, the open-circuit voltage is

(10.68)

where is the electric field of an incident wave linearly polarized parallel to the
dipole axis. Substituting (10.68) into (10.67), we get

(10.69)

For a lossless dipole, so that

(10.70)

The time-average power density at the antenna is

(10.71)

Thus, the effective area is

(10.72)

or

(10.73)

In practice, is greater than due to losses in the antenna, and the effective
area is less than that given by (10.73). Rewriting (10.72) as

and recalling that the directivity of the Hertzian dipole is 1.5, we observe that

(10.74)

Although we have obtained this result for a Hertzian dipole, it can be shown that
it holds for any antenna. It is of interest to note from (10.74) and (10.64) that the
effective area of a rectangular aperture antenna for uniform field distribution in
the aperture is equal to the physical aperture, which is to be expected.
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10.7 Receiving Properties 715

We shall now derive the Friis transmission formula, an important equation
in making communication link calculations. To do this, let us consider two an-
tennas, one transmitting and the other receiving, separated by a distance d. Let
us assume that the antennas are oriented and polarization matched so as to
maximize the received signal. Then if is the transmitter power radiated by
the transmitting antenna, the power density at the receiving antenna is

where is the directivity of the transmitting antenna. The
power received by a matched load connected to the terminals of the receiving
antenna is then given by

(10.75)

where is the effective area of the receiving antenna. Thus, the ratio of to
is given by

(10.76)

Denoting to be the effective area of the transmitting antenna if it were re-
ceiving and using (10.74), we obtain

(10.77)

Equation (10.77) is the Friis transmission formula. It gives the maximum value
of for a given d and for a given pair of transmitting and receiving anten-
nas. If the antennas are not oriented to receive the maximum signal, or if a po-
larization mismatch exists, or if the receiving antenna is not matched to its load,

would be less than that given by (10.77). Losses in the antennas would
also decrease the value of 

An alternative formula to (10.77) is obtained by substituting for in
(10.76) in terms of the directivity of the receiving antenna if it were used for
transmitting. Thus, we obtain

(10.78)

K10.6. Receiving pattern; Reciprocity with transmitting pattern; Effective area; Com-
munication link; Friis transmission formula.

D10.10. A communication link in free space uses two linear antennas of equal lengths L,
oriented parallel to each other and normal to the line joining their centers. The
antennas are separated by a distance Find the maximum value of

for each of the following cases: (a) (b)
and (c)

Ans. (a) (b) (c) 27.25 * 10-8.6.8 * 10-8;12.8 * 10-6;
L = 2 m, f = 75 MHz.f = 150 MHz;

L = 1 m,L = 1 m, f = 10 MHz;PR>PT

d = 1 km.
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716 Chapter 10 Principles of Radiation and Antennas

SUMMARY

In this chapter, we studied the principles of antennas. We first introduced the
Hertzian dipole, which is an elemental wire antenna, and derived the electro-
magnetic field due to the Hertzian dipole by using the retarded magnetic vector
potential. For a Hertzian dipole of length dl, oriented along the z-axis at the ori-
gin and carrying current

we found the complete electromagnetic field to be given by

where is the phase constant.
For or for the only important terms in the complete

field expressions are the 1/r terms since the remaining terms are negligible com-
pared to these terms.Thus, for the Hertzian dipole fields are given by

where is the intrinsic impedance of the medium. These fields, known
as the radiation fields, correspond to locally uniform plane waves radiating
away from the dipole and, in fact, are the only components of the complete
fields contributing to the time-average radiated power.We found the time-aver-
age power radiated by the Hertzian dipole to be given by

and identified the quantity inside the brackets to be its radiation resistance. The
radiation resistance, of an antenna is the value of a fictitious resistor that
will dissipate the same amount of time-average power as that radiated by the
antenna when a current of the same peak amplitude as that in the antenna is
passed through it. Thus, for the Hertzian dipole,
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10.7 Receiving Properties 717

We then examined the directional characteristics of the radiation fields of the
Hertzian dipole as indicated by the factor in the field expressions and
hence by the factor for the power density. We discussed the radiation
patterns and introduced the concept of the directivity of an antenna. The di-
rectivity, D, of an antenna is defined as the ratio of the maximum power den-
sity radiated by the antenna to the average power density. For the Hertzian
dipole,

For the general case of a power density pattern the directivity is given by

As an illustration of obtaining the radiation fields due to a wire antenna of
arbitrary length and arbitrary current distribution by representing it as a series
of Hertzian dipoles and using superposition, we considered the example of a
center-fed half-wave dipole of length oriented along the z-axis with
its center at the origin and having the current distribution given by

and found that the radiation fields are

From these, we sketched the radiation patterns and computed the radiation re-
sistance and the directivity of the half-wave dipole to be

We then extended the computation of these quantities to the case of a center-
fed linear antenna of length equal to an arbitrary number of wavelengths.

We discussed antenna arrays and introduced the technique of obtaining
the resultant radiation pattern of an array by multiplication of the unit and the
group patterns. For an array of two antennas having the spacing d and fed with
currents of equal amplitude but differing in phase by we found the group
pattern for the fields to be where is the angle mea-
sured from the axis of the array, and we investigated the group patterns for sev-
eral pairs of values of d and For example, for and the patterna = 0,d = l>2a.
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718 Chapter 10 Principles of Radiation and Antennas

corresponds to maximum radiation broadside to the axis of the array, whereas
for and the pattern corresponds to maximum radiation endfire
to the axis of the array. We generalized the treatment to a uniform linear array
of n antennas and briefly discussed the principle of a broadband array.

To take into account the effect of ground on antennas, we introduced the
concept of an image antenna in a perfect conductor and discussed the applica-
tion of the array techniques in conjunction with the actual and the image anten-
nas to obtain the radiation pattern of the actual antenna in the presence of the
ground. As another example of the image-antenna concept, we considered the
corner reflector.

Next we discussed the far-field determination for an aperture antenna by
recalling that it is equivalent to setting up the problem to solve for Fraunhofer
diffraction from the aperture, which consists of using the plane wave approxi-
mation. By considering the example of a rectangular aperture with uniform
field distribution in it, we illustrated the solution and studied the resulting radi-
ation pattern and its characteristics.

Finally, we discussed receiving properties of antennas. In particular, (1) we
discussed the reciprocity between the receiving and radiating properties of an
antenna by considering the simple case of a Hertzian dipole, (2) we considered
the loop antenna and illustrated the application of its directional properties for
locating the source of a radio signal, and (3) we introduced the effective area
concept and derived the Friis transmission formula.

REVIEW QUESTIONS

Q10.1. What is a Hertzian dipole? Discuss the time variations of the current and
charges associated with the Hertzian dipole.

Q10.2. Discuss the analogy between the magnetic vector potential due to an infinitesi-
mal current element and the electric scalar potential due to a point charge.

Q10.3. To what does the word retarded in the terminology retarded magnetic vector po-
tential refer? Explain.

Q10.4. Outline the derivation of the electromagnetic field due to the Hertzian dipole.
Q10.5. Discuss the characteristics of the electromagnetic field due to the Hertzian dipole.
Q10.6. What are radiation fields? Why are they important? Discuss their characteristics.
Q10.7. Define the radiation resistance of an antenna.
Q10.8. Why is the expression for the radiation resistance of a Hertzian dipole not valid

for a linear antenna of any length?
Q10.9. What is a radiation pattern?
Q10.10. Discuss the radiation pattern for the power density due to the Hertzian dipole.
Q10.11. Define the directivity of an antenna.What is the directivity of a Hertzian dipole?
Q10.12. How do you find the radiation fields due to an antenna of arbitrary length and

arbitrary current distribution?
Q10.13. Discuss the evolution of the half-wave dipole from an open-circuited transmis-

sion line.
Q10.14. Justify the approximations involved in evaluating the integrals in the determi-

nation of the radiation fields due to the half-wave dipole.

a = p,d = l>2
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Problems 719

Q10.15. What are the values of the radiation resistance and the directivity for a half-
wave dipole?

Q10.16. What is an antenna array?
Q10.17. Justify the approximations involved in the determination of the resultant field

of an array of two antennas.
Q10.18. What is an array factor? Provide a physical explanation for the array factor.
Q10.19. Discuss the concept of unit and group patterns and their multiplication to ob-

tain the resultant pattern of an array.
Q10.20. Distinguish between broadside and endfire radiation patterns.
Q10.21. Discuss the principle of a phased array.
Q10.22. Discuss the principle of a broadband array using as an example the log-periodic

dipole array.
Q10.23. Discuss the concept of an image antenna to find the field of an antenna in the

vicinity of a perfect conductor.
Q10.24. What determines the sense of the current flow in an image antenna relative to

that in the actual antenna?
Q10.25. How does the concept of an image antenna simplify the determination of the

radiation pattern of an antenna above a perfect conductor surface?
Q10.26. Discuss the application of the image-antenna concept to the 90° corner reflector.
Q10.27. Explain the distinguishing feature pertinent to the computation of radiation

from an aperture antenna.
Q10.28. Give examples of aperture antennas.
Q10.29. Discuss the determination of the far field for an aperture antenna.
Q10.30. Describe the radiation pattern for the far field of a rectangular aperture anten-

na with uniform field distribution in the aperture and discuss its characteristics.
Q10.31. Discuss the reciprocity associated with the transmitting and receiving properties

of an antenna. Can you think of a situation in which reciprocity does not hold?
Q10.32. What is the receiving pattern of a loop antenna? How should you orient a loop

antenna to receive (a) a maximum signal and (b) a minimum signal?
Q10.33. Discuss the application of the directional receiving properties of a loop antenna

in the location of the source of a radio signal.
Q10.34. How is the effective area of a receiving antenna defined?
Q10.35. Outline the derivation of the expression for the effective area of a Hertzian dipole.
Q10.36. Discuss the derivation of the Friis transmission formula.

PROBLEMS

Section 10.1

P10.1. Satisfaction of Maxwell’s curl equation for E by Hertzian dipole fields. Show
that (10.9) and (10.10) satisfy the Maxwell’s curl equation for E.

P10.2. Some characteristics of the Poynting vector for Hertzian dipole fields. For the
electromagnetic field due to the Hertzian dipole, show that (a) the time-average
value of the of the Poynting vector is zero and (b) the contribution
to the time-average value of the r-component of the Poynting vector is com-
pletely from the terms involving 1/r.

u-component
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720 Chapter 10 Principles of Radiation and Antennas

P10.3. Nonsatisfaction of Maxwell’s curl equations by Hertzian dipole quasistatic
fields. Show that the field expressions obtained by replacing in (10.11) and
(10.12) by do not satisfy Maxwell’s curl equations.

P10.4. RMS values of Hertzian dipole field components for current of two frequencies.
A Hertzian dipole of length 1 m situated at the origin and oriented along the
positive z-direction carries the current Find
the root-mean-square values of and at the point (10, 0). Assume
free space for the medium.

Section 10.2

P10.5. Nonsatisfaction of Maxwell’s curl equations by the radiation fields of a Hertzian
dipole. Show that the radiation fields given by (10.17a) and (10.17b) do not by
themselves satisfy simultaneously the Maxwell’s curl equations.

P10.6. Transition from near field to radiation field for of a Hertzian dipole. Find
the value of r at which the amplitude of the radiation field in the 
of E in (10.10) is equal to the resultant amplitude of the remaining two terms.

P10.7. Computation of Hertzian dipole current for producing a given electric field.
Find the amplitude of the current with which a Hertzian dipole of length 0.5
m has to be excited at a frequency of 10 MHz to produce an electric-field inten-
sity of amplitude 1 mV/m at a distance of 1 km broadside to the dipole, in free
space. What is the time-average power radiated for the computed value of 

P10.8. Computation of directivity of an antenna for a given power density radiation
pattern. The power density pattern for an antenna located at the origin is
given by

Find the directivity of the antenna.
P10.9. Current ratio for two antennas with equal maximum radiated power densities.

Find the ratio of the currents in two antennas having directivities and and
radiation resistances and for which the maximum time-average radi-
ated power densities are equal.

P10.10. Computation of time-average power radiated by a Hertzian dipole. For the
Hertzian dipole of Problem P10.4, calculate the time-average power radiated by
the dipole.

Section 10.3

P10.11. Magnetic vector potential and radiation fields for a half-wave dipole. For the
half-wave dipole of Section 10.3, find the magnetic vector potential for the radi-
ation fields and show that the radiation fields obtained from it are the same as
those given by (10.31a) and (10.31b).

P10.12. Computation of a linear dipole current for producing a given electric field. Find
the maximum amplitude of the current with which a linear dipole of length 15
m has to be excited at a frequency of 10 MHz in order to produce an electric-field
intensity of amplitude 1 mV/m at a distance of 1 km broadside to the dipole, in
free space.What is the time-average power radiated for the computed value of I0?

I0

Rrad2Rrad1

D2D1

f1u, f2 = e csc2 u for p>6 … u … p>2
0 otherwise

I0?

I0

u -component
Eu

p>3,HfEr, Eu,
10 cos 2p * 106t cos 6p * 106t A.

1vt - br2
vt
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P10.13. Computation of a linear dipole current for producing a given electric field. Re-
peat Problem P10.12 for a linear dipole of length 15 m at a frequency of 50 MHz.

P10.14. Derivation of radiation fields and characteristics for a short dipole. A short di-
pole is a center-fed straight-wire antenna having a length small compared to a
wavelength. The amplitude of the current distribution can then be approximated
as decreasing linearly from a maximum at the center to zero at the ends.Thus, for
a short dipole of length L lying along the z-axis between and 
the current distribution is given by

(a) Obtain the radiation fields of the short dipole. (b) Find the radiation resis-
tance and the directivity of the short dipole.

P10.15. Derivation of radiation fields for a circular loop antenna. Consider a circular
loop antenna of radius a such that the circumference is small compared to the
wavelength.Assume the loop antenna to be in the xy-plane with its center at the
origin and the loop current to be in the sense of increasing 
Show that for obtaining the radiation fields, the magnetic vector potential due
to the loop antenna is given by

where Then show that the radiation fields are

P10.16. Radiation resistance and directivity of a circular loop antenna. Find the radia-
tion resistance and the directivity of the circular loop antenna of Problem
P10.15. Compare the dependence of the radiation resistance on the electrical
size (circumference/wavelength) to the dependence of the radiation resistance
of the Hertzian dipole on its electrical size (length/wavelength).

Section 10.4

P10.17. Group patterns for several cases of an array of two antennas. For the array of
two antennas of Example 10.3, find and sketch the group pattern for each of the
following cases: (a) and (b)

P10.18. Resultant pattern for an array of two Hertzian dipoles in the plane of the array.
For the array of two Hertzian dipoles of Fig. 10.11, find and sketch the resultant
pattern in the xz-plane for each of the following cases: (a) and
(b) d = l>4, a = -p>2.

d = l>2, a = p;

d = 2l, a = 0.d = l, a = p>2;

 H = -  

I0pa2b2 sin u

4pr
   cos 1vt - br2 au

 E =
hI0pa2b2 sin u

4pr
   cos 1vt - br2 af

b = v>vp.

A =
m0 I0pa2b sin u

4pr
   sin 1vt - br2 af

f.I = I0 cos vt

I1z2 = d I0 a1 +
2z

L
b  cos vt for -L>2 6 z 6 0

I0 a1 -
2z

L
b  cos vt for 0 6 z 6 L>2

z = L>2,z = -L>2
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722 Chapter 10 Principles of Radiation and Antennas

P10.19. Group pattern for a linear binomial array. For a linear binomial array of n an-
tennas, the amplitudes of the currents in the elements are proportional to the
coefficients in the polynomial Show that the group pattern is

where d is the spacing between the elements and 
is the progressive phase shift.

P10.20. Beam width between first nulls for the radiation pattern of a large uniform lin-
ear array. For the uniform linear array of n isotropic antennas of Fig. 10.15, as-
sume that so that the group pattern is a broadside pattern. Show that for
large n and for the beam width between the first nulls (BWFN), that is,
the angular spacing between the nulls on either side of the main lobe of the
group pattern, is approximately equal to where L is the length of the
array.

P10.21. Synthesis of an array for a given group pattern using pattern multiplication
technique. Use the pattern multiplication technique in reverse to synthesize an
array of isotropic elements for the group pattern

P10.22. Synthesis of an array for a given group pattern using pattern multiplication
technique. Repeat Problem P10.21 for the group pattern

Section 10.5.

P10.23. Radiation patterns for a horizontal half-wave dipole quarter wavelength above
ground. For a horizontal half-wave dipole at a height above a plane, perfect
conductor surface, find and sketch the radiation pattern in (a) the vertical plane
perpendicular to the axis of the antenna and (b) the vertical plane containing
the axis of the antenna.

P10.24. Radiation characteristics for a vertical quarter-wavelength antenna above
ground. For a vertical antenna of length above a plane, perfect conductor
surface, find (a) the radiation pattern in the vertical plane and (b) the directivity.

P10.25. A Hertzian dipole in the presence of a 90° corner reflector. A Hertzian dipole
is situated parallel to one side and perpendicular to the other side of a 90° cor-
ner reflector, as shown in Fig. 10.29. Find the expression for the radiation pat-
tern in the plane of the paper as a function of the angle and the distances 
and d2.

d1u

l>4

l>4

cos2 16p cos c2
9 cos2 12p cos c2

cos2
 ap

2
 cos cb ` sin ap

2
 cos cb `

2l>L,

nd � l,
a = 0

aƒcos [1bd cos c + a2>2] ƒn - 1,
11 + x2n - 1.

u

d1

d2
FIGURE 10.29

For Problem P10.25.
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P10.26. A quarter-wavelength monopole in the presence of a 90° corner reflector. A
monopole is situated parallel to one side and perpendicular to the other

side of a 90° corner reflector, as shown in Fig. 10.30. Find the radiation pattern
in the plane of the paper as a function of the angle u.

l>4

30 kl

30
FIGURE 10.31

For Problem P10.27.

u

l/4

l/4
FIGURE 10.30

For Problem P10.26

P10.27. A Hertzian dipole in the presence of a 60° corner reflector. A corner reflector
is made up of two semi-infinite, plane, perfect conductors at an angle of 60°, as
shown by the cross-sectional view in Fig. 10.31. A Hertzian dipole is situated
parallel to the conductors at a distance of from the corner along the bisector
of the two conductors. Find the ratio of the radiation field at a point broadside
to the dipole and along the bisector of the conductors to the radiation field at
the same point in the absence of the corner reflector, for the following values of
k: (a) (b) and (c) 1.1

2;1
4;

kl

Section 10.6

P10.28. Far field for a rectangular aperture antenna with nonuniform field distribution.
For the rectangular aperture antenna of Example 10.5, assume that the field dis-
tribution in the aperture is nonuniform as given by

Obtain the expression for the far field and hence the expressions for the follow-
ing: (a) BWFN in the plane; (b) BWFN in the plane; (c) HPBW
in the plane; and (d) the directivity.

P10.29. Far field for a rectangular aperture antenna with nonuniform field distribution.
Repeat Problem P10.28 for

E1x, y, 02 = E0 cos2
  
px

a
  ay  for  -a>2 6 x 6 a>2, -b>2 6 y 6 b>2

f = 0
f = 90°f = 0

E1x, y, 02 = E0 cos  
px

a
  ay  for  -a>2 6 x 6 a>2, -b>2 6 y 6 b>2
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724 Chapter 10 Principles of Radiation and Antennas

P10.30. Far field radiation pattern for a circular aperture with uniform field distribu-
tion. Consider a circular aperture of radius a in the xy-plane and centered at
the origin. For uniform field distribution in the aperture, show that
the far-field radiation pattern is in accordance with Fur-
ther, given that the first nonzero root of is 3.83, show that in any con-
stant- the BWFN is approximately equal to 

P10.31. Radiation pattern for a large uniform linear array of isotropic antennas. Con-
sider the uniform linear array of n isotropic antennas of Fig. 10.15 for the case of

so that the group pattern is a broadside pattern. Show that for large n and
for the radiation pattern is the same as that in one of the coordinate
planes ( or ) for the rectangular aperture antenna with uniform
field distribution of Example 10.5, and hence the BWFN is approximately equal
to where L is the length of the array.

Section 10.7

P10.32. Application of a turnstile antenna for responding to clockwise circular polariza-
tion. An arrangement of two identical Hertzian dipoles situated at the origin
and oriented along the x- and y-axes, known as the turnstile antenna, is used for
receiving circularly polarized signals arriving along the z-axis. Determine how
you would combine the voltages induced in the two dipoles so that the turnstile
antenna is responsive to circular polarization rotating in the clockwise sense as
viewed by the antenna, but not to that of the counterclockwise sense of rotation.

P10.33. Ambiguity in the application of an interferometer for angle-of-arrival measure-
ment. A uniform plane wave is incident on an interferometer consisting of an
array of two identical antennas with spacing at an angle to the
axis of the array, producing a phase difference between the voltages induced in
the two antennas. Find all possible values of that result in a phase
difference equal to where n is an integer, between the two induced
voltages.

P10.34. A communication link involving a half-wave dipole and a small loop antenna.
A communication link at a frequency of 30 MHz uses a half-wave dipole for the
transmitting antenna and a small loop for the receiving antenna, involving a dis-
tance of 100 km.The antennas are oriented so as to receive maximum signal and
the receiving antenna is matched to its load. If the received time-average power
is to be find the minimum required value of the maximum amplitude 
of the current with which the transmitting antenna has to be excited. Assume
the antennas to be lossless.

REVIEW PROBLEMS

R10.1. Locus of circular polarization for the radiation field of a turnstile antenna. Two
identical current elements are located at the origin, one directed along the posi-
tive x-axis and the other directed along the positive z-axis. They carry currents
equal in amplitude and 90° out of phase. Find the expression for the locus of all

I01 mW,

¢f ; 2np,
0° 6 c 6 180°

¢f
c = 50°d = 3l

2l>L,

f = 90°f = 0
nd � l,

a = 0

cNote: 
1

2pL
2p

0
ejx cos a da = J01x2 and LxJ01x2 dx = xJ11x2 d

1.22l>a.f-plane,
J11x2 = 0

J11ba sin u2>1ba sin u2.
E = E0 ax
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u

d

FIGURE 10.32

For Problem R10.5.

points at which the polarization of the field is circular on the surface of a sphere
of radius r, where 

R10.2. Three-dimensional power density pattern of an array of two Hertzian dipoles.
For the array of two Hertzian dipoles in Fig. 10.11, assume that and

Obtain an approximate expression for the three-dimensional power
density pattern and find the directivity and the radiation resistance.

R10.3. Radiation pattern of a center-fed antenna an odd multiple of half-wavelengths
long. Show that the radiation pattern for a center-fed linear antenna of length
equal to an odd-integer number of half-wavelengths, n, obtained by setting

in (10.41), agrees with the one obtained by considering the antenna as
an array of n half-wave dipoles of currents of equal amplitudes and appropriate
progressive phase shift.

R10.4. Synthesis of an array for a given group pattern using pattern multiplication
technique. Synthesize an array of isotropic elements for the group pattern

R10.5. A Hertzian dipole in the presence of a 90° corner reflector. A Hertzian dipole is
situated at a distance d from the corner along the bisector of the two conductors
of a 90° corner reflector and oriented normal to the bisector in the cross-section-
al plane, as shown in Fig. 10.32. Obtain the expression for the radiation pattern in
the cross-sectional plane, as a function of the angle u.

sin 12p cos c2
sin [1p>22 cos c]

  cos2
 
 ap

2
 cos cb

k = n>2

f1u, f2
a = p.

d � l

br � 1.

R10.6. Radiation pattern for a large uniform linear array of isotropic antennas. Con-
sider the uniform linear array of n isotropic antennas of Fig. 10.15 for the case of

so that the group pattern is an endfire pattern. Show that for large n
and for the BWFN is approximately equal to 28l>L.nd � l,
a = -bd,
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C H A P T E R  1 1

Several Solution Techniques

In this chapter, we turn our attention primarily to an introduction to numerical
methods, but also consider the analytical technique of separation of variables for
the solution of Laplace’s equation in two dimensions and a geometrical method
based on field mapping for the determination of transmission line parameters.

For the numerical techniques, we are interested in the application of well-
known methods for solving integral equations and partial differential equations
to the numerical solution of Maxwell’s equations and equations involving po-
tential. In this context, we shall consider four methods: (1) the finite-difference
method, leading to the solution of Laplace’s equation in two dimensions by
using appropriate finite-difference approximations to the derivative terms; (2)
the method of moments, involving the inversion of an integral equation relating
the electric potential to charge distribution by approximating the integral as a
summation; (3) the finite-element method, also for solving Laplace’s equation
in two dimensions, but based on the minimization of electric energy expressed
as an integral over the region of interest; and (4) the finite-difference time-do-
main method, for solving the one-dimensional wave equation or the first-order
differential equations leading to it by extending the finite-difference approxi-
mations to the time derivative terms. We shall also present several examples of
applications, including the determination of transmission-line parameters and
the time-domain analysis of an initially charged transmission line.

11.1 ANALYTICAL SOLUTION OF LAPLACE’S EQUATION

Considering Laplace’s equation (5.61) and its expansion in Cartesian coordi-
nates, given by (5.62), and assuming the potential to be independent of z, we ob-
tain the two-dimensional Laplace’s equation in x and y to be

(11.1)
02V

0x2 +
02V

0y2 = 0

726
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11.1 Analytical Solution of Laplace’s Equation 727

Equation (11.1) is a partial differential equation in two dimensions. As we
already discussed in Sec. 9.1, the technique by means of which it is solved is the
“separation of variables” technique. It consists of assuming that the solution for
the potential is the product of two functions, one of which is a function of x only
and the second is a function of y only. Denoting these functions to be X and Y,
respectively, we have

(11.2)

Substituting this assumed solution into the differential equation, we obtain

Dividing both sides by XY and rearranging, we get

(11.3)

The left side of (11.3) is a function of x only; the right side is a function of
y only.Thus (11.3) states that a function of x only is equal to a function of y only.
A function of x only other than a constant cannot be equal to a function of y
only other than the same constant for all values of x and y. For example, 2x is
equal to 4y for only those pairs of values of x and y for which Since we
are seeking a solution that is good for all pairs of x and y, the only solution that
satisfies (11.3) is that for which each side of (11.3) is equal to a constant. Denot-
ing this constant to be we have

(11.4a)

and

(11.4b)

Thus, we have obtained two ordinary differential equations involving separate-
ly the variables x and y, starting with the partial differential equation involving
both of the variables x and y. It is for this reason that the method is known as
the separation of variables technique.

The solutions for (11.4a) and (11.4b) are given by

(11.5a)X1x2 = eAeax + Be-ax for a Z 0
A0 x + B0 for a = 0

d2Y

dy2 = -a2Y

d2X

dx2 = a2X

a2,

x = 2y.

1
X

  
d2X

dx2 = -  
1
Y

  
d2Y

dy2

Y 
d2X

dx2 + X 
d2Y

dy2 = 0

V1x, y2 = X1x2Y1y2

“Separation
of variables”
technique
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728 Chapter 11 Several Solution Techniques

where A, B, and are arbitrary constants, and

(11.5b)

where C, D, and are arbitrary constants. Substituting (11.5a) and (11.5b)
into (11.2), we obtain

(11.6)

Equation (11.6) is the general solution for Laplace’s equation in the two dimen-
sions x and y. The arbitrary constants are evaluated from the boundary condi-
tions specified for a given problem. We shall now consider two examples.

Example 11.1 Application of analytical solution of Laplace’s equation in
two dimensions

Let us consider an infinitely long rectangular slot cut in a semi-infinite plane conducting
slab held at zero potential, as shown by the cross-sectional view, transverse to the slot, in
Fig. 11.1. With reference to the coordinate system shown in the figure, assume that a po-
tential distribution where is a constant, is created at the mouth

of the slot by the application of a potential to an appropriately shaped conductor
away from the mouth of the slot not shown in the figure. We wish to find the potential
distribution in the slot.

x = a
V0V = V0 sin 1py>b2,

V1x, y2 = e 1Aeax + Be-ax21C cos ay + D sin ay2 for a Z 0
1A0 x + B021C0 y + D02 for a = 0

D0C0,

Y1y2 = eC cos ay + D sin ay for a Z 0
C0 y + D0 for a = 0

B0A0,

b

a Slot Conductor
y � 0

x � 0, V � 0

V � 0

y � b

x � a

V � 0

x

yz

V � V0 sin
py
b

FIGURE 11.1

Cross-sectional view of a rectangular slot cut in a semi-infinite plane conducting
slab at zero potential. The potential at the mouth of the slot is volts.V0 sin 1py>b2
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11.1 Analytical Solution of Laplace’s Equation 729

Since the slot is infinitely long in the z direction with uniform cross section, the
problem is two dimensional in x and y and the general solution for V given by (11.6) is
applicable. The boundary conditions are

(11.7a)
(11.7b)
(11.7c)

(11.7d)

The solution corresponding to does not fit the boundary conditions, since V is re-
quired to be zero for two values of y and in the range Hence we can ignore
that solution and consider only the solution for 

Applying the boundary condition (11.7a), we have

The only way of satisfying this equation for a range of values of x is by setting 
Next, applying the boundary condition (11.7c), we have

This requires that which can be satisfied by either or
We, however, rule out since it results in a trivial solution of zero for the

potential. Hence we set

Thus the solution for V reduces to

(11.8)

where 
Next, applying boundary condition (11.7b) to (11.8), we obtain

To satisfy this equation without obtaining a trivial solution of zero for the potential, we set

or

 a =
np

b
 n = 1, 2, 3, Á

 ab = np n = 1, 2, 3, Á

sin ab = 0

0 = A¿ sinh ax sin ab for 0 6 x 6 a

A¿ = 2AD.

 = A¿ sinh ax sin ay

 V1x, y2 = 1Aeax - Ae-ax2D sin ay

A + B = 0 or B = -A

D = 0D = 0.
A + B = 01A + B2D = 0,

0 = 1A + B2D sin ay for 0 6 y 6 b

C = 0.

0 = 1Aeax + Be-ax21C2 for 0 6 x 6 a

a Z 0.
0 6 x 6 a.

a = 0

 V = V0 sin  
py

b
  for x = a, 0 6 y 6 b

 V = 0   for x = 0, 0 6 y 6 b

 V = 0   for y = b, 0 6 x 6 a

 V = 0   for y = 0, 0 6 x 6 a
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Since several values of satisfy the boundary condition, several solutions are possible
for the potential. To take this into account, we write the solution as the superposition of
all these solutions multiplied by different arbitrary constants. In this manner, we obtain

(11.9)

Finally, applying the boundary condition (11.7d) to (11.9), we get

(11.10)

On the right side of (11.10) we have an infinite series of sine terms in y, but on the left
side we have only one sine term in y. Equating the coefficients of the sine terms having
the same arguments, we obtain

or

Substituting this result in (11.9), we obtain the required solution for V as

(11.11)

We may now compute the potential at any point inside the slot, given the values of
a, b, and For example, for that is, for a square slot, (11.11) gives the potential at
the center of the slot to be 

Example 11.2 Application of analytical solution of Laplace’s equation in
two dimensions

Let us assume that the rectangular slot of Fig. 11.1 is covered at the mouth by a
conducting plate that is kept at a potential making sure that the edges touching
the corners of the slot are insulated, as shown in Fig. 11.2(a), and find the solution for the
potential in the slot for this new boundary condition.

Since the boundary conditions (11.7a)–(11.7c) remain the same, all we need to do
to find the required solution for the potential is to substitute the new boundary condition

V = V0 for x = a, 0 6 y 6 b

V = V0,
x = a

0.1993V0.
a = b,V0.

V1x, y2 = V0  
sinh 1px>b2
sinh 1pa>b2   sin  

py

b

Aœ
n = 0 for n Z 1

Aœ
1 =

V0

sinh 1pa>b2

Aœ
n sinh  

npa

b
= eV0 for n = 1

0 for n Z 1

V0 sin  

py

b
= a

q

n = 1,2,3,Á
Aœ

n sinh  
npa

b
  sin  

npy

b
 for 0 6 y 6 b

V1x, y2 = a
q

n = 1,2,3,Á
Aœ

n sinh  
npx

b
  sin  

npy

b
 for 0 6 y 6 b

a
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y � 0

x � 0, V � 0

V � 0
y � b

x � a, V � V0

V � 0
V � 0 V � 0

V � 0

V � V0

x

yz
(a) (b)

FIGURE 11.2

(a) Cross-sectional view of a rectangular slot in a semi-infinite plane conducting slab at zero
potential and covered at the mouth by a conducting plate kept at a potential 
(b) Equipotentials and direction lines of electric field in the slot for the case b/a = 1

V0.

in (11.9) and evaluate the coefficients Thus we have

(11.12)

In this equation we have an infinite series on the right side, but the left side is a constant.
Thus we cannot hope to obtain by simply comparing the coefficients of the sine terms
having like arguments as in Example 11.1. If we do so, we get the result of and all

since there is no constant term on the right side and there are no sine terms on
the left side.

The way out of the dilemma is to make use of the so-called orthogonality property
of sine functions, given by

where m and n are integers. Multiplying both sides of (11.12) by and inte-
grating between the limits 0 and b, we have

The integration and summation on the right side can be interchanged, giving us

L
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732 Chapter 11 Several Solution Techniques

or

Substituting this result in (11.9), we obtain the required solution for the potential inside
the slot as

(11.13)

The numerical values of potentials may now be computed for points inside the slot
for given values of a, b, and and equipotentials may be sketched by joining points hav-
ing approximately the same potential values. The electric field lines can then be drawn
orthogonal to the equipotentials. The resulting sketches for a square slot are shown in
Fig. 11.2(b).

K11.1. Laplace’s equation in two dimensions; Separation of variables technique.
D11.1. A conductor occupying the surfaces and is kept at

zero potential.A second conductor occupying the surfaces 
is kept at a potential of 100 V.The edges where the conductors touch are insulat-
ed. The medium between the conductors is free space. Find the following in a

(a) the potential at (b) the electric field inten-
sity at and (c) the surface charge density at 
Ans. (a) 50 V; (b) (c)

11.2 NUMERICAL SOLUTION BY FINITE-DIFFERENCE METHOD

The finite-difference method is employed for solving differential equations, and
it is perhaps the simplest method for that purpose. It consists of replacing the
derivative terms in the differential equation by their finite-difference approxi-
mations and solving the resulting algebraic equations. To do this, the region of
interest is discretized by selecting a set of grid points, and the derivatives of the
function of interest at each grid point are expressed in terms of the values of the
function at a subset of the grid points by using approximations such as the cen-
tral-difference formulas. The resulting set of algebraic equations are solved for
the values of the function at the grid points. We shall illustrate this first in one-
dimension.

Thus, let us consider solving the differential equation

(11.14)
d2f1x2

dx2 + f1x2 = 0

-50e0 C>m2.-1100ax + 50ay2 V>m;
x = 1, y = 0.x = 1, y = 2;

x = 1, y = 1;z = constant plane:

xy = 2, x 7 0, y 7 0,
y 7 0, x = 0x 7 0, y = 0

V0,

V = a
q

n = 1,3,5,Á
 

4V0

np
  

sinh 1npx>b2
sinh 1npa>b2   sin  

npy

b

Aœ
m = L 4V0

mp
  

1
sinh 1mpa>b2 for m odd

0 for m even

V0 b

mp
 11 - cos mp2 = aAœ

m sinh  
mpa

b
b  

b

2

Solution 
of one-
dimensional
differential
equation
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0

x � 0 x � 1x

1 2

(a)

(b)

3

x

k � 1 k k � 1

(k � 1)a ka (k � 1)a

4

FIGURE 11.3

For the solution of one-dimensional differential
equation using the finite-difference method.

over the region with the boundary conditions specified as 
and Then we divide the region of interest into n equal seg-
ments, thereby identifying grid points, including the two end points.The
situation is illustrated in Fig. 11.3(a) for Since the values of f at the end
points 0 and 4 are specified, we need to find the values at the three interior grid
points 1, 2, and 3, and hence we need to obtain a set of three algebraic equations.

Let us consider the kth grid point, where Then, at that grid
point, where a is the spacing between two adjacent grid points, as
shown in Fig. 12.1(b). We can approximate at this grid point as

(11.15)

where is the value of f at the kth grid point, that is, at The right side
of (11.15) is the central-difference approximation for the second derivative of f
at the grid point k.

Using (11.15) and noting that here a is equal to we can write the finite-
difference approximation for the differential equation at the kth grid point as

or

(11.16)

Applying this result to the three interior grid points 1, 2, and 3, we obtain the set
of three equations

 16f2 - 31f3 + 16f4 = 0
 16f1 - 31f2 + 16f3 = 0
 16f0 - 31f1 + 16f2 = 0

16fk - 1 - 31fk + 16fk + 1 = 0

161fk + 1 - 2fk + fk - 12 + fk = 0

1
4,

x = ka.fk

 =
1

a2 1fk + 1 - 2fk + fk - 12
 L

1
a

 c afk + 1 - fk

a
b - afk - fk - 1

a
b d

 L
1
a

 c adf

dx
b

x =1k - 0.52a
- adf

dx
b

x =1k + 0.52a
d

 cd2f

dx2 d
k

= cd2f

dx2 d
x = ka

d2f>dx2
x = ka,

k = 1, 2, 3.

n = 4.
1n + 12 0 … x … 1f112 = 1.

f102 = 00 … x … 1,
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734 Chapter 11 Several Solution Techniques

Recognizing that and these three equations can be arranged in
matrix form as

Solving, we obtain and An analytical so-
lution reveals that the exact solution for f(x) is (sin x)/(sin 1), which gives

and Thus, the numerical solution is accu-
rate to the fourth decimal place even for the number of interior grid points as
small as 3.

The procedure can be extended to two-dimensional and three-dimension-
al differential equations. One equation of interest is the Laplace’s equation
(5.61). We shall consider the two-dimensional Laplace’s equation in the Carte-
sian coordinates x and y, given by

(11.17)

To introduce the principle behind the numerical solution of (11.17), let us
suppose that we know the potentials and at four points equidistant
from a point P(0, 0, 0) and lying on mutually perpendicular axes, x and y, pass-
ing through P as shown in Fig. 11.4, and that we wish to find the potential at
P in terms of and Then we require that

(11.18)[§2V]P = c 02V

0x2 +
02V

0y2 d 10,0,02
= 0

V4.V1, V2, V3,
V0

V4V1, V2, V3,

§2V =
02V

0x2 +
02V

0y2 = 0

f3 = 0.8101.f1 = 0.2940, f2 = 0.5697,

f3 = 0.8109.f1 = 0.2943, f2 = 0.5702,

C -31 16 0
16 -31 16
0 16 -31

S Cf1

f2

f3

S = C 0
0

-16
S

f4 = 1,f0 = 0

x

y

V1 (a, 0, 0)

V2 (�a, 0, 0)

(0, 0, 0) (0, a, 0)(0, �a, 0)

P V3V4

FIGURE 11.4

For illustrating the principle behind the numerical
solution of Laplace’s equation in two dimensions.

Solution of
two-
dimensional
Laplace’s
equation
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11.2 Numerical Solution by Finite-Difference Method 735

To solve this equation approximately for we note that

(11.19a)

Similarly,

(11.19b)

Substituting (11.19a) and (11.19b) into (11.18) and rearranging, we obtain

(11.20)

Thus, the potential at P is approximately equal to the average of the potentials
at the four equidistant points lying along mutually perpendicular axes through
P. The result becomes more and more accurate as the spacing a becomes less
and less. Equation (11.20) is the finite-difference approximation to (11.17) and
forms the basis for its numerical solution by the finite-difference method. We
shall illustrate this by means of an example.

Example 11.3 Finite-difference method of solution of Laplace’s
equation in two dimensions

Let us consider four infinitely long conducting strips of equal widths, situated such that
the cross section of the arrangement is a square and held at potentials and 
as shown in Fig. 11.5. Note that the corners are insulated so that the plates do not touch.
By dividing the area between the conductors into a grid of squares, and using
(11.20), we wish to find the approximate values of the potentials at the grid points by the
finite-difference method.

The solution consists of obtaining a set of values for the potentials at the grid
points such that the potential at each grid point is the average of the potentials at the
neighboring four grid points to within a specified tolerance. Thus, if we denote the

6 * 6

Vr,Va, Vb, Vi,

V0 L 1
41V1 + V2 + V3 + V42

c 02V

0y2 d 10,0,02
L

1

a2  1V3 + V4 - 2V02

 =
1

a2 1V1 + V2 - 2V02
 =

1

a2 [1V1 - V02 - 1V0 - V22]

 L
1
a

 e [V]1a,0,02 - [V]10,0,02
a

-
[V]10,0,02 - [V]1- a,0,02

a
r

 L
1
a

 e c 0V

0x
d
1a>2,0,02

- c 0V

0x
d
1- a>2,0,02

r
 c 02V

0x2 d 10,0,02
= c 0

0x
 a 0V

0x
b d
10,0,02

V0,
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736 Chapter 11 Several Solution Techniques

potentials to be and if the specified tolerance is de-
noted to be then the values of the potentials must be such that

(11.21a)

(11.21b)

and so on.The simplest technique adaptable to computer solution is to begin with values
of zero for all unknown potentials. By traversing the grid in a systematic manner, the av-
erage of the four neighboring potentials is computed for each grid point and is used to
replace the potential at that grid point if that value differs from the computed average by
more than This procedure is repeated until a final set of values for the unknown po-
tentials consistent with (11.21a), (11.21b), is obtained.

Let us consider some numerical values:
and Then we first set all unknown potentials equal to zero. Beginning at the
grid point 11 and traversing the grid rowwise, we replace the zero value for by

or 35 V, then replace the zero value for by 
or 33.75 V, and so on. After one traversal is completed, we come back to the grid point 11
and traverse the grid again, replacing the potential value at each grid point by the average of
the then-existing values of the four neighboring potentials, as necessary. This procedure is
repeated until the desired set of values is obtained.

The procedure just discussed can be very conveniently carried out by using a com-
puter program. The final set of values from the run of such a program for 

and is shown in Fig. 11.6, which also shows
the residuals, where a residual at a grid point is the absolute value of the difference be-
tween the potential at that grid point and the average of the four neighboring potentials.
The residuals are shown below the potential values. It can be seen that all residuals are
less than 0.01 V.

¢ = 0.01 VVb = 0 V, Vl = 40 V, Vr = 0 V,
Va = 100 V,

1
41100 + 35 + 0 + 02,V12

1
41100 + 40 + 0 + 02,

V11

¢ = 0.01 V.
Va = 100 V, Vb = 0 V, Vl = 40 V, Vr = 0 V,

Á
¢.

 ƒV12 - 1
41Va + V13 + V22 + V112 ƒ 6 ¢

ƒV11 - 1
41Va + V12 + V21 + Vl2 ƒ 6 ¢

¢,
V11, V12, V13, V14, V15, V21, V22, Á V55,

y

x

V � Vl V � Vr

V � VaP

V � Vb

V54

d
d

V55

V15V14V13V12V11

V25V24V23V22V21

FIGURE 11.5

Cross-sectional view of an arrangement of four
infinitely long conducting strips, with the region
inside divided into a grid of squares.6 * 6
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11.2 Numerical Solution by Finite-Difference Method 737

Iteration
technique

100 100 100 100 100

0 0 0 0 0

65.60 72.71 72.30 65.76 48.10
0.006 0.006 0.004 0.006 0.006

49.69 52.99 50.73 42.68 26.66
0.006 0.007 0.004 0.007 0.006

40.21 38.84 34.95 27.61 15.89
0.004 0.004 0.000 0.004 0.004

32.32 27.23 22.65 16.92 9.29
0.006 0.007 0.004 0.007 0.006

21.86 15.14 11.49 8.19

ITERATION NO. � 25
SOLUTION COMPLETED
VALUE OF DELTA ACHIEVED � � 7.423401E-03

4.36

0

0

0

0

0

40

40

40

40

40
0.006 0.006 0.004 0.006 0.006

FIGURE 11.6

Final set of values of potentials and residuals for the
arrangement of Fig. 11.5, for 

and ¢ = 0.01 V.Vl = 40 V, Vr = 0 V,
Va = 100 V, Vb = 0 V,

The method we just discussed is known as the iteration technique since
it involves the iterative process of converging an initially assumed solution to
a final one consistent with Laplace’s equation in the approximate sense
given by (11.20). There are several variations of the iteration technique. For
example, by employing an initial guess other than zeros, a faster convergence
may be achieved. The end result will, however, still be only to within the
specified accuracy. Alternative to the iteration technique, one can write a set
of simultaneous equations by applying (11.20) to each grid point and then
solve the equations for the unknown potentials, as already illustrated for the
one-dimensional case.

The solution obtained for the potentials at the grid points by any method
can be used to plot approximately the equipotential lines by interpolating be-
tween grid points. An example of such plotting, also by using a computer, is
shown in Fig. 11.7, which corresponds to that of and

in Fig. 11.5, and an grid of squares. Figure 11.7(a) shows the
computed potential values at a set of grid points (with the remaining grid
points omitted for the sake of clarity) and the 25-V equipotential line being
plotted. Figure 11.7(b) shows a complete set of equipotential lines from 0 to 100
V in steps of 10 V. Note that in Fig. 11.7(b) the 0-V equipotential line does not
follow the boundary at the upper- and lower-left corners.This is because in view
of the division of the region into a finite grid of squares the solu-
tion is not influenced by the corner points; that is, the solution for the case of the
0-V conductor following the plotted 0-V line is the same as that for which it fol-
lows the original boundary.

18 * 8 here2,

4 * 4
8 * 8Vr = 100 V

Va = Vl = Vb = 0 V
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738 Chapter 11 Several Solution Techniques

Finally, the solution for the potentials can also be used to find approxi-
mate electric field intensities at the grid points by using the potential values to
obtain approximate values of and For example, in Fig. 11.5, the
electric-field intensity at the grid point 12 is given approximately by

where d is the spacing between two adjacent grid points. Similarly, the electric-
field intensities at points on the conductors can be found and used to obtain the
surface charge densities. For example, the surface charge density at the point P
on the conductor of potential and adjacent to the grid point 12 is given ap-
proximately by

where is the permittivity of the medium between the conductors.

K11.2. Finite-difference method; Solution of one-dimensional differential equation;
Solution of Laplace’s equation in two dimensions; Iteration technique.

D11.2. Three infinitely long conductor strips are arranged such that the cross section
is an isosceles triangle, as shown in Fig. 11.8. The region between the conduc-
tors is divided into a grid of points as shown in the figure, where the spacing be-
tween adjacent pairs of points is d. By writing equations consistent with (11.20)

e

 = e  

Va - V12

d

 [rS]P L -ay
# e  

V12 - Va

d
 ay

Va

[E]12 L
V11 - V13

2d
 ax +

V22 - Va

2d
 ay

0V>0y.0V>0x

V � 0

(a)

6.81

9.53 53.51

6.81

18.29

43.02

�100 V

�100 V

�100 V

�100 V

�100 V

�100 V

�100 V

�100 V

���

��

���

�100 V
V � 0

V � 0

V � 0

(b)

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V
V � 0

V � 0

18.29

43.02

25 V

24.89 20 V

10 V

�

FIGURE 11.7

(a) Plotting of an equipotential line by interpolation between grid points. (b) Set of equipotential lines
from 0 to 100 V in steps of 10 V.
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V � 14 V
V � 0

V � 0

A

B C

P

y

x
FIGURE 11.8

For Problem D11.2.

for the potentials at the grid points A, B, and C and solving them, find the fol-
lowing: (a) the approximate potential at the grid point C; (b) the approximate
electric field intensity at the grid point C; and (c) the approximate surface
charge density at the point P, assuming the medium between the conductors to
be free space.
Ans. (a) 8 V; (b) (c)

11.3 METHOD OF MOMENTS

When the boundaries of the physical arrangement extend to infinity, the finite-
difference method cannot be used unless some approximations are made to
limit the extent for the grid to be finite.Another numerical technique, known as
the method of moments, is useful in such situations. The method of moments is
commonly used to solve integral equations. An example consists of finding the
charge distribution on the conductors held at known constant potentials. Thus,
the problem is the inverse of the problem of finding the potential for a known
charge distribution. To cast the technique in general terms, let us consider a sur-
face charge distribution on a given surface. Then applying superposi-
tion in conjunction with the expression for the potential due to a point charge
given by (5.35), the potential due to the charge distribution can be expressed as

(11.22)

where the primes denote source point coordinates.The procedure consists of di-
viding the surface into a finite number of subsections to approximate the inte-
gral in (11.22) by a summation and applying the equation to points on the
subsections to obtain a set of linear algebraic equations. The set of equations is
then inverted to obtain the desired solution. We shall illustrate the method by
means of an example.

V1x, y, z2 =
1

4pe0Lsurface of
the charge
distribution

 

rS1x¿, y¿, z¿2
R

  dS¿

rS1x, y, z2

-4e0>d C>m2.-15ax + 7ay2>d V>m;
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740 Chapter 11 Several Solution Techniques

Example 11.4 Application of method of moments to a straight wire
held at a known potential

Let us consider a thin, straight wire of length l and radius as shown in Fig. 11.9(a),
held at a potential of 1 V. We wish to obtain the resulting (surface) charge distribution on
the wire by the method of moments.

The determination of the charge distribution by the method of moments consists
of dividing the wire into a number of segments, assuming the charge density in each seg-
ment to be uniform, and setting up and solving a set of algebraic equations. For simplici-
ty of illustration, we shall divide the wire into five equal segments numbered 1 through 5
and having surface charge densities From considerations of symmetry,
there are then only three unknowns, since and Hence, we need three
independent equations.

An equation is obtained by writing the potential at the center point of a given seg-
ment to be the superposition of the potentials at that point due to the charges in the five
segments.To obtain the contribution due to a segment, we consider the cylindrical surface
charge of uniform density coaxial with the z-axis and located symmetrically about the
origin, as shown in Fig. 11.9(b), and compute the potential due to it at two points: (1) at the
origin and (2) at a point (0, 0, z), where using the approximation Case 1 is
appropriate to finding the potential due to the charge in a given segment in Fig. 11.9(a) at
its own center point, whereas case 2 is appropriate to finding the potential due to the
charge in a given segment in Fig. 11.9(a) at the center point of another segment.

Dividing the cylindrical surface charge in Fig. 11.9(b) into a number of ring
charges, one of which is shown in the figure, and using superposition, we obtain

which for reduces to

(11.23a)

For a point P(0, 0, z), where we can consider the cylindrical surface charge to be a
line charge of density and write

(11.23b)

 =
rS0 a

2e0
  ln  

z + d

z - d

 =
rS0 a

2e0
 [- ln 1z - z¿2]z¿ = -d

d

 [V]P = L
d

z¿ = -d
 

2parS0 dz¿
4pe01z - z¿2

2parS0

z 7 d,

 =
rS0 a

e0
  ln  

2d

a

 [V]10,0,02 L
rS0 a

2e0
  ln  

2d

-d + d11 + a2>2d22

a � d

 =
rS0 a

2e0
  ln  

d + 2a2 + d2

-d + 2a2 + d2

 =
rS0 a

2e0
 5ln [z¿ + 2a2 + 1z¿22]6z¿ = -d

d

 [V]10,0,02 = L
d

z¿ = -dL
2p

f= 0
 

rS0 a df dz¿

4pe02a2 + 1z¿22

a � d.z 7 d,

rS0

rS5 = rS1.rS4 = rS2

rS1, rS2, Á , rS5.

a1� l2,Thin, straight
wire held at
known
potential
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11.3 Method of Moments 741

Applying (11.23a) and (11.23b) to write the equation for the potential at the cen-
ter of segment 1 in Fig. 11.9(a), we obtain

or

(11.24)

where we have substituted and Similarly, writing the equations for
the potentials at the center points of segments 2 and 3 and arranging the three equations
in matrix form, we get

(11.25)

By inverting (11.25), the solutions for and can be obtained. For a numerical
example, if and the values of and are 
and respectively. When a larger number of segments are used, a more accurate
solution is obtained for the charge distribution on the wire. For example, the result for

143.32e0,
158.38e0, 145.42e0,rS3rS1, rS2,a = 1 mm,l = 1 m
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FIGURE 11.9

(a) Thin wire divided into five equal
segments. (b) For the determination of
the potential due to a cylindrical
surface charge.
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742 Chapter 11 Several Solution Techniques

obtained by using a computer program is shown in Fig. 11.10, where the height of
the first rectangle is 

Proceeding further, we recall that in Example 5.6 we discussed the solu-
tion of Laplace’s equation for the one-dimensional case of two infinite, plane,
parallel, perfectly conducting plates, which may be considered an idealization
of a parallel-plate capacitor with its plates having large dimensions compared
to the spacing between them. We then obtained the expression for the capaci-
tance of the arrangement per unit area of the plates. Because of the idealiza-
tion, this expression is only approximate for a capacitor with finite-sized
plates. It becomes less and less accurate as the size of the plates becomes less
and less large for a given spacing between them, since the fringing of the field
at the edges of the plates becomes more and more severe. Thus, the problem is
that, in the nonideal case, the field distribution between the capacitor plates
and the charge distribution on the capacitor plates are not uniform, whereas,
for the ideal case, they are uniform. Hence, it is not in general possible to ob-
tain an analytical expression for the capacitance; one has to resort to numeri-
cal or graphical techniques. The method of moments serves as a useful tool for
such cases.

For an example, let us consider an arrangement in which the spacing be-
tween the plates is a, the dimensions of the plates are and from sym-
metry considerations, the upper plate is held at a potential of 1 V and the
lower plate is held at a potential of For the purposes of illustration of
the method, we shall divide each plate into a set of squares, as shown in
Fig. 11.11, and assume that within each square, the (surface) charge density is
uniform. From symmetry considerations, we then have only two unknown
charge densities and as shown in the figure. Therefore, it is sufficient
to write two independent equations. We shall do this by considering squares 1
and 2 and equating the potentials at the center points of these squares to 1 V.

To write the expression for the potential at the center point of a square
due to the charge in a different square, we shall consider that charge to be a
point charge at the center of the square. Thus, the potential at point 1 due to the
charge in square 4 is the potential at point 2 due to the charge in
square 12 is and so on. To write the expression for the po-
tential at the center point of a square due to the charge in that square, we shall
use the result given in Problem P5.11. For example, the potential at point 1 due

-rS1 a2>4pe0113a2,rS1 a2>4pe0 a,

rS2,rS1,

2 * 3
-1 V.

2a * 3a,

204e0 C>m2.
n = 40

FIGURE 11.10

Charge distribution along a thin, straight wire of length 1 m
and radius 1 mm, and held at a potential of 1 V. The height
of the first rectangle is 204e0 C>m2.

Capacitance
of a parallel-
plate
capacitor
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11.3 Method of Moments 743

to the charge in square 1 is Proceeding in this manner,
we obtain the two equations to be

(11.26a)

(11.26b)

or

(11.27a)

(11.27b)

Solving (11.27a) and (11.27b) for and we obtain 
and The magnitude of charge on either plate is then equal to

or Finally, noting that the
potential difference between the plates is 2 V, the capacitance can be comput-
ed to be A more accurate result can be obtained by dividing each10.983e0 a.

21.9662e0 a.14a2 * 3.8378e0>a + 2a2 * 3.3075e0>a2,
rS2 = 3.3075e0>a.

rS1 = 3.8378e0>arS2,rS1

 0.8453rS1 + 2.8184rS2 =
4pe0

a

 2.9101rS1 + 0.4226rS2 =
4pe0

a

+
rS2 a2

4pe0
 a 1

a
-

1
a

-
122a
b = 1

 
rS2 a
pe0

  ln 11 + 222 +
rS1 a2

4pe0
 a 2

a
+

222a
-

222a
-

223a
b

 +
rS2 a2

4pe0
 a 1

a
+

122a
-

122a
-

123a
b = 1

 
rS1 a
pe0

  ln 11 + 222 +
rS1 a2

4pe0
 a 1

2a
+

1
a

+
125a

-
1
a

-
125a

-
122a

-
126a
b

1rS1 a>pe02 ln 11 + 222.

a

2a

3a

7 8 9

1 2 3

4 5 6

10 11 12

�rS1 �rS2 �rS1

�rS1 �rS2 �rS1

rS1 rS2 rS1

rS1 rS2 rS1

1 V

�1 V

FIGURE 11.11

For finding the capacitance of a parallel-plate capacitor by the method of moments.
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744 Chapter 11 Several Solution Techniques

plate into a larger number of squares, but it is instructive to compare the value
just obtained with the value of which follows from the application of

where A is the area of the plates, and d is the spacing between the
plates.

K11.3. Method of moments;Thin, straight wire held at known potential; Determination
of charge distribution; Parallel-plate capacitor; Determination of capacitance.

D11.3. For the problem of Example 11.4, consider that to compute the potential at the
center of a given segment due to the charge in another segment, the charge in
that segment can be assumed to be a point charge at the center of that segment.
Modify the formulation to obtain the new matrix equation in the place of (11.25)
and find the values of and for and 
Ans.

D11.4. Consider a parallel-plate capacitor having square-shaped plates of sides a and
spacing a between the plates. Find the following: (a) the capacitance of the ca-
pacitor if fringing of fields at the edges of the plates is neglected; (b) the capaci-
tance by using the method of moments, considering each plate as one square;
and (c) the capacitance by dividing each plate into a set of squares and
using the method of moments. Assume free space for the dielectric.
Ans. (a) (b) (c)

11.4 DETERMINATION OF TRANSMISSION-LINE PARAMETERS

In this section, we shall illustrate the application of the numerical methods in-
troduced in the previous two sections for the determination of transmission-line
parameters, by means of two examples.

Example 11.5 Determination of parallel-strip line parameters by using
method of moments

The parallel-strip line is the same as the parallel-plate line (see Fig. 6.2) without the im-
position of the approximation such that fringing of fields can not be neglected.
We wish to find the capacitance per unit length and hence the characteristic impedance
of the parallel-strip line embedded in a homogeneous medium (which we shall assume
here to be free space) for the case of by using the method of moments.

The procedure for the application of method of moments to find the capacitance
per unit length of a parallel-strip line is similar to that used for finding the capacitance of
a parallel-plate capacitor in Section 11.3. Thus, let us consider the cross-sectional view of
the parallel-strip line and divide each conductor into 2n substrips, as shown in Fig. 11.12
for and assume the charge density in each substrip to be uniform. From symmetry
considerations, we can apply a potential of 1 V to one of the conductors and to the
other conductor. Also from symmetry considerations, there are only unknown
charge densities to be determined, namely, the charge densities associated with the sub-
strips in one half of one of the conductors. Thus, we need to write a set of inde-
pendent equations for the unknown charge densities. To do this, we consider
pairs of substrips situated opposite to each other, and we write the expression11¿, 22¿, Á ,

n1=  32
n1=  32

n1=  32
-1 V

n = 3,

d = w,

d>w � 1,

2.8367e0 a.2.488e0 a;e0 a;

2 * 2

159.48e0 C>m2; 147.94e0 C>m2; 145.77e0 C>m2.
a = 1 mm.l = 1 mrS3,rS1, rS2,

C = e0 A>d,
6e0 a,

Parallel-strip
line
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11.4 Determination of Transmission-Line Parameters 745

1� 2� 3� 4� 5� 6�

1 2 3 4 5 6

�rS1 �rS2 �rS3 �rS3 �rS2 �rS1

rS1 rS2 rS3 rS3 rS2 rS1

w

d � kwe � e0

FIGURE 11.12

Division of the conductors of a
parallel-strip line into substrips.

for the potential difference between the center points of each pair and set that equal
to 2 V. The expression for the potential difference between the center points of a given
pair is the sum of the contributions to the potential difference from all pairs.
To obtain the contribution from a given pair, we make use of the result given in Prob-
lem P5.12 for the potential difference between two points due to an infinitely long strip
of uniform surface charge density. For example, let us consider the potential difference
between the center points of 1 and Then the contribution to it from the pair of sub-
strips 1 and is

whereas the contribution from the pair of substrips 2 and is

Writing contributions in this manner and adding appropriately, we obtain the ma-
trix equation for the three unknown charge densities and for the case of

that is, as given by

so that

 rS3 =
3.003e0

w
  C>m2

 rS2 =
3.2062e0

w
  C>m2

 rS1 =
6.0854e0

w
  C>m2

C1.311 0.815 0.658
0.815 1.432 1.005
0.658 1.005 1.779

S CrS1

rS2

rS3

S = C4pe0>w
4pe0>w
4pe0>w

S
k = 1,d = w,

rS3rS1, rS2,

rS2

2pe0
 cw

4
  ln  

1w>422 + d2

1w>422 -
w

12
  ln  

1w>1222 + d2

1w>1222 + 2da tan-1
  
w

4d
- tan-1

  
w

12d
b d

2¿

rS1

2pe0
 cw

6
  ln  
1w>1222 + d2

1w>1222 + 4d tan-1
  

w

12d
d

1¿
1¿.

2n1=  62
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746 Chapter 11 Several Solution Techniques

The magnitude of the charge per unit length on either conductor is

Thus, the capacitance per unit length is given by

Finally, the characteristic impedance of the parallel-strip line for the case of is
or For larger values of n, the solution can be carried out by

using a computer program. For example, for and the values of 
and can be computed to be 18.5252 pF/m and respectively.

Example 11.6 Determination of enclosed-microstrip line parameters by
finite-difference method

When the bottom conductor of the microstrip line of Fig. 6.5 is extended so as to sur-
round the top conductor, we get the enclosed-microstrip line, as shown by the cross-
sectional view in Fig. 11.13. Here we assume a square cross section for the outer
conductor and wish to determine the propagation parameters for the line by using the
finite-difference method to find the values of capacitance per unit length with and
without the dielectric substrate in place, as required by (6.25a) and (6.25b), in view of
the inhomogeneity.

For purposes of illustration, we divide the region inside the outer conductor into
a set of squares with the grid points identified as (i, j), where i is the row number
(1 to 5 from top to bottom), and j is the column number (1 to 5 from left to right). We
place the inner conductor along the line from grid point (4, 2) to grid point (4, 4) so that
the region below row 4 is dielectric substrate (relative permittivity ), and the region
above row 4 is free space. We further assume the inner conductor to be kept at 10 V and
the outer conductor at 0 V, and apply the iteration procedure, illustrated in Example 11.3
to compute the potentials at the grid points not on the conductors. We note, however,
that in view of the inhomogeneity when the dielectric substrate is in place, the modified

eR

6 * 6

179.9352 Æ,Z0

cn = 10,d = w = 1 cm,
183.98 Æ.1m0e0>2.0491e0,

d = w

c =
4.0982e0

2
= 2.0491e0 F>m

1w>32 * 1rS1 + rS2 + rS32112 = 4.098e0 C

Enclosed-
microstrip
line

eR � 1

10 V

0 V

eR

FIGURE 11.13

Division of the region between the conductors of
an enclosed-microstrip line into a set of squares.
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11.4 Determination of Transmission-Line Parameters 747

form of (11.20) given by (see Problem P11.8)

(11.28)

needs to be used. Thus, the procedure consists of the following steps:

(a) With the dielectric substrate in place, find the solution for the potentials at the grid
points not on the conductors, consistent with (11.28) to within a specified tolerance

assumed here to be 0.01 V. Find the magnitude of the charge per unit length
along the conductors by applying Gauss’ law in integral form to a surface having as
the cross section the contour that passes through the center points of the squares
adjacent to the outer conductor, as shown in Fig. 11.13. Find the capacitance per
unit length 

(b) With the dielectric replaced by free space, repeat step (a) to obtain the capacitance
per unit length 

(c) Find and by using (6.25a) and (6.25b), respectively.

The solution just outlined can be carried out by using a computer program. The
final set of values for the potentials obtained from the run of such a program for the spe-
cific arrangement of Fig. 11.13 for as well as the results for and are
shown in Fig. 11.14. The upper rows of potential values at the interior grid points corre-
spond to the case of the dielectric substrate in place and the lower rows correspond to
the case of the dielectric replaced by free space.

vp,c, c0, Z0,eR = 10,

vpZ0

1c02.
1c2.

1¢2

V0 L
V1 + er V2

211 + er2 +
V3 + V4

4

0 00 0 0 0

0 0 0 0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0.69 1.23 1.43 1.23 0.69
0.69 1.24 1.44 1.24 0.69

1.53 2.84 3.27 2.84 1.53
1.54 2.85 3.28 2.85 1.54

2.58 5.34 5.99 5.34 2.58
2.63 5.36 6.00 5.36 2.63

3.47 10.00 10.00 10.00 3.47
3.64 10.00 10.00 10.00 3.64

1.89 4.10 4.55 4.10

C � 226.4795 PF/m           C0 � 37.85039  PF/m
Z0 � 36.00221  OHMS
VP � 1.226428E�08   M/S

1.89
1.93 4.12 4.55 4.12 1.94

FIGURE 11.14

Final set of values for the potentials and the results for
and for the enclosed-microstrip line of 

Fig. 11.13 for eR = 10.
vpc, c0, Z0,
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748 Chapter 11 Several Solution Techniques

K11.4. Parallel-strip line; Method of moments; Enclosed-microstrip line; Finite-differ-
ence method.

D11.5. For the parallel-strip line of Fig. 11.12, find the following for (a) the
contribution to the potential difference between the center points of sub-
strips 2 and from the pair of substrips 2 and (b) the contribution to the
potential difference between the center points of substrips 2 and from the
pair of substrips 5 and and (c) the contribution to the potential difference
between the center points of substrips 1 and from the pair of substrips 6
and 
Ans. (a) (b) (c)

11.5 SOLUTION BY FIELD MAPPING

For a line with arbitrary cross section and involving a homogeneous dielectric,
an approximate value of and hence of can be determined by constructing
a field map, that is, a graphical sketch of the direction lines of the electric field
and associated equipotential lines between the conductors. To illustrate this, let
us consider the cross section shown in Fig. 11.15. Assuming that the inner con-
ductor is positive with respect to the outer conductor, we can draw the field
map from the following considerations. (1) The electric field lines originate on
the inner conductor and normal to it and terminate on the outer conductor and
normal to it, since the tangential component of the electric field on the conduc-
tor surface must be zero. (2) The equipotential lines must be everywhere per-
pendicular to the electric field lines. Thus, suppose that we start with the inner
conductor and draw several lines normal to it at several points on the surface,
as shown in Fig. 11.15(b). We can then draw a curved line displaced from the
conductor surface and perpendicular everywhere to the electric-field lines of
Fig. 11.15(b), as shown in Fig. 11.15(c).This contour represents an equipotential
line and forms the basis for further extension of the electric-field lines, as
shown in Fig. 11.15(d). A second equipotential line can then be drawn so that it
is everywhere perpendicular to the extended electric-field lines, and the proce-
dure is continued until the entire cross section between the conductors is filled
with two sets of orthogonal contours, as shown in Fig. 11.15(e), thereby result-
ing in a field map made up of curvilinear rectangles. For the actual, time-vary-
ing case, the magnetic-field lines are the same as the equipotential lines and the
field map represents a sketch of the direction lines of electric and magnetic
fields between the conductors.

By drawing the field lines with very small spacings, we can make the rec-
tangles so small that each of them can be considered to be the cross section of a
parallel-plate line. If we now replace the equipotential lines by perfect conduc-
tors, since it does not violate any boundary condition, it can be seen that the
arrangement can be viewed as the parallel combination, in the angular direc-
tion, of m number of series combinations of n number of parallel-plate lines in
the radial direction, where m is the number of rectangles in the angular direction,

Z0,c,

0.0238rS1 w>e0.0.043rS2 w>e0;0.1849rS2 w>e0;
6¿.

1¿
5¿;

2¿
2¿;2¿

d = w:

Field
mapping
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11.5 Solution by Field Mapping 749

(a) (b)

(c) (d)

(e) (f)

Conductors E lines

Equipotential
line

FIGURE 11.15

For illustrating the construction of a
field map for a transmission line of
arbitrary cross section.

that is, along a magnetic-field line, and n is the number of rectangles in the radi-
al direction, that is, along an electric field line. If are the charges
per unit length associated with the angular direction and are the
potential differences associated with the radial direction, the capacitance per

V1, V2, Á , Vn

Q1, Q2, Á , Qm

RaoCh11v3.qxd  12/18/03  5:35 PM  Page 749



750 Chapter 11 Several Solution Techniques

unit length of the line is given by

where is the capacitance per unit length corresponding to the rec-
tangle ij. The simplicity of the field mapping technique lies in the fact that if the
map consists entirely of curvilinear squares (a curvilinear rectangle becomes a
curvilinear square if a circle can be inscribed in it), all are approximately
equal to and we obtain the simple formula

(11.29)

and hence

(11.30)

Thus, the determination of consists of sketching a field map consisting of
curvilinear squares, as shown in Fig. 11.15(f), counting the number of squares in
each direction and substituting these values in (11.29). For the rough sketch of
Fig. 11.15(f), and so that 

K11.5. Field mapping; Curvilinear squares.
D11.6. Two lossless transmission lines 1 and 2 have nonmagnetic homoge-

neous perfect dielectrics of and respectively. The values ofe2 = 4e0,e1 = 2.25e0

1m = m02,

Z0 L 0.154h.n = 4,m = 26

Z0

 L
n
m

 Z0 =
2me
c

c L e 
m
n

e,
cij

cij = Qi>Vj

 = a
m

i = 1
 

1

a
n

j = 1
 

1
cij

 = a
m

i = 1
 

1

a
n

j = 1
 

Vj

Qi

   +
1

V1

Q2
+

V2

Q2
+ Á +

Vn

Q2

+ Á +
1

V1

Qm
+

V2

Qm
+ Á +

Vn

Qm

 =
1

V1

Q1
+

V2

Q1
+ Á +

Vn

Q1

c =
Q

V
=

Q1 + Q2 + Á + Qm

V1 + V2 + Á + Vn
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11.6 Finite-Element Method 751

the ratio m/n corresponding to their curvilinear square field maps are 4 and 5
for lines 1 and 2, respectively. Find (a) (b) and (c) where
the subscripts 1 and 2 denote lines 1 and 2, respectively.
Ans. (a) 4/3; (b) 0.45; (c) 5/3.

11.6 FINITE-ELEMENT METHOD

The finite-element method, a general technique for solving differential equa-
tions, was first developed by structural engineers for the analysis of stresses and
strains in complex systems. It was not until 1968 that its applications to the solu-
tion of electromagnetic-field problems were initiated. Unlike the finite-differ-
ence method, which provides solutions at an array of grid points in the region of
interest, the finite-element method provides solution over the entire region of
interest. Furthermore, it is difficult to apply the finite-difference method to re-
gions having irregularly shaped boundaries, whereas the finite-element method
is particularly suitable for such regions. However, the finite-element method in
its precise form is elaborate and we shall here present only an introduction by
considering the early simple approach.

The basic concept of the finite-element method is that although the be-
havior of a function may be complex when viewed over a large region, a simple
approximation may be sufficient for a small subregion. The total region is divid-
ed into a number of nonoverlapping subregions called finite elements. Within
each element, the function of interest is approximated by an algebraic expres-
sion, and where the adjoining elements overlap, the algebraic representations
must agree to provide continuity of the function.The equations to be solved are
derived not directly from the differential equations that govern the function,
but from the minimization of an integral-type functional such as the electric en-
ergy in the case of the electric potential. The solution procedure in this manner
consists essentially of four steps: (1) discretizing the region of interest into the
finite elements, (2) deriving the governing equations for the individual finite el-
ements, (3) relating the individual finite elements to the assembly of the ele-
ments, and (4) obtaining and solving the system of equations for the potentials.
We shall describe these steps in the context of finding the solution for the two-
dimensional Laplace’s equation in Cartesian coordinates x and y, given by
(11.16), and then illustrate by means of an example.

1. Discretization of region into finite elements. In two dimensions, the fi-
nite elements are usually polygons, the simplest of which are triangles and
quadrilaterals. We shall confine our presentation to triangles to keep the analy-
sis simple. Figure 11.16 shows an example in which a region is divided into five
triangular elements, with a total of seven nodes. The most common type of ex-
pression for V within an element is a polynomial expansion. For a triangular el-
ement, it is given by

(11.31)Ve1x, y2 = a + bx + cy

Z01>Z02,c1>c2,vp1>vp2,

Solution
procedure
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752 Chapter 11 Several Solution Techniques

where the subscript e denotes element. Note that this represents linear variation
of potential within the element, as shown, for example, in Fig. 11.16(b) for one
element. Also, this approximation is the same as assuming that the electric field
is uniform within the element, since

(11.32)

2. Equations governing the elements. Let us consider a typical element
shown in Fig. 11.17. Using (12.18), we can then express the potentials 
and at nodes 1, 2, and 3, respectively, as

(11.33a)

(11.33b)

(11.33c)

from which we can write

(11.34)

 =
1

2A
 C 1x2 y3 - x3 y22 1x3 y1 - x1 y32 1x1 y2 - x2 y121y2 - y32 1y3 - y12 1y1 - y221x3 - x22 1x1 - x32 1x2 - x12

S CVe1

Ve2

Ve3

S
 C a

b
c
S = C1 x1 y1

1 x2 y2

1 x3 y3

S-1

 CVe1

Ve2

Ve3

S

 Ve3 = a + bx3 + cy3

 Ve2 = a + bx2 + cy2

 Ve1 = a + bx1 + cy1

Ve3

Ve1, Ve2,

E = - �Ve = -1bax + cay2

1

2

3

4

5

4
3

2

5

6

7
1

2

5

1

Actual
boundary

Ve

(a) (b)

FIGURE 11.16

(a) Discretization of a region into triangular finite elements. (b) Linear variation
of potential within a triangular finite element.
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y

x

1

3

2

(x3, y3)

(x1, y1)

(x2, y2)

FIGURE 11.17

A typical triangular finite element for setting
up the equations governing the element.

where

(11.35)

is the area of the element. Note that for A to be positive, the nodes need to be
numbered counterclockwise as in Fig. 11.17.

Proceeding further, we have, by substituting (11.34) into (11.31)

(11.36)

or

(11.37)

where

(11.38a)

(11.38b)

(11.38c)

The quantities are called the shape functions.ai

a3 =
1

2A
 [1x1 y2 - x2 y12 + 1y1 - y22x + 1x2 - x12y]

a2 =
1

2A
 [1x3 y1 - x1 y32 + 1y3 - y12x + 1x1 - x32y]

a1 =
1

2A
 [1x2 y3 - x3 y22 + 1y2 - y32x + 1x3 - x22y]

Ve = a
3

i = 1
ai1x, y2Vei

Ve =
1

2A
 [1 x y]C 1x2 y3 - x3 y22 1x3 y1 - x1 y32 1x1 y2 - x2 y121y2 - y32 1y3 - y12 1y1 - y221x3 - x22 1x1 - x32 1x2 - x12

S CVe1

Ve2

Ve3

S

 = 1
2[1x2 - x121y3 - y12 - 1x3 - x121y2 - y12]

 A =
1
2
3 1 x1 y1

1 x2 y2

1 x3 y3

3
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Now, for the solution of Laplace’s equation in two dimensions for the
electric potential, the functional to be minimized is the electric energy per unit
length normal to the two dimensions, that is,

(11.39)

over the region of interest. For the element under consideration, this is given by

(11.40)

where we have used (11.37). We now define

(11.41)

so that we can write (11.40) as

(11.42)

where

(11.43a)

(11.43b)

and

(11.43c)[C1e2] = CC11
1e2 C12

1e2 C13
1e2

C21
1e2 C22

1e2 C23
1e2

C31
1e2 C32

1e2 C33
1e2
S

 [Ve]
T = [Ve1 Ve2 Ve3] = transpose of [Ve]

 [Ve] = CVe1

Ve2

Ve3

S

We = 1
2 e[Ve]

T[C1e2][Ve]

Cij
1e2 = LA

1�ai
# �aj2 dS

 =
1
2

 ea
3

i = 1
a

3

j = 1
Vei aLA

�ai
# �aj dSb  Vej

 =
1
2

 eLA
 aa

3

i = 1
Vei�ai

# a
3

i = 1
Vei�aib  dS

 =
1
2

 eLA
1�Ve

# �Ve2 dS

 =
1
2LA
e ƒ �Ve ƒ2 dS

We = Larea
of e

 
1
2

 e ƒE ƒ2 dS

W = L  
1
2

 e ƒE ƒ2 dS

Functional
for solution
of Laplace’s
equation
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11.6 Finite-Element Method 755

The matrix is known as the element coefficient matrix. Substitut-
ing (11.38a)–(11.38c) into (11.41) and evaluating, we obtain

(11.44a)

(11.44b)

(11.44c)

(11.44d)

(11.44e)

(11.44f)

(11.44g)

(11.44h)

(11.44i)

Note that that is, the sum of each row of and that is,
the sum of each column of are zero.

3. Relating the individual elements to the assembly. Proceeding further, we
consider the assembly of all elements in the region of interest to write the ex-
pression for the total energy in the region. This is given by

(11.45)

where

(11.46)

is the column matrix of the potentials at the nodes, is the transpose of [V],
and [C], which is known as the global coefficient matrix, is the matrix resulting
from the assemblage of the individual element coefficient matrices.

To illustrate the determination of [C], let us consider the assembly of
three elements shown in Fig. 11.18. For each element, the node numbers 1, 2,
and 3 are indicated inside the triangle in the counterclockwise sense. These are
called local nodes. The nodes for the assembly, which are called global nodes,

[V]T

[V] = E
V1

V2

V3

o
Vn

U

W = a
n

e = 1
We =

1
2

 e[V]T[C][V]

[C1e2],
©j = 1

3  Cij
1e2,[C1e2],©i = 1

3 Cij
1e2

,

 C33
1e2 =

1
4A

 [1y1 - y222 + 1x1 - x222]
 C32
1e2 = C23

1e2
 C31
1e2 = C13

1e2
 C23
1e2 =

1
4A

 [1y3 - y121y1 - y22 + 1x3 - x121x1 - x22]
 C22
1e2 =

1
4A

 [1y3 - y122 + 1x3 - x122]
 C21
1e2 = C12

1e2
 C13
1e2 =

1
4A

 [1y2 - y321y1 - y22 + 1x2 - x321x1 - x22]
 C12
1e2 =

1
4A

 [1y2 - y321y3 - y12 + 1x2 - x321x3 - x12]
 C1e211 =

1
4A

 [1y2 - y322 + 1x2 - x322]

[C1e2]
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756 Chapter 11 Several Solution Techniques

are indicated at the vertices outside the assembly. The element numbers are
circumscribed by circles. Since there are five global nodes, [C] is a matrix
as given by

(11.47)

The global matrix [C] is not to be confused with the element matrices For
triangular elements, all element matrices are whereas the global matrix
has the size 

Since the total energy as expressed in (11.45) is the sum of the energies in
the three individual elements, and since the potential distribution must be con-
tinuous across the boundaries of pairs of adjacent elements, the elements of [C]
are related to the elements of the individual matrices Thus, for example,
since global node 1 belongs to element 1 only and is the same as the local node 1,

Since global node 2 belongs to all three elements and is the same as local node
2 for element 1, local node 1 for element 2, and local node 1 for element 3,

Similarly,

 C55 = C22
122 + C33

122
 C44 = C33

112 + C33
122

 C33 = C22
132

C22 = C22
112 + C11

122 + C11
132

C11 = C11
112

[C1e2].

n * n.
3 * 3,

[C1e2].

[C] = E
C11 C12 C13 C14 C15

C21 C22 C23 C24 C25

C31 C32 C33 C34 C35

C41 C42 C43 C44 C45

C51 C52 C53 C54 C55

U

5 * 5

1

2

3

5

4

33

1
1

2 1
1

2

3
22

3

FIGURE 11.18

An assembly of three triangular finite elements, for
relating the individual elements to the assembly.
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11.6 Finite-Element Method 757

The global link 12 is the same as the local link 12 for element 1. Hence,

The global link 23 is the same as the local link 12 for element 3. Hence,

The global link 24 is common to elements 1 and 2, and is the same as the local
link 23 for element 1 and the local link 13 for element 2. Therefore,

Similarly,

Since there is no coupling between global nodes 1 and 3,

In this manner, the elements of the entire matrix [C] can be written as follows:

(11.48)

The global matrix has the following properties: (a) It is symmetric, which can be
understood if we recall that the local matrices are all symmetric, and (b) it is singu-
lar, that is, the determinant formed by its elements is zero, as we shall discuss later.

4. Equations governing the potentials and solution. Having obtained the
elements of the global matrix, we now set the derivatives of the energy given by
(11.45) with respect to the node potentials equal to zero, to minimize the func-
tional, that is, the total energy in the region. Thus,

(11.49)

For example, from (11.45) and (11.47), we obtain

(11.50)

which gives

(11.51)C11 V1 + C12 V2 + C13 V3 + C14 V4 + C15 V5 = 0

 = 0
   + C15 V5 + C21 V2 + C31 V3 + C41 V4 + C51 V5

0W

0V1
 = 2C11 V1 + C12 V2 + C13 V3 + C14 V4

0W

0Vk
= 0, for k = 1, 2, Á , n

[C] = E
C11
112 C12

112 0 C13
112 0

C21
112 C22

112 + C11
122 + C11

132 C12
132 C23

112 + C13
122 C12

132 + C13
132

0 C21
132 C22

132 0 C23
132

C31
112 C32

112 + C31
122 0 C33

112 + C33
122 C32

122
0 C21

122 + C31
132 C32

132 C23
122 C22

122 + C33
132

U

C13 = 0

C25 = C25
122 + C13

132

C24 = C23
112 + C13

122

C23 = C12
132

C12 = C12
112

Minimization
of functional

RaoCh11v3.qxd  12/18/03  5:35 PM  Page 757



758 Chapter 11 Several Solution Techniques

In general,

(11.52)

For the case under consideration, and we get five equations for the five
potentials. Noting that the right sides of all five equations are zero, we now ob-
serve that the global matrix [C] must be singular in order to have a nontrivial so-
lution. Since [C] is singular, it also means that the solution of (11.52) is not
unique. The situation is that for a given problem, the potentials are specified at a
subset of the global nodes and, hence, we can only use the subset of (11.52) that
is pertinent to the derivatives with respect to the unknown potentials.Thus, if the
potentials at nodes 1, 3, and 5 are specified, then we use only those two equations
resulting from setting and equal to zero to solve for and 

Let us now consider an example.

Example 11.7 Application of finite-element method to an assembly of
two triangular elements

An assembly of two finite elements is shown in Fig. 11.19. Global node 3 is kept at 10-V
potential, whereas global node 1 is at 0 V. It is desired to find the values of the potentials
at global nodes 2 and 4 by using the finite-element method.

We proceed with the solution by executing the four steps as discussed:

Step 1: The region of interest is already discretized. With reference to the numbering
of the elements, local nodes, and global nodes, as in Fig. 11.19, we proceed with the re-
maining three steps as follows.

Step 2: Compute the element coefficient matrix for each element. Using (11.45) and
(11.44a)–(11.44i) for each of the two elements, we obtain the following values.

ELEMENT 1

 [C112] = C 1 -1>2 -1>2
-1>2 1>2 0
-1>2 0 1>2

S
 A = 2

V4.V20W>0V40W>0V2

n = 5,

a
n

i = 1
Cki Vi = 0 for k = 1, 2, Á , n

0 1 2 3 4 5

1
1 1

4 3

2
(1, 1) (3, 1)

(4, 3)(1, 3)

2

3

x

y

1

3
3 2

12

2

0 V

10 V

FIGURE 11.19

Assembly of two finite
elements for Example 11.7.
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11.6 Finite-Element Method 759

ELEMENT 2

Note that for each of and the sum of each row and the sum of each
column are zero.

Step 3: Compute the global coefficient matrix.

Step 4: Using

and noting that and we have

or,

Solving, we obtain

 V4 = 3.077 V

 V2 = 4.615 V

 -3V2 + 11V4 = 20

 5V2 - V4 = 20

c -1>2 5>4 -1>2 -1>4
-1>2 -1>4 -1>6 11>12

d D 0
V2

10
V4

T = c0
0
d

V3 = 10 V,V1 = 0

0W

0V2
= 0 and 0W

0V4
= 0

 = D 1 -1>2 0 -1>2
-1>2 5>4 -1>2 -1>4

0 -1>2 2>3 -1>6
-1>2 -1>4 -1>6 11>12

T

 [C] = DC11
112 C12

112 0 C13
112

C21
112 C22

112 + C11
122 C12

122 C23
112 + C13

122
0 C21

122 C22
122 C23

122
C31
112 C32

112 + C31
122 C32

122 C33
112 + C33

122
T

[C122],[C112]

 [C122] = C 3>4 -1>2 -1>4
-1>2 2>3 -1>6
-1>4 -1>6 5>12

S
 A = 3
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K11.6. Finite-element method; Functional; Minimization of functional; Solution of
Laplace’s equation in two dimensions; Element coefficient matrices; Global co-
efficient matrix.

D11.7. For the assembly of four triangular elements in the xy-plane, shown in Fig. 11.20,
find the numerical values of the following elements of the global coefficient ma-
trix: (a) (b) (c) (d) and (e)
Ans. (a) 0; (b) (c) 0; (d) 2; (e) 5.-2;

C55.C44;C31;C25;C12;

(2, 2)

(2, 3)

(2, 1)2

4

(4, 2)(0, 2)

1 5 3

FIGURE 11.20

For Problem D11.7

Solution of
one-
dimensional
wave
equation

11.7 FINITE-DIFFERENCE TIME-DOMAIN METHOD

In Section 11.2, we introduced the finite-difference method for solving differ-
ential equations. We recall that it consists of replacing the derivatives (with
respect to space coordinates) in the differential equations by their finite-dif-
ference approximations and solving the resulting algebraic equations. The fi-
nite-difference time-domain (FD-TD) method extends this procedure to
derivatives involving time variation in addition to the space derivatives, and
it is a useful technique for the numerical solution of a wide range of problems
in electromagnetics. We shall here include only a very elementary treatment
of the topic.

The simplest differential equation involving space and the time variations
is the one-dimensional second-order partial differential equation (3.73) given by

(11.53)

We already know that the solution to this equation consists of a superposition
of traveling waves propagating in the and the and,
hence, it is known as the one-dimensional wave equation. To solve this equa-
tion numerically, we discretize the range of interest in z and replace the left
side by its central-difference approximation. Similarly, the time interval of in-
terest can be discretized and the derivative on the right side replaced by its
central difference approximation. The resulting algebraic equation can be re-
arranged to express at a given point in a space-time (z–t) grid of points inEx

-z-direction+z-direction

02Ex1z, t2
0z2 = m0e0  

02Ex1z, t2
0t2

RaoCh11v3.qxd  12/18/03  5:35 PM  Page 760



11.7 Finite-Difference Time-Domain Method 761

0 1a 2 3 4

1

d

2

3

4

t

z

Ex Ex Ex

Ex Ex Ex

Hy Hy

Hy Hy

Ex Ex Ex

FIGURE 11.21

Space-time grid for the FD-TD solution of
the coupled partial differential equations
(11.54a) and (11.54b).

terms of its (previously computed) values at certain other neighboring grid
points (see Problem P11.29). The rearranged equation thus permits the pro-
gressive computation of at the grid points, beginning with its values
specified by the boundary conditions and initial conditions pertinent to the
problem.

A more illuminating approach, which is also illustrative of the physical
phenomenon, emanates from the use of the two first-order coupled partial dif-
ferential equations (3.72a) and (3.72b), given by

(11.54a)

(11.54b)

and from which (3.73) was derived. Recall that these equations follow from
Maxwell’s curl equations for the special case of and

and free space for the medium. In the continuous solution of
these equations, both and are variables defined at the same point (z, t)
in the space-time coordinate system. The starting point in the solution by the
FD-TD method is to consider and as variables not at the same point,
but at alternate points, in the space-time grid, as illustrated, for example, in
Fig. 11.21.

Note that the arrangement of Fig. 11.21 leaves certain points in the grid
unlabelled and surrounded by four labelled points. For example, the point (1, 2)
is unlabelled and surrounded by the two points (0, 2) and (2, 2) labelled 
along the line parallel to the z-axis, and the two points (1, 1) and (1, 3) labelled

along the line parallel to the t-axis. We can use this arrangement to expressHy

Ex

HyEx

HyEx

H = Hy1z, t2ay,
E = Ex1z, t2ax

 
0Hy1z, t2

0z
= -e0  

0Ex1z, t2
0t

 
0Ex1z, t2

0z
= -m0  

0Hy1z, t2
0t

Ex1z, t2
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and at this point in terms of their finite-difference approxima-
tions and substitute them in (11.54a). Thus, we have

(11.55a)

where a and are the spacings between the grid points for the z- and t-varia-
tions, respectively. Similarly, the point (2, 3) is unlabelled and surrounded by
the two points (1, 3) and (3, 3) labelled along the line parallel to the z-axis,
and the two points (2, 2) and (2, 4) labelled along the line parallel to the t-
axis. We can use this arrangement to approximate and at the grid
point (2, 3) to write (11.54b) as

(11.55b)

Equations (11.55a) and (11.55b) can be used in a “leap-frog” scheme to progress
on the grid with the solution. We shall illustrate this by means of an analogous
transmission-line example.

Example 11.8 Application of finite-difference time-domain method to
an initially charged line

Figure 11.22(a) shows a lossless transmission line of length characteristic im-
pedance and velocity of propagation and short-circuited at
both ends. At the line current is zero everywhere along the line, and the line volt-
age has the distribution

as shown in Fig. 11.22(b). It is desired to apply the FD-TD method to investigate the line
voltage and line current for 

The differential equations of interest are the transmission-line equations (6.12a)
and (6.12b) given by

(11.56a)

(11.56b)

which are analogous to (11.54a) and (11.54b), respectively. From the given values of 
and we obtain

 c =
1

Z0 vp
=

1

100 * 108 = 10-10 F>m
 l =

Z0

vp
=

100

108 = 10-6 H>m
vp,

Z0

 
0I1z, t2

0z
= -c  

0V1z, t2
0t

 
0V1z, t2

0z
= -l  

0I1z, t2
0t

t 7 0.

V1z, 02 = 10 sin  
pz

12
  V

t = 0,
vp = 108 m>s,Z0 = 100 Æ,

l = 12 m,

Hy13, 32 - Hy11, 32
2a

= -e0  

Ex12, 42 - Ex12, 22
2d

0Ex>0t0Hy>0z
Ex

Hy

d

Ex12, 22 - Ex10, 22
2a

= -m0  

Hy11, 32 - Hy11, 12
2d

0Hy>0t0Ex>0z
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Initially
charged
transmission
line
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6 120

10

zz � 0

Z0, vp

(a)

(b)

z � l

V (z, 0), V

z, m

FIGURE 11.22

(a) Lossless transmission line short-
circuited at both ends. (b) Voltage
distribution on the line for t = 0.

0 1 2 3 4 5 6 7 8 9 10 11 12

00508.6601008.660500

0

0

0

0

0

0

1

2

3

4

5

6

7

i

j

t, 10�8 s

z, m

FIGURE 11.23

Space-time grid of points for the FD-TD solution for the line voltage for for the transmission
line of Fig. 11.22. Numbers beside the circled points represent voltage in volts and those beside the
crossed points represent current in amperes.

t 7 0

We shall divide the line into 12 equal segments of width 1 m and use a time step of
so that the space-time grid is as shown in Fig. 11.23. The grid points at

which V is known or to be computed are denoted by circles, and the grid points at which
I is known or to be computed are denoted by crosses. Initial values, as specified by the
initial distributions of voltage and current, are marked at the grid points on the 
line. Boundary values of as required by short circuits at either end of the line, are
marked at the grid points on the ordinate and ordinate.z = 12z = 0

V = 0,
t = 0

1>vp = 10-8 s,
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TABLE 11.1 Progression of FD-TD Solution for the Initially Charged Line of Fig. 11.22

i
0 1 2 3 4 5 6 7 8 9 10 11 12j

V, V 0 0 5 8.66 10 8.66 5 0

I, A 0 0 0 0 0 0 0

I, A 1 0.0067 0.0183 0.025

V, V 2 0 4.33 7.50 8.66 7.50 4.33 0

I, A 3 0.0183 0.05 0.0683

V, V 4 0 2.50 4.33 5.00 4.33 2.50 0

The values of i and j correspond to the space-time grid in Fig. 11.23.

-0.0183-0.05-0.0683

-0.0067-0.0183-0.025

764 Chapter 11 Several Solution Techniques

Denoting the grid points by (i, j), where i refers to space (z) and j refers to time (t),
and applying the finite-difference approximations to the derivatives in (11.56a), we have

or

(11.57)

where 3, 5, 7, 9, 11, and To find the line currents corresponding to
we use the initial values of zero corresponding to and only one time step.

Thus,

(11.58)

Applying the finite-difference approximations to the derivatives in (11.56a), we have

or

(11.59)

We can now proceed with the solution, as shown in Table 11.1. To begin the solu-
tion, we use (11.58) to compute the values of I corresponding to Then, we use al-
ternatingly (11.57) and (11.59) to compute values of V followed by the values of I for
successive values of j. The resulting solutions are shown in Table 11.1.

j = 1.

V1i, j2 = V1i, j - 22 + 100[I1i - 1, j - 12 - I1i + 1, j - 12]

I1i + 1, j - 12 - I1i - 1, j - 12
2 * 1

= -10-10
  

V1i, j2 - V1i, j - 22
2 * 10-8

I1i, 12 =
V1i - 1, 02 - V1i + 1, 02

200

j = 0j = 1,
j = 3, 5, 7, Á .i = 1,

I1i, j2 = I1i, j - 22 +
V1i - 1, j - 12 - V1i + 1, j - 12

100

V1i + 1, j - 12 - V1i - 1, j - 12
2 * 1

= -10-6
  

I1i, j2 - I1i, j - 22
2 * 10-8
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Magic time
step

1See A.Taflove, Computational Electrodynamics;The Finite-Difference Time-Domain Method (Nor-
wood, MA: Artech House, 1995), p. 38.

The continuous solution to this problem can be obtained by using the procedures
discussed in Section 6.5 for time-domain analysis of transmission lines with initial
conditions, or by using the natural oscillations concepts in Section 7.1. This solution is
given exactly by

It can be seen that the computed values of V at the grid points agree with the exact analyt-
ical solution. In fact, it can be shown that this is the case when the grid points are chosen
such that the time increment is equal to the so-called “magic time step,”1 which is the space
segment width divided by the velocity of propagation.The solution may, however, be insuf-
ficient to represent the actual behavior in the continuous region if the discretization in z
does not correspond to a fraction of a wavelength. A discussion of such considerations as
accuracy of the solution and stability of the solution process is beyond the scope here.

K11.7. Finite-difference time-domain method; One-dimensional second-order partial
differential equation; First-order coupled partial differential equations; Leap-
frog scheme.

D11.8. For the transmission-line problem of Example 11.8, extend the solution beyond
the grid points in Table 11.1 to find the following quantities: (a) I(5, 3); (b) V(6, 8);
(c) I(7, 7); and (d) V(8, 4).
Ans. (a) (b) 0 V; (c) 0.025 A; (d)

SUMMARY

In this chapter, we considered several solution techniques, including the analyt-
ical technique of separation of variables, the geometrical method of field map-
ping, and four numerical methods: (1) the finite-difference method, (2) the
method of moments, (3) the finite-element method, and (4) the finite-difference
time-domain method.

We illustrated the solution of the Laplace’s equation in two dimensions

(11.60)

by using the separation of variables technique, and considered two examples in-
volving the determination of the potential distribution inside a rectangular slot
cut in a semi-infinite plane conducting slab held at zero potential and for a spec-
ified potential distribution at the mouth of the slot. For the field mapping tech-
nique, we illustrated it by considering a transmission line with arbitrary cross
section and finding the line parameters.

02V

0x2 +
02V

0y2 = 0

-4.33 V.-0.0683 A;

V1z, t2 = 10 sin  
pz

12
  cos  

108pt

12
  V
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766 Chapter 11 Several Solution Techniques

The finite-difference method is based on replacing the derivative terms in
a differential equation by their finite-difference approximations and solving the
resulting algebraic equations. We illustrated the technique by applying it to a
one-dimensional differential equation. We then discussed and illustrated by
means of an example the numerical solution of (11.60). The numerical solution
is based on the finite-difference approximation to (11.60), where the potential

at a point P in the charge-free region is given by

(11.61)

where and are the potentials at four equidistant points lying along
mutually perpendicular axes through P. By using an iterative technique, a set of
values for the potentials at appropriately chosen grid points is obtained such that
the potential at each grid point satisfies (11.61) to within a specified tolerance.

We then turned our attention to the method of moments, which is a nu-
merical technique useful for solving a class of problems for which exact analyti-
cal solutions are in general not possible. Considering, for example, a surface
charge distribution on a given surface, the method of moments tech-
nique consists of inverting the integral equation

by approximating the integral as a summation.We illustrated the method of mo-
ments technique by means of two examples: (1) finding the charge distribution
on a thin, straight wire held at a known potential and (2) finding the capacitance
of a parallel-plate capacitor, taking into account fringing of the field at the
edges of the plates.

We then applied the method of moments and the finite-difference method
to the determination of transmission-line parameters. Specifically, we illustrated
the determination of and for a parallel-strip line embedded in a homoge-
neous medium by using the method of moments and for an enclosed-microstrip
line by using the finite-difference method.

The finite-element method, a more general technique than the finite-dif-
ference method for solving differential equations, is based on the minimization
of an integral-type functional such as the electric energy in the case of the elec-
tric potential, instead of solving the differential equations directly. The solution
procedure consists of (1) discretizing the region of interest into a set of finite el-
ements, (2) deriving the governing equations for the individual finite elements,
(3) relating the individual elements to the assembly of the elements, and (4) ob-
taining and solving the system of equations for the potentials.

We illustrated this procedure for the solution of the two-dimensional
Laplace’s equation (11.60) by considering triangles for the finite elements.A lin-
ear variation is assumed for the potential within each triangle and the element

vpZ0

V1x, y, z2 =
1

4pe0Lsurface of
the charge
distribution

 

rS1x¿, y¿, z¿2
R

  dS¿

rS1x, y, z2

V4V1, V2, V3,

V0 L 1
4 
1V1 + V2 + V3 + V42

V0
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Review Questions 767

coefficient matrix that relates the energy within the triangle to the potentials at
the vertices of the triangle is derived. A global coefficient matrix that relates the
assembly of elements to the individual element is then obtained and used to
complete the solution. We considered an example involving an assembly of two
triangles with the potentials specified at two of the four global nodes and com-
puted the two unknown potentials to illustrate this procedure.

The finite-difference time-domain method extends the numerical tech-
nique to solving differential equations involving time. A simple example is the
solution of the one-dimensional wave equation, consisting of replacing the sec-
ond derivatives with respect to the spatial dimension and time by the corre-
sponding central-difference approximations and applying the resulting
algebraic equation to a space-time grid of points. Alternatively, two first-order
coupled partial differential equations following from Maxwell’s curl equations
can be used in a more illuminating manner by applying their approximations to
a space-time grid of points in a “leap-frog” scheme. We illustrated this proce-
dure by considering a lossless transmission line initially charged to a voltage,
and finding the line voltage and current values at points on the line at a later
value of time.

REVIEW QUESTIONS

Q11.1. Outline the solution of Laplace’s equation in two dimensions by the separation
of variables technique.

Q11.2. Describe the formulation behind the finite-difference method of solving differ-
ential equations.

Q11.3. Outline the procedure for solving a one-dimensional differential equation by
the finite-difference method.

Q11.4. Discuss the basis behind the numerical solution of Laplace’s equation in two di-
mensions by the finite-difference method.

Q11.5. Describe the iteration technique for the computer solution of Laplace’s equa-
tion in two dimensions by the finite-difference method.

Q11.6. How would you apply the iteration technique for the computer solution of
Laplace’s equation in three dimensions?

Q11.7. Discuss the formulation behind the problem of finding the charge distribution
on a conductor of known potential by the method of moments.

Q11.8. Outline by means of an example the procedure for obtaining the charge distrib-
ution on a conductor of known potential by the method of moments technique.

Q11.9. Why is the expression for the capacitance of a parallel-plate capacitor obtained
by using Laplace’s equation in one dimension approximate?

Q11.10. Discuss the determination of the capacitance of a parallel-plate capacitor by the
method of moments technique.

Q11.11. Describe the procedure for obtaining and for a parallel-strip line embed-
ded in a homogeneous medium by using the method of moments.

Q11.12. Outline the procedure for obtaining and for an enclosed-microstrip line
by using the finite-difference method.

vpZ0

vpZ0
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768 Chapter 11 Several Solution Techniques

Q11.13. Describe the procedure for computing the transmission-line parameters by
using the field mapping technique.

Q11.14. Describe the basic concept of the finite-element method for solving differential
equations and outline the steps involved in its implementation.

Q11.15. Discuss the linear approximation for the potential within a triangular finite
element.

Q11.16. Discuss the functional to be minimized for the solution of Laplace’s equation in
two dimensions by the finite-element method.

Q11.17. Discuss the derivation of the element coefficient matrix for a triangular finite
element, and describe its properties.

Q11.18. Describe the determination of the global coefficient matrix for an assembly of
triangular elements from the individual element coefficient matrices and dis-
cuss its properties.

Q11.19. Describe the solution of the one-dimensional wave equation by the FD-TD
method.

Q11.20. Discuss the key to the solution of Maxwell’s curl equations for the special case of
and and free space for the medium, by the FD-

TD method, as compared to the solution of the one-dimensional wave equation.
Q11.21. Describe the “leap-frog” scheme of carrying out the FD-TD solution to the

transmission-line equations for the lossless case.
Q11.22. Discuss the agreement between the values of V computed by the FD-TD

method in Example 11.8 with those provided by the exact analytical solution.

PROBLEMS

Section 11.1.

P11.1. Application of analytical solution of Laplace’s equation in two dimensions. The
potential distribution at the mouth of the slot of Fig. 11.1 is given by

(a) Find the solution for the potential distribution inside the slot. (b) Compute
the value of the potential at the center of the slot, assuming the slot to be square.

P11.2. Application of analytical solution of Laplace’s equation in two dimensions. Re-
peat Problem 11.1 for the potential distribution at the mouth of the slot given by

P11.3. Application of analytical solution of Laplace’s equation in two dimensions. As-
sume that the rectangular slot of Fig. 11.1 is covered at the mouth by conducting
plates such that the potential distribution is given by

Find the solution for the potential inside the slot.

V = c 0 for 0 6 y 6 b>4
V0 for b>4 6 y 6 3b>4
0 for 3b>4 6 y 6 b

V = V0 sin3
  

py

b

V = V0 sin  

py

b
+

1
3

 V0 sin  

3py

b

H = Hy1z, t2ay,E = Ex1z, t2ax
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1 2 3

P

V � 83 V

4

5

FIGURE 11.24

For Problem P11.6.

P11.4. Using the solution of Laplace’s equation for the potential to find the electric field.
For the rectangular slot of Example 11.1, (a) find the expression for the electric
field intensity inside the slot and (b) find the electric field intensity at the center of
the slot, assuming the slot to be square.

Section 11.2

P11.5. Solution of a one-dimensional differential equation by finite-difference method.
By discretizing the region between and into five equal segments
spaced 0.2 apart and applying the finite-difference method, solve for the approx-
imate values of f at the four interior grid points for the one-dimensional differ-
ential equation

with the boundary conditions specified as and Compare
your answers with the exact solution to the differential equation.

P11.6. Finite-difference method of solution of Laplace’s equation in two dimensions.
The cross section of an infinitely long arrangement of conductors normal to the
page and that repeats endlessly in the plane of the page is shown in Fig. 11.24.
For the grid points shown, find the values of and by writing
equations consistent with (11.20) and solving them. Then find the approximate
magnitude of the field intensity at grid point 2 and the approximate value of the
surface charge density at point P, assuming that the spacing between the grid
points is d and the medium between the conductors is free space.

V5,V1, V2, V3, V4,

f112 = 1.f102 = 0

d2f1x2
dx2 + 4f1x2 = 0

x = 1x = 0

P11.7. Finite-difference method of solution of Laplace’s equation in two dimensions.
The cross section of an arrangement of conductors, infinitely long and normal to
the page, is square, as shown in Fig. 11.25. Three sides are kept at 0 V and the
fourth side is kept at 28 V. The region between the conductors is divided into a

grid of squares. Although there are nine grid points, there are only six un-
known potentials because of symmetry. (a) By writing equations
consistent with (11.20) for these six potentials and solving the equations, find
the values of the potentials. (b) Find the approximate magnitude of the electric
field intensity at grid point B, assuming that the spacing between grid points is
d. (c) Find the approximate surface charges per unit length of the arrangement
on the 28-V conductor and the 0-V conductor.

VA, VB, Á , VF,
4 * 4
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P11.8. Modification of solution by finite-difference method for an inhomogeneous
medium. In Fig. 11.4, assume that the region below the y-axis is a per-
fect dielectric of relative permittivity whereas the region above the y-axis

is free space. Show that the modified form of (11.20) is then given by

P11.9. Modification of solution by finite-difference method for unequal grid spacing.
For unequal spacings between grid points, as shown in Fig. 11.26, show that the
generalization of (11.20) is given by

 +
V3

11 + d3>d4211 + d3 d4>d2 d12 +
V4

11 + d4>d3211 + d4 d3>d1 d22

 V0 =
V1

11 + d1>d2211 + d1 d2>d3 d42 +
V2

11 + d2>d1211 + d2 d1>d4 d32

V0 L
V1 + er V2

211 + er2 +
V3 + V4

4

1x 7 02
er,

1x 6 02

0 V 0 V

28 V

VA VD

VB VE

VC VF

0 V

FIGURE 11.25

For Problem P11.7.

V1

V3V4 V0d4 d3y

d1

d2

x

V2

FIGURE 11.26

For Problem P11.9.

Section 11.3

P11.10. Application of method of moments to a bent wire held at a known potential.
Consider a thin, straight cylindrical wire of length l and radius bent in
the middle to make a 90° angle and held at a potential of 1 V. By dividing the

a 1� l2
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a

a

a

a

a a

FIGURE 11.27

For Problem P11.13.

wire into four equal segments and assuming the charge density in each segment
to be uniform, and using the method of moments, find the total charge on the
wire if and To compute the potential at the center of a given
segment due to the charge in another segment, assume the charge to be a point
charge at the center of that segment.

P11.11. Application of method of moments to a square-shaped wire held at a known po-
tential. Consider a thin wire of radius 1 mm bent into the form of a square of
sides 60 cm and held at a potential of 1 V. By dividing each side of the square
into three equal segments and assuming the charge density in each segment to
be uniform, and using the method of moments, find the total charge on the wire.
To compute the potential at the center of a given segment due to the charge in
another segment, assume the charge to be a point charge at the center of that
segment.

P11.12. Capacitance of an arrangement of two square-shaped wires by method of mo-
ments. Consider two thin wires that are square-shaped as in Problem P11.11
and arranged such that the sides of one wire are directly above and parallel to
the sides of the second wire at a spacing of 10 cm, so as to form a capacitor.
Using the method of moments as in Problem P11.11, find the capacitance of the
arrangement.

P11.13. Application of method of moments to a square-shaped conductor with a square
hole. A square-shaped conductor of area with a square-shaped hole
of area in the middle, as shown in Fig. 11.27, is held at a potential of 1 V.
By dividing the conductor into eight squares, as shown in the figure, and using
the method of moments, find the total charge on the conductor. To find the po-
tential at the center point of a square due to the charge in another square, con-
sider the charge in that square to be a point charge at the center of that square.

a * a
3a * 3a,

a = 1 mm.l = 1 m

P11.14. Capacitance of an arrangement of two square-shaped conductors with square
holes. Assume that a capacitor is made up of two parallel conductors, each hav-
ing the shape shown in Fig. 11.27. If the spacing between the plates is a, find the
capacitance of the arrangement by dividing each conductor into squares, as
shown in Fig. 11.27, and applying the method of moments.

P11.15. Capacitance for a square-shaped conductor above a square-holed conductor.
The arrangement shown in Fig. 11.28 is that of a capacitor obtained by removing

RaoCh11v3.qxd  12/18/03  5:35 PM  Page 771



772 Chapter 11 Several Solution Techniques

VA

w

2w

e � e0 d � kw

VB

rS1

rS3rS2
FIGURE 11.29

For Problem P11.18.

a square-shaped part of sides a from the center of a square-shaped conductor of
sides 3a and displacing it by distance a directly above the hole. By dividing the
lower plate as shown in the figure, find the capacitance of the arrangement.

P11.16. Application of method of moments to a cube-shaped conductor. A conductor
having the shape of a cube of sides a is held at a potential of 1 V. By dividing
each side into a set of squares, assuming the charge density in each square
to be uniform, and using the method of moments, find the total surface charge
on the conductor. To find the potential at the center of a square due to the
charge in another square, consider the charge in that square to be a point charge
at the center of the square.

Section 11.4

P11.17. Determination of parallel-strip line parameters by using method of moments.
For the parallel-strip line of Example 11.5, repeat the solution by considering
the charges to be line charges along the centerlines of the substrips for writing
the contributions to the potential difference between a given pair of substrips
due to the charges in a different pair of substrips and using the formula given in
Problem P5.12.

P11.18. Application of method of moments to a parallel-strip line of unequal conductor
widths. Consider a parallel-strip line with unequal widths of the conductors, as
shown in Fig. 11.29. Obtain the characteristic impedance of the line for the case
of by dividing the conductors into substrips as shown in the figure and
using the method of moments. Note that from considerations of symmetry, there
are only three unknown charge densities and Write two equationsrS3.rS1, rS2,

k = 1

2 * 2

a a

aa

a

a a a

a

a

a

FIGURE 11.28

For Problem P11.15.
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3w w

w

3w

VA

VB

rS2 rS1

rS3

e � e0

FIGURE 11.30

For Problem P11.19.

by equating the expressions for the potential differences and to
and the third equation from consideration of charge neutrality. Use

the result of Problem P5.12 for writing the contributions to the potential differ-
ences in all cases.

P11.19. Application of method of moments to coaxial conductors of square cross sections.
Consider a transmission line having the cross-sectional view shown in Fig. 11.30.
With the conductors of the line divided into substrips as shown in the figure, ob-
tain the characteristic impedance by using the method of moments. Note that
from considerations of symmetry, there are only three unknown charge densities

and Write two equations by equating the expressions for the poten-
tial differences and to and the third equation from considera-
tion of charge neutrality. For writing the contribution to the potential difference
between a given pair of substrips due to one of those substrips, use the result of
Problem P5.12. But for writing the contribution to the potential difference be-
tween a given pair of substrips due to a third substrip, consider the charge in that
substrip to be a line charge along the centerline of the substrip.

1VA - VB2V13V12

rs3.rs1, rs2,

1VA - VB2
V13V12

P11.20. Determination of enclosed-microstrip line parameters by finite-difference
method. For the enclosed-microstrip line of Fig. 11.13, repeat the computa-
tions of and by finding the magnitude of the charge per unit length
by considering the contour that passes through the center points of the squares
adjacent to the center conductor, instead of the one shown in the figure.

Section 11.5.

P11.21. Application of field mapping by the curvilinear squares technique to a coaxial
cable. By applying the curvilinear squares technique to a coaxial cable of inner
radius a and outer radius b, show that the characteristic impedance of the cable
is where is the intrinsic impedance of the dielectric of the cable.

P11.22. Field mapping by the curvilinear squares technique for an eccentric coaxial cable.
The cross section of an eccentric coaxial cable [see Fig. 5.13(d)] consists of an
outer circle of radius and an inner circle of radius with their
centers separated by By constructing a field map consisting of curvilin-
ear squares, obtain the approximate value of in terms of of the dielectric.hZ0

d = 2 cm.
b = 2 cm,a = 5 cm

h1h>2p2 ln b>a,

vp,c, c0, Z0,
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2a

e � e0

a

FIGURE 11.32

For Problem P11.24.

P11.23. Field mapping by the curvilinear squares technique for a shielded-strip line.
When one microstrip line is inverted and placed on top of another microstrip
line, as shown by the cross-sectional view in Fig. 11.31, a shielded strip line is ob-
tained. Although the sandwich arrangement of this line is more difficult to fab-
ricate than is the microstrip line, it has the advantage that the fields are confined
mostly to the substrate region. Assuming for simplicity that the fields are con-
fined to the substrate region, construct a field map consisting of curvilinear
squares and compute the approximate value of of the line, for the dimen-
sions shown in Fig. 11.31, and considering the substrate to be a perfect dielectric
having and m = m0.e = 9e0

Z0

0.04"

0.1"

0.02"

Substrate

FIGURE 11.31

For Problem P11.23.

P11.24. Method of curvilinear squares for a line with cross section of circle inside a
square. Consider a transmission line having the cross section shown in Fig. 11.32.
The inner conductor is a circle of radius a and the outer conductor is a square of
sides 2a. Find the approximate value of the characteristic impedance of the line,
by using the method of curvilinear squares.

Section 11.6

P11.25. Alternate representation for the element coefficient matrix in finite-element
method. Alternative to the representations (11.44a)–(11.44i), show that the el-
ements of the element coefficient matrix in (11.43c) can be written as

[C1e2] =
1
2

 C  cot u2 + cot u3 -cot u3 -cot u2

-cot u3 cot u1 + cot u3 -cot u1

-cot u2 -cot u1 cot u1 + cot u2

S
[C1e2]
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3

1
u1

u3

u2 2
FIGURE 11.33

For Problem P11.25.

4 3
(1, 3) (4, 3)

(3, 1)(1, 1)
21

0 V

10 V

FIGURE 11.34

For Problem P11.26.

where and are the interior angles at the vertices 1, 2, and 3, respective-
ly, of the triangular element, as shown in Fig. 11.33.

u3u1, u2,

4 5 3
(1, 3) (4, 3)(3, 3)

(3, 1)(1, 1)
21

0 V

10 V

FIGURE 11.35

For Problem P11.27.

P11.26. Application of the finite-element method to an assembly of two triangular ele-
ments. Solve Example 11.7 by discretizing the region Fig. 11.19, as shown in
Fig. 11.34.

P11.27. Application of the finite-element method to an assembly of three triangular el-
ements. By discretizing the region of Fig. 11.19 into three triangles, as shown in
Fig. 11.35, solve for the potentials at global nodes 2, 4, and 5.

P11.28. Application of the finite-element method to an assembly of three triangular el-
ements. Repeat Problem P11.27 for the region of Fig. 11.19 discretized into
three triangles, as shown in Fig. 11.36.
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4

5

3
(1, 3) (4, 3)

(2, 2)

(3, 1)(1, 1)
21

0 V

10 V

FIGURE 11.36

For Problem P11.28.

Section 11.7

P11.29. Application of central-difference approximation to derivatives in wave equa-
tion. Show that the application of the central-difference approximation to the
derivatives in (11.53) in conjunction with the space-time grid of Fig. 11.21 gives
the result

where i and j refer to space (z) and time (t), respectively, and 
P11.30. Application of finite-difference time-domain method to an initially charged

line. In Example 11.8, assume that

Using the same space-time grid as in Fig. 11.23, prepare a table similar to Table 11.1
for obtaining values of V at the grid points corresponding to 

P11.31. Application of finite-difference time-domain method to an initially charged
line. Repeat Problem 11.30 for

P11.32. Application of finite-difference time-domain method to an initially charged
line. Repeat Problem 11.30 for

REVIEW PROBLEMS

R11.1. Application of analytical solution of Laplace’s equation in two dimensions. As-
sume that the rectangular slot of Fig. 11.1 is covered at the mouth by conducting

V1z, 02 = e 5
3 z for 0 … z … 6
20 - 5

3 z for 6 … z … 12

V1z, 02 = 10 sin3
  
pz

12
  V

j = 4.

V1z, 02 = 10 sin  
pz

6
  V

c = 1>2m0e0.

   + Ex1i - 1, j2] - Ex1i, j, - 12
 Ex1i, j + 12 = a2 - 2 

d2c2

a2 b  Ex1i, j2 +
d2c2

a2  [Ex1i + 1, j2
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FIGURE 11.37

For Problem R11.2.

4

3

2

1

6

5

2

6

3 4

a

e � e0

2a

FIGURE 11.38

For Problem R11.3.

plates such that the potential distribution is given by

Find the solution for the potential inside the slot.
R11.2. Capacitance of rectangular-shaped conductors at right angles by method of mo-

ments. Consider two thin rectangular-shaped conductors of size arranged
as shown in Fig. 11.37. By dividing each conductor into three squares of sides a and
applying the method of moments, find the capacitance of the arrangement.To find
the potential at the center of a square due to the charge on another square, consid-
er the charge on that square to be a point charge at the center of that square.

a * 3a

V = e V0 for 0 6 y 6 b>2
-V0 for b>2 6 y 6 b

R11.3. Finite-difference method for a line with cross section of circle inside a square.
Consider a transmission line having the cross section shown in Fig. 11.38. The
inner conductor is a circle of radius a and the outer conductor is a square of
sides 2a. Using the grid points as shown in the figure and applying the finite-dif-
ference method, find the approximate value of the characteristic impedance of
the line. (Hint: Use the result of Problem P11.9 for grid point 6.)
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R11.4. Consistency of finite-element method with finite-difference method. Consider
a square region divided into four right isosceles triangular finite elements, as
shown in Fig. 11.39. Show that for linear variation of potential within each ele-
ment, as represented by (11.31), the electric energy is proportional to the sum of
the squares of the differences between the potential at global node 5 (the 90°-
vertex) and the remaining two nodes (the 45°-vertices). For example, for ele-
ment 1, it is proportional to Further show that the
finite-element method gives the same result for in terms of and 
as that given by the finite-difference method, that is,

V5 = 1
41V1 + V2 + V3 + V42

V4,V1, V2, V3,V5

[1V1 - V522 + 1V2 - V522].

1

3

4 2
5

5

4

2

3

FIGURE 11.39

For Problem R11.4.

R11.5. Application of finite-difference time-domain method to an initially charged
line. Repeat the solution of Example 11.8 up to for each of the
following two cases: (a) time and (b) time 

For each case, compare the values of V obtained for with
those from the exact analytical solution and comment on your results.

t = 4 * 10-8 s10-8 s.
step = 0.5 *  step = 2 * 10-8 s

t = 4 * 10-8 s

RaoCh11v3.qxd  12/18/03  5:36 PM  Page 778



A P P E N D I X  A

Complex Numbers 
and Phasor Technique

In this appendix, we discuss a mathematical technique known as the phasor
technique, pertinent to operations involving sinusoidally time-varying quanti-
ties. The technique simplifies the solution of a differential equation in which the
steady-state response for a sinusoidally time-varying excitation is to be deter-
mined, by reducing the differential equation to an algebraic equation involving
phasors. A phasor is a complex number or a complex variable. We first review
complex numbers and associated operations.

A complex number has two parts: a real part and an imaginary part. Imag-
inary numbers are square roots of negative real numbers. To introduce the con-
cept of an imaginary number, we define

(A.1a)

or

(A.1b)

Thus, j5 is the positive square root of is the negative square root of
and so on.A complex number is written in the form where a is the

real part and b is the imaginary part. Examples are

A complex number is represented graphically in a complex plane by using
two orthogonal axes, corresponding to the real and imaginary parts, as shown in
Fig.A.1, in which are plotted the numbers just listed. Since the set of orthogonal
axes resembles the rectangular coordinate axes, the representation is
known as the rectangular form.

1a + jb2

3 + j4 -4 + j1 -2 - j2 2 - j3

a + jb,-100,
-25, -j10

1;j22 = -1

2-1 = j

779

Rectangular
form
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0

�3

4

3�4

2�2 1

�2

Real

Imaginary

(�4 � j1)

(3 � j4)

(2 � j3)

(�2 �j2)

FIGURE A.1

Graphical representation of complex
numbers in rectangular form.

An alternative form of representation of a complex number is the expo-
nential form where A is the magnitude and is the phase angle. To con-
vert from one form to another, we first recall that

(A.2)

Substituting we have

(A.3)

This is the so-called Euler’s identity. Thus,

(A.4)

Now, equating the two forms of the complex numbers, we have

or

(A.5a)
(A.5b) b = A sin f

 a = A cos f

a + jb = A cos f + jA sin f

 = A cos f + jA sin f
 Aejf = A1cos f + j sin f2

 = cos f + j sin f

 = a1 -
f2

2!
 + Á b + jaf -

f3

3!
 + Á b

 = 1 + jf -
f2

2!
- j 

f3

3!
 + Á

 ejf = 1 + jf +
1jf22

2!
+
1jf23

3!
 + Á

x = jf,

ex = 1 + x +
x2

2!
+

x3

3!
 + Á

fAejf,
Exponential
and polar
forms
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These expressions enable us to convert from exponential form to rectangular
form. To convert from rectangular form to exponential form, we note that

Thus,

(A.6a)

(A.6b)

Note that in the determination of the signs of and should be con-
sidered to see if it is necessary to add to the angle obtained by taking the in-
verse tangent of b/a.

In terms of graphical representation, A is simply the distance from the ori-
gin of the complex plane to the point under consideration, and is the angle
measured counterclockwise from the positive real axis to the line
drawn from the origin to the complex number, as shown in Fig. A.2. Since this
representation is akin to the polar coordinate representation of points in two-
dimensional space, the complex number is also written as the polar form.

Turning now to Euler’s identity, we see that for 
Thus, purely imaginary numbers correspond to

This justifies why the vertical axis, which is orthogonal to the real
(horizontal) axis, is the imaginary axis.

The complex numbers in rectangular form plotted in Fig. A.1 may now be
converted to exponential form (or polar form):

These are shown plotted in Fig. A.3. It can be noted that in converting from rec-
tangular to exponential (or polar) form, the angle can be correctly deter-
mined if the number is first plotted in the complex plane to see in which
quadrant it lies. Also note that angles traversed in the clockwise sense from the

f

 2 - j3 = 222 + 32 ej tan-11-3/22 = 3.61e-j0.313p = 3.61l -56.31°.

 -2 - j2 = 222 + 22 ej[tan-1112+p] = 2.83ej1.25p = 2.83l225°

 -4 + j1 = 242 + 12 ej[tan-11-1/42+p] = 4.12ej0.922p = 4.12l165.96°

 3 + j4 = 232 + 42 ej tan-114/32 = 5ej0.295p = 5l53.13°

f = ;p/2.
A cos p/2 ; jA sin p/2 = ;jA.

f = ;p/2, Ae;jp/2 =
Alf,

1f = 02f

p

sin fcos ff,

 f = tan-1
  
b
a

 A = 2a2 + b2

 cos f =
a

A
 sin f =

b

A
 tan f =

b
a

 a2 + b2 = A2

Appendix A 781

Conversion
from
rectangular to
exponential
or polar form

Imaginary

f
Real

a

b

A

(a � jb) � Aejf

FIGURE A.2

Graphical representation of a complex number
in exponential form or polar form.
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positive real axis are negative angles. Furthermore, adding or subtracting an in-
teger multiple of to the angle does not change the complex number.

Complex numbers are added (or subtracted) by simply adding (or sub-
tracting) their real and imaginary parts separately as follows:

Graphically, this procedure is identical to the parallelogram law of addition (or
subtraction) of two vectors.

Two complex numbers are multiplied by multiplying each part of one
complex number by each part of the second complex number and adding the
four products according to the rule of addition as follows:

Two complex numbers whose real parts are equal but whose imaginary
parts are the negative of each other are known as complex conjugates. Thus,

is the complex conjugate of and vice versa. The product of
two complex conjugates is a real number:

(A.7)

This property is used in division of one complex number by another by multiply-
ing both the numerator and the denominator by the complex conjugate of the
denominator and then performing the division by real number. For example,

3 + j4

2 - j3
=
13 + j4212 + j32
12 - j3212 + j32 =

-6 + j17

13
= -0.46 + j1.31

1a + jb2 1a - jb2 = a2 - jab + jba + b2 = a2 + b2

1a + jb2,1a - jb2

 = 18 - j1
 = 6 - j9 + j8 + 12

 13 + j42 12 - j32 = 6 - j9 + j8 - j21122

 12 - j32 - 1-4 + j12 = 6 - j4
 13 + j42 + 12 - j32 = 5 + j1

2p

(�4 � j1)

(�2� j2)

(2 � j3)

(3 � j4)

5

4.12

2.8
3

Imaginary

Real
3.61

53.13

56.31

165.96

225

FIGURE A.3

Polar form representation of the
complex numbers of Fig. A.1.

Arithmetic of
complex
numbers
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The exponential form is particularly useful for multiplication, division,
and other operations, such as raising to the power, since the rules associated
with exponential functions are applicable. Thus,

(A.8a)

(A.8b)

(A.8c)

Let us consider some numerical examples:

(a)

(b)

(c)

(d)

Note that in evaluating the square roots, although k can assume an infinite
number of integer values, only the first two need to be considered since the
numbers repeat themselves for higher values of integers. Similar considerations
apply for cube roots, and so on.

Having reviewed complex numbers, we are now ready to discuss the pha-
sor technique. The basis behind the phasor technique lies in the fact that since

(A.9)

we can write

(A.10)

where Re stands for “real part of.” In particular, if then we have

(A.11)

where is known as the phasor (the overbar denotes that is com-
plex) corresponding to Thus, the phasor corresponding to a co-
sinusoidally time-varying function is a complex number having magnitude same
as the amplitude of the cosine function and phase angle equal to the phase of
the cosine function for To find the phasor corresponding to a sine function,t = 0.

A cos 1vt + u2. AA = Aeju

 = Re[Aejvt]

 = Re[Aejuejvt]

 A cos 1vt + u2 = Re[Aej1vt +u2]

x = vt + u,

A cos x = Re[Aejx]

Aejx = A cos x + jA sin x

 = 2.03ej0.461p, or 2.03ej1.461p

 = 24.12 ej10.461p+ kp2,  k = 0, 1

 24.12ej0.922p = [4.12ej10.922p+ 2kp2]1/2, k = 0, 1, 2, Á
12.83ej1.25p24 = 64.14ej5p = 64.14ejp

5ej0.295p

3.61e-j0.313p = 1.39ej0.608p

15ej0.295p213.61e-j0.313p2 = 18.05e-j0.018p

 1Aejf2n = Anejnf

 
A1 ejf1

A2 ejf2
=

A1

A2
 ej1f1 -f22

 1A1 ejf121A2 ejf22 = A1 A2 ej1f1 +f22

Phasor
defined
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784 Appendix A Complex Numbers and Phasor Technique

Addition of
two sine
functions

we first convert it into a cosine function and proceed as in (A.11). Thus,

(A.12)

Hence, the phasor corresponding to is or 

Let us now consider the addition of two sinusoidally time-varying func-
tions (of the same frequency), for example, and by
using the phasor technique. To do this, we proceed as follows:

(A.13)

In practice, we need not write all the steps just shown. First, we express all
functions in their cosine forms and then recognize the phasor corresponding to
each function. For the foregoing example, the complex numbers and

are the phasors corresponding to and re-
spectively.Then we add the phasors and from the sum phasor write the required
cosine function as one having the amplitude the same as the magnitude of the
sum phasor and the argument equal to plus the phase angle of the sum pha-
sor. Thus, the steps involved are as shown in the block diagram of Fig. A.4.

We shall now discuss the solution of a differential equation for sinusoidal
steady-state response by using the phasor technique. To do this, let us consider
the problem of finding the steady-state solution for the current I(t) in the simple
RL series circuit driven by the voltage source as
shown in Fig. A.5. From Kirchhoff’s voltage law, we then have

(A.14)

We know that the steady-state solution for the current must also be a co-
sine function of time having the same frequency as that of the voltage source,

RI1t2 + L 

dI1t2
dt

= Vm cos 1vt + f2

V1t2 = Vm cos 1vt + f2,

vt

10 sin 1vt - 30°2,5 cos vt10e-j2p/3
5ej0

 = 8.66 cos 1vt - 90°2
 = Re[8.66ej1vt -p/22]
 = Re[8.66e-jp/2ejvt]

 = Re[10 - j8.662ejvt]

 = Re5[15 + j02 + 1-5 - j8.662]ejvt6
 = Re[15ej0 + 10e-j2p/32ejvt]

 = Re[5ej0ejvt + 10e-j2p/3ejvt]

 = Re[5ej0ejvt] + Re[10e-j2p/3ejvt]

 = Re[5ejvt] + Re[10ej1vt - 2p/32]
 5 cos vt + 10 sin 1vt - 30°2 = 5 cos vt + 10 cos 1vt - 120°2

10 sin 1vt - 30°2,5 cos vt

or -jBejf.
Bejfe-jp/2,Bej1f-p/22,B sin 1vt + f2

 = Re[Bej1f-p/22ejvt]

 = Re[Bej1vt +f-p/22]
 B sin 1vt + f2 = B cos 1vt + f - p/22

Solution of
differential
equation
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5 cos vt

5 cos vt

5e j0 10e�j2p/3

8.66 cos (vt � 90 )

�

�

�

� (Sum Phasor)

(Phasors)

8.666e�jp/2

10 sin (vt � 30 )

10 cos (vt � 120 )

FIGURE A.4

Block diagram of steps involved in 
the application of the phasor technique to 
the addition of two sinusoidally time-varying
functions.

but not necessarily in phase with it. Hence, let us assume

(A.15)

The problem now consists of finding and 
Using the phasor concept, we write

(A.16a)

(A.16b)

where and are the phasors corresponding to 
and respectively. Substituting these

into the differential equation, we have

(A.17)R5Re[I
 –

ejvt]6 + L 
d

dt
5Re[I

 –
ejvt]6 = Re[Vejvt]

I1t2 = Im cos 1vt + u2,Vm cos 1vt + f2 V1t2 =I
 – = Im ejuV = Vm ejf

 = Re[Iejvt]
 = Re[Im ejuejvt]

 Im cos 1vt + u2 = Re[Im ej1vt +u2]

 = Re[Vejvt]
 = Re[Vm ejfejvt]

 Vm cos 1vt + f2 = Re[Vm ej1vt +f2]

u.Im

I1t2 = Im cos 1vt + u2

�
�

V(t)

I(t)R

L

FIGURE A.5

RL series circuit.
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786 Appendix A Complex Numbers and Phasor Technique

Since R and L are constants, and since d/dt and Re can be interchanged, we can
simplify this equation in accordance with the following steps:

(A.18)

Let us now consider two values of say, and For we
obtain

(A.19)

For we obtain

or

(A.20)

where Im stands for “imaginary part of.” Now, since the real parts as well as the
imaginary parts of and are equal, it follows that the two com-
plex numbers are equal. Thus,

(A.21)

By solving this equation, we obtain and hence and Note that by using the
phasor technique, we have reduced the problem of solving the differential equa-
tion (A.14) to one of solving the phasor (algebraic) equation (A.21). In fact, the
phasor equation can be written directly from the differential equation without
the necessity of the intermediate steps, by recognizing that the time functions
I(t) and V(t) are replaced by their phasors and respectively, and d/dt is re-
placed by We have here included the intermediate steps merely to illustrate
the basis behind the phasor technique. We shall now consider an example.

Example A.1 Solution of differential equation using phasor technique

For the circuit of Fig. A.5, let us assume that and 
and obtain the steady-state solution for I(t).

The differential equation for I(t) is given by

Replacing the current and voltage by their phasors and respectively, and d/dt
by we obtain the phasor equation

I
 – + 10-31j1000I

 –2 = 10ejp/6

jv = j1000,
10ejp/6,I

 –

I + 10-3
 
dI

dt
= 10 cos 11000t + 30°2

10 cos 11000t + 30°2 V
V1t2 =R = 1 Æ, L = 10-3 H,

jv.
V,I

 –

u.ImI
 –

RI
 – + jvLI

 – = V

V1RI
 – + jvLI

 –2

Im1RI
 – + jvLI

 –2 = Im1V2

Re[j1RI
 – + jvLI

 –2] = Re[jV]

vt = p/2,

Re1RI
 – + jvLI

 –2 = Re1V2

vt = 0,vt = p/2.vt = 0vt,

 Re[1RI
 – + jvLI

 –2ejvt] = Re[Vejvt]
 Re[RI

 –
ejvt] + Re[jvLI

 –
ejvt] = Re[Vejvt]

 Re[RI
 –

ejvt] + Re cL 
d

dt
 1I –ejvt2 d = Re[Vejvt]
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or

Having determined the value of we now find the required solution to be

 = 7.07 cos 11000t - 15°2 A
 = Re[7.07e-jp/12ej1000t]

 I1t2 = Re[I
 –

ejvt]

I
 –

,

 = 7.07e-jp/12

 I
 – =

10ejp/6

1 + j1
=

10ejp/622 ejp/4

 I
 –11 + j12 = 10ejp/6
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A P P E N D I X  B

Curl, Divergence, Gradient, and
Laplacian in Cylindrical and
Spherical Coordinate Systems

In Chapter 3, we introduced the curl, divergence, gradient, and Laplacian and
derived the expressions for them in the Cartesian coordinate system. In this ap-
pendix, we derive the corresponding expressions in the cylindrical and spherical
coordinate systems. Considering first the cylindrical coordinate system, we re-
call from Section 1.3 that the infinitesimal box defined by the three orthogonal
surfaces intersecting at point and the three orthogonal surfaces inter-
secting at point is as shown in Fig. B.1.

From the basic definition of the curl of a vector introduced in Section 3.3
and given by

(B.1)

we find the components of as follows, with the aid of Fig. B.1:

(B.2a)

 =
1
r

  

0Az

0f
-

0Af
0z

 = lim
df:0

 

[Az]1r,f+ df2 - [Az]1r,f2
r df

+ lim
dz:0

 

[Af]1r,z2 - [Af]1r,z + dz2
dz

 = lim
df:0
dz:0

 

e [Af]1r,z2 r df + [Az]1r,f+ df2 dz

- [Af]1r,z + dz2 r df - [Az]1r,f2 dz
f

r df dz

 1� � A2r = lim
df:0
dz:0

 
Aabcda A # dl

area abcd

� � A

� � A = lim
¢S:0

c AC A # dl

¢S
d

max
an

Q1r + dr, f + df, z + dz2P1r, f, z2

788
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(B.2b)

(B.2c)

 =
1
r

  
0
0r

 1rAf2 -
1
r

  

0Ar

0f

 = lim
dr:0

 

[rAf]1r + dr,z2 - [rAf]1r,z2
r dr

+ lim
df:0

 

[Ar]1f,z2 - [Ar]1f+ df,z2
r df

 = lim
dr:0
df:0

 

e [Ar]1f,z2 dr + [Af]1r + dr,z21r + dr2 df
- [Ar]1f+ df,z2 dr - [Af]1r,z2r df

f
r dr df

 1� � A2z = lim
dr:0
df:0

 

Aafgba  A # dl

area afgb

 =
0Ar

0z
-

0Az

0r

 = lim
dz:0

 

[Ar]1f,z + dz2 - [Ar]1f,z2
dz

+ lim
dr:0

 

[Az]1r,f2 - [Az]1r + dr,f2
dr

 = lim
dz:0
dr:0

 

e [Az]1r,f2 dz + [Ar]1f, z + dz2 dr

-[Az]1r + dr,f2 dz - [Ar]1f,z2 dr
f

dr dz

 1� � A2f = lim
dz:0
dr :0

 

Aadefa A # dl

area adef

d

a
P(r, f, z)

dz

dr

f

g

c

h

e
b

r df

(r � dr) df

Q(r � dr, f � df, z � dz)

FIGURE B.1

Infinitesimal box formed by
incrementing the coordinates in the
cylindrical coordinate system.
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790 Appendix B Curl, Divergence, Gradient, and Laplacian

Combining (B.2a), (B.2b), and (B.2c), we obtain the expression for the curl of a
vector in cylindrical coordinates as

(B.3)

To find the expression for the divergence, we use the basic definition of the di-
vergence of a vector, introduced in Section 3.3 and given by

(B.4)

Evaluating the right side of (B.4) for the box of Fig. B.1, we obtain

(B.5)

To obtain the expression for the gradient of a scalar, we recall from
Section 1.3 that in cylindrical coordinates,

(B.6)

Therefore,

(B.7)

 = �£ # dl

 = a 0£
0r

 ar +
1
r

  
0£
0f

 af +
0£
0z

 azb # 1dr ar + r df af + dz az2
 d£ =

0£
0r

 dr +
0£
0f

 df +
0£
0z

 dz

dl = dr ar + r df af + dz az

 =
1
r

  
0
0r

 1rAr2 +
1
r

  

0Af
0f

+
0Az

0z

 + lim
dz:0

 

[Az]z + dz - [Az]z

dz

 = lim
dr:0

 

[rAr]r + dr - [rAr]r

r dr
+ lim

df:0
 

[Af]f+ df - [Af]f
r df

 � # A = lim
dr:0
df:0
dz:0

 

e[Ar]r + dr1r + dr2 df dz - [Ar]r r df dz + [Af]f+ df dr dz

- [Af]f dr dz + [Az]z + dz r dr df - [Az]z r dr df
f

r dr df dz

� # A = lim
¢v:0

 
AS  

A # dS

¢v

 =
5
ar

r
af

az

r

0
0r

0
0f

0
0z

Ar rAf Az

5
  +

1
r

 c 0
0r

 1rAf2 -
0Ar

0f
daz

 � � A = c1
r

  

0Az

0f
-

0Af
0z
dar + c 0Ar

0z
-

0Az

0r
daf
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Thus,

(B.8)

To derive the expression for the Laplacian of a scalar, we recall from
Section 5.1 that

(B.9)

Then using (B.5) and (B.8), we obtain

(B.10)

Turning now to the spherical coordinate system, we recall from Section 1.3
that the infinitesimal box defined by the three orthogonal surfaces intersecting
at and the three orthogonal surfaces intersecting at 

is as shown in Fig. B.2. From the basic definition of the curl of a vector
given by (B.1), we then find the components of as follows, with the aid of
Fig. B.2:

� � A
f + df2 Q1r + dr, u + du,P1r, u, f2

 =
1
r

  
0
0r

 ar 
0£
0r
b +

1

r2  
02£
0f2 +

02£
0z2

 §2£ =
1
r

  
0
0r

 ar 
0£
0r
b +

1
r

  
0

0f
 a1

r
  
0£
0f
b +

0
0z

 a 0£
0z
b

§2£ = � # �£

�£ =
0£
0r

  ar +
1
r

  
0£
0f

  af +
0£
0z

  az

P(r, u, f)
a

r du

r sin u df

b

g

e

h

f

dr

c

d (r � dr) sin u df

Q(r � dr, u � du, f � df)

r sin (u � du) df

(r � dr) du

FIGURE B.2

Infinitesimal box formed by
incrementing the coordinates in
the spherical coordinate system.
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(B.11a)

(B.11b)

(B.11c)

 =
1
r

  
0
0r

 1rAu2 -
1
r

  

0Ar

0u

  + lim
du:0

 

[Ar]1u,f2 dr - [Ar]1u+ du,f2 dr

r du

 = lim
dr:0

 

[rAu]1r + dr,f2 - [rAu]1r,f2
r dr

 = lim
dr:0
du:0

 

e [Ar]1u,f2 dr + [Au]1r + dr,f21r + dr2 du
-[Ar]1u+ du,f2 dr - [Au]1r,f2 r du

f
r dr du

 1� � A2f = lim
dr:0
du:0

 

Aafgba  A # dl

area afgb

 =
1

r sin u
  

0Ar

0f
-

1
r

  
0
0r

 1rAf2
  + lim

dr:0
 

[rAf]1r,u2 - [rAf]1r + dr, u2
r dr

 = lim
df:0

 

[Ar]1u,f+ df2 - [Ar]1u, f2
r sin u df

 = lim
df:0
dr:0

 

e [Af]1r,u2 r sin u df + [Ar]1u,f+ df2 dr

-[Af]1r + dr,u21r + dr2 sin u df - [Ar]1u,f2 dr
f

r sin u dr df

 1� � A2u = lim
df:0
dr:0

 

Aadefa A # dl

area adef

 =
1

r sin u
  

0
0u

 1Af  sin u2 -
1

r sin u
  

0Au
0f

  + lim
df:0

 

[Au]1r,f2 - [Au]1r,f+ df2
r sin u df

 = lim
du:0

 

[Af sin u]1r,u+ du2 - [Af sin u]1r,u2
r sin u du

 = lim
du:0
df:0

 

e [Au]1r,f2r du + [Af]1r,u+ du2r sin1u + du2 df
- [Au]1r,f+ df2r du - [Af]1r,u2r sin u df f

r2
 
sin u du df

 1� � A2r = lim
du:0
df:0

 
Aabcda  

A # dl

area abcd
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Combining (B.11a), (B.11b), and (B.11c), we obtain the expression for the curl
of a vector in spherical coordinates as

(B.12)

To find the expression for the divergence, we use the basic definition of
the divergence of a vector given by (B.4), and by evaluating its right side for the
box of Fig. B.2, we obtain

(B.13)

To obtain the expression for the gradient of a scalar, we recall from
Section 1.3 that in spherical coordinates,

(B.14)dl = dr ar + r du au + r sin u df af

=
1

r2  
0
0r

 1r2Ar2 +
1

r sin u
  

0
0u

 1Au sin u2 +
1

r sin u
  

0Af
0f

+ lim
df:0

 

[Af]f+ df - [Af]f
r sin u df

 = lim
dr:0

 

[r2Ar]r + dr - [r2Ar]r

r2 dr
+ lim

du:0
 

[Au sin u]u+ du - [Au sin u]u
r sin u du

 � # A = lim
dr:0
du:0
df:0

c [Ar]r + dr1r + dr22 sin u du df - [Ar]rr
2 sin u du df

+ [Au]u+
du r sin1u + du2 dr df - [Au]u r sin u dr df

+ [Af]f+
df r dr du - [Af]fr dr du

s
r2 sin u dr du df

 =
5

ar

r2
 sin u

au
r sin u

af
r

0
0r

0
0u

0
0f

Ar rAu r sin u Af

5
  +

1
r

 c 0
0r

 1rAu2 -
0Ar

0u
daf

  +
1
r

 c 1
sin u

  

0Ar

0f
-

0
0r

 1rAf2 dau

 � � A =
1

r sin u
 c 0

0u
 1Af sin u2 -

0Au
0f
dar
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794 Appendix B Curl, Divergence, Gradient, and Laplacian

Therefore,

(B.15)

Thus,

(B.16)

To derive the expression for the Laplacian of a scalar, we use (B.9), in con-
junction with (B.13) and (B.16). Thus, we obtain

(B.17)

  +
1

r2 sin2u
  
02£
0f2

 =
1

r2  
0
0r

 ar2
 
0£
0r
b +

1

r2 sin u
  

0
0u

 asin u  
0£
0u
b

  +
1

r sin u
  

0
0f

 a 1
r sin u

  
0£
0f
b

 §2£ =
1

r2  
0
0r

 ar2
 
0£
0r
b +

1
r sin u

  
0
0u

 a1
r

  
0£
0u

  sin ub

�£ =
0£
0r

  ar +
1
r

  
0£
0u

  au +
1

r sin u
  
0£
0f

  af

 = �£ # dl
  # 1dr ar + r du au + r sin u df af2
 = a 0£

0r
  ar +

1
r

  
0£
0u

  au +
1

r sin u
  
0£
0f

  afb
 d£ =

0£
0r

 dr +
0£
0u

 du +
0£
0f

 df
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A P P E N D I X  C

Units and Dimensions

In 1960, the International System of Units was given official status at the
Eleventh General Conference on Weights and Measures held in Paris. This sys-
tem of units is an expanded version of the rationalized meter–kilogram–second–
ampere (MKSA) system of units and is based on six fundamental, or basic,
units.The six basic units are the units of length, mass, time, current, temperature,
and luminous intensity.

The international unit of length is the meter. It is exactly 1,650,763.73
times the wavelength in vacuum of the radiation corresponding to the unper-
turbed transition between the levels and of the atom of krypton-86, the
orange-red line. The international unit of mass is the kilogram. It is the mass of
the International Prototype Kilogram, which is a particular cylinder of platinum–
iridium alloy preserved in a vault at Sèvres, France, by the International Bureau
of Weights and Measures.The international unit of time is the second. It is equal
to 9,192,631,770 times the period corresponding to the frequency of the transi-
tion between the hyperfine levels and of the fun-
damental state of the cesium-133 atom unperturbed by external fields.

To present the definition for the international unit of current, we first de-
fine the newton, which is the unit of force, derived from the fundamental units
meter, kilogram, and second in the following manner. Since velocity is the rate
of change of distance with time, its unit is meter per second. Since acceleration
is the rate of change of velocity with time, its unit is meter per second per sec-
ond, or meter per second squared. Since force is mass times acceleration, its unit
is kilogram-meter per second squared, also known as the newton.Thus, the new-
ton is that force which imparts an acceleration of 1 meter per second squared to
a mass of 1 kilogram. The international unit of current, which is the ampere, can
now be defined. It is the constant current that, when maintained in two straight,
infinitely long, parallel conductors of negligible cross section and placed 1 meter
apart in vacuum, produces a force of per meter length of the
conductors.

The international unit of temperature is the kelvin. It is based on the defin-
ition of the thermodynamic scale of temperature, by designating the triple point

2 * 10-7 newton

2S1>2
F = 3, M = 0F = 4, M = 0

5d52p10

795
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796 Appendix C Units and Dimensions

TABLE C.1 Symbols, Units, and Dimensions of Various Quantities

Quantity Symbol Unit (Symbol) Dimensions

Admittance siemens (S)
Area A square meter 
Attenuation constant neper/meter (Np/m)
Capacitance C farad (F)
Capacitance per unit length farad/meter (F/m)

x meter (m) L
Cartesian coordinates y meter (m) L

z meter (m) L
Characteristic admittance siemens (S)
Characteristic impedance ohm 
Charge Q, q coulomb (C) Q
Conductance G siemens (S)
Conductance per unit length siemens/meter (S/m)
Conduction current density ampere/square meter

Conductivity siemens/meter (S/m)
Current I ampere (A)
Cutoff frequency hertz (Hz)
Cutoff wavelength meter (m) L

meter (m) L
Cylindrical coordinates radian —

z meter (m) L
Differential length element dl meter (m) L
Differential surface element dS square meter 

(Continued)

L21m22

f

r, rc

lc

T-1fc

T-1Q
M-1L-3TQ2s

1A>m22
L-2T-1QJc

M-1L-3TQ2g

M-1L-2TQ2

ML2T-1Q-21Æ2Z0

M-1L-2TQ2Y0

M-1L-3T2Q2c

M-1L-2T2Q2
L-1a

L21m22
M-1L-2TQ2Y

of water as a fixed fundamental point to which a temperature of exactly 273.16
kelvin is attributed.The international unit of luminous intensity is the candela. It
is defined such that the luminance of a blackbody radiator at the freezing tem-
perature of platinum is 60 candelas per square centimeter.

We have just defined the six basic units of the International System of
Units.Two supplementary units are the radian and the steradian for plane angle
and solid angle, respectively. All other units are derived units. For example, the
unit of charge, which is the coulomb, is the amount of charge transported in 1
second by a current of 1 ampere; the unit of energy, which is the joule, is the
work done when the point of application of a force of 1 newton is displaced a
distance of 1 meter in the direction of the force; the unit of power, which is the
watt, is the power that gives rise to the production of energy at a rate of 1 joule
per second; the unit of electric potential difference, which is the volt, is the dif-
ference of electric potential between two points of a conducting wire carrying
constant current of 1 ampere when the power dissipated between these points
is equal to 1 watt; and so on. The units for the various quantities used in this
book are listed in Table C.1, together with the symbols of the quantities and
their dimensions.

c

c

RaoApp-Cv3.qxd  12/18/03  5:46 PM  Page 796



Appendix C 797

TABLE C.1 (Continued)

Quantity Symbol Unit (Symbol) Dimensions

Differential volume element cubic meter 
Directivity D — —
Displacement flux density D coulomb/square meter

Electric dipole moment p coulomb-meter (C-m) LQ
Electric field intensity E volt/meter (V/m)
Electric potential V volt (V)
Electric susceptibility — —
Electron density
Electronic charge e coulomb (C) Q
Energy W joule (J)
Energy density joule/cubic meter 
Force F newton (N)
Frequency f hertz (Hz)
Group velocity meter/second (m/s)
Guide characteristic impedance ohm 
Guide wavelength meter (m) L
Impedance ohm 
Inductance L henry (H)
Inductance per unit length henry/meter (H/m)
Intensity I watt/square meter 
Intrinsic impedance ohm 
Length l meter (m) L
Line charge density coulomb/meter (C/m)
Magnetic dipole moment m ampere-square meter

Magnetic field intensity H ampere/meter (A/m)
Magnetic flux weber (Wb)
Magnetic flux density B tesla or weber/square meter

(T or )
Magnetic susceptibility — —
Magnetic vector potential A weber/meter (Wb/m)
Magnetization surface current ampere/meter (A/m)

density
Magnetization vector M ampere/meter (A/m)
Mass m kilogram (kg) M
Mobility square meter/volt-second

Permeability henry/meter (H/m)
Permeability of free space henry/meter (H/m)
Permittivity farad/meter (F/m)
Permittivity of free space farad/meter (F/m)
Phase constant radian/meter (rad/m)
Phase velocity meter/second (m/s)
Polarization surface charge coulomb/square meter

density
Polarization vector P coulomb/square meter

(Continued)

1C>m22
L-2Q

1C>m22
L-2QrpS

LT-1vp

L-1b

M-1L-3T2Q2e0

M-1L-3T2Q2e

MLQ-2m0

MLQ-2m

1m2>V-s2
M-1TQm

L-1T-1Q

L-1T-1QJmS

MLT-1Q-1
xm

Wb>m2
MT-1Q-1
ML2T-1Q-1c

L-1T-1Q
1A-m22

L2T-1Q
L-1QrL

ML2T-1Q-21Æ2h

MT-31W>m22
MLQ-2l

ML2Q-2
ML2T-1Q-21Æ2Z

 –
lg

ML2T-1Q-21Æ2hg

LT-1vg

T-1
MLT-2
ML-1T-21J>m32w
ML2T-2

L-31meter2-3 1m-32Ne

xe

ML2T-2Q-1
MLT-2Q-1

1C>m22
L-2Q

L31m32dv
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Dimensions are a convenient means of checking the possible validity of a
derived equation. The dimension of a given quantity can be expressed as some
combination of a set of fundamental dimensions. These fundamental dimensions
are mass (M), length (L), and time (T). In electromagnetics, it is the usual prac-
tice to consider the charge (Q), instead of the current, as the additional funda-
mental dimension. For the quantities listed in Table C.1, these four dimensions
are sufficient. Thus, for example, the dimension of velocity is length (L) divided

TABLE C.1 (Continued)

Quantity Symbol Unit (Symbol) Dimensions

Power P watt (W)
Power density p watt/square meter

Poynting vector P watt/square meter

Propagation constant
Propagation vector radian/meter (rad/m)
Q factor Q — —
Radian frequency radian/second (rad/s)
Radiation resistance ohm 
Reactance X ohm 
Reflection coefficient — —
Refractive index n — —
Relative permeability — —
Relative permittivity — —
Reluctance ampere (turn)/weber

(A-t/Wb)
Resistance R ohm 
Skin depth meter (m) L

meter (m) L
Spherical coordinates radian —

radian —
Standing wave ratio SWR — —
Surface charge density coulomb/square meter

Surface current density ampere/meter (A/m)
Susceptance B siemens (S)
Time t second (s) T
Transmission coefficient — —
Unit normal vector — —
Velocity meter/second (m/s)
Velocity of light in free space c meter/second (m/s)
Voltage V volt (V)
Volume V cubic meter 
Volume charge density coulomb/cubic meter

Volume current density J ampere/square meter

Wavelength meter (m) L
Work W joule (J) ML2T-2

l

1A>m22
L-2T-1Q

1C>m32
L-3Qr

L31m32
ML2T-2Q-1
LT-1
LT-1v

an

t

M-1L-2TQ2
L-1T-1QJS

1C>m22
L-2QrS

f

u

r, rs

d

ML2T-1Q-21Æ2
M-1L-2Q2R

er

mr

≠
ML2T-1Q-21Æ2
ML2T-1Q-21Æ2R rad

T-1v

L-1b

L-11meter2-1 1m-12g

1W>m22
MT-3

1W>m22
MT-3
ML2T-3

c
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by time (T ), that is, the dimension of acceleration is length (L) divided by
time squared that is, the dimension of force is mass (M) times accel-
eration that is, the dimension of ampere is charge (Q) divided by
time (T), that is, and so on.

To illustrate the application of dimensions for checking the possible valid-
ity of a derived equation, let us consider the equation for the phase velocity of
an electromagnetic wave in free space, given by

We know that the dimension of is Hence, we have to show that the di-

mension of is also To do this, we note from Coulomb’s law that

Hence, the dimension of is or We note
from Ampère’s law of force applied to two infinitesimal current elements paral-
lel to each other and normal to the line joining them that

Thus, the dimension of is or Now we

obtain the dimension of as or 
which is the same as the dimension of It should be noted, however, that the
test for the equality of the dimensions of the two sides of a derived equation is
not a sufficient test to establish the equality of the two sides, since any dimen-
sionless constants associated with the equation may be in error.

It is not always necessary to refer to the table of dimensions for checking
the possible validity of a derived equation. For example, let us assume that we
have derived the expression for the characteristic impedance of a transmission
line (i.e., ) and we wish to verify that does indeed have the di-
mension of impedance. To do this, we write

We now recognize from our knowledge of circuit theory that both and
being the reactances of L and C, respectively, have the dimension of im-

pedance. Hence, we conclude that has the dimension of 
or impedance.

21impedance221l>c1>vC,
vL

Alc = Avll

vcl
= AvL

vC
= B1vL2a 1

vC
b

1l>c1l>c
vp.

LT-1,1>21M-1L-3T2Q221MLQ-22,1>1m0e0

MLQ-2.[1MLT-221L22]>1QT-1L22],m0

m0 =
4pFR2

1I1 dl121I2 dl22

M-1L-3T2Q2.Q2>[1MLT-221L22],e0

e0 =
Q1 Q2

4pFR2

LT-1.1>2m0e0

LT-1.yp

vp =
12m0e0

QT-1;
MLT-2;1LT-22, LT-2;1T22, LT-1;
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Answers to Selected Problems

CHAPTER 1

P1.1. (a) 1/3; (b) 0.75; (c)
P1.4. (a) (b) (c) (d) 1
P1.6. Yes
P1.8. (a) 25; (b) 16; (c) 

P1.10. (a) 

P1.13.

P1.16.
P1.19.
P1.21. (a) (b) 

P1.24. (a) (b)

(c) 

P1.26. (a) (b) 

P1.28.

P1.29. away from the center of the tetrahedron

P1.31. (a) No solutions; (b) at (3, 3, 2)

P1.33.

P1.36.

P1.39. toward the origin

P1.42. (a) Same; (b) 

P1.45. (a) (b) -0.057m0az0.45m0az;
Bpd2w

4m0 lL

0.046m01I dz22
2pa

z2a2 + z2
 az

d2z

dt2 +
3Qz

4pe0 ma3 = 0; 1
2pA 3Q

4pe0 ma3

-108pe0 C

0.1949Q2

e0 L2

r sin2 u = 1, f = p>6
6x = 3y = 2zx2 + 2y2 = 9, z = 3;

-  
mMG

rs
2  ars

-mMG 

1rc arc + zaz2
1r2

c + z223>2 ;-mMG 

1xax + yay + zaz2
1x2 + y2 + z223>2 ;

;113
2  ar - 1

2 af2;af;;1cos 2f ar - sin 2f af2;
2au
110

1161ax + ay + az2
x + y + z = 4

1212

-1, -5;-1;-2;
1>13

801
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802 Answers to Selected Problems

P1.47. (a) (b) (c) 

P1.50.

P1.53. (a) (b) (c) 0

CHAPTER 2

P2.1. (a) 1/2; (b) 0
P2.4. 0.5708
P2.7. 0
P2.9.

P2.12. (a) (b) 0
P2.15. (a) (b) 0
P2.18. (a) 128 A; (b) 
P2.21. (a) (b) 

P2.23.

P2.25.

P2.27. (a) (b) 

P2.29. 0 for for for 

P2.31.

CHAPTER 3

P3.2. (a) 

(b) 

P3.4. no

P3.6.

P3.9. (a) for otherwise;

(b) 

P3.11. (a) Yes; (b) yes; (c) no
P3.13. � � v = -2vaz

r0 r2

3a
 ar for 0 6 r 6 a, 

r0 a2

3r
 ar for r 7 a

-a 6 x 6 a, 0
r0

2a
 1x2 - a22ax

;15>3
B =

aE0

v
 e-az sin vt az;

E010.6ax - 0.8az2
3 * 108  cos [3p * 108t + 0.2p14x + 3z2]

E0

3 * 108  sin 3pz sin 9p * 108t ay;

J0 r2

3a
 af for r 6 a, 

J0 a2

3r
 af for r 7 a

r 7 2aa 6 r 6 2a; 
7a3r0

3r2  arr 6 a, 
r01r3 - a32

3r2  ar

32
81 

 
C8

3 
 
C;

1
3 I

B0p
2

2
  Wb

r0>4816r0;
8p A

B0 hbv sin vt;
-2B0 v0 cos p1x - v0 t2;2p>3

qE0

2
 az;-  

qE0

2
 az;

E0

3B0
 12ax - ay - 2az2

B01-3ax + 2ay + 2az2B01ax + 2ay2;-3B0 ax;
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1

�1

0�2 �1

D

B

C

A

1 2 3

[ f ]z � 200 m

t, s

P3.16. (a) Both sides of divergence theorem are equal to 
(b) both sides of divergence theorem are equal to zero

P3.17.

P3.20. (c)

0Ez

0y
= -  

0Bx

0t
, 

0Hx

0y
= -Jz -

0Dz

0t

3
2;

P3.23. (a)

P3.25. (a) 45 MHz; (b) (c) 

(d) 0.1 cos 19p * 107t + 0.3py2 az A>m
-y direction;6 

2
3 m;

0 1 2 3 4 5

18.85

37.7

t, �sA

B

D

E

C

[Ex]z � 200 m, V/m

[Hy]t � 4 �s, A/m

�0.1

0.05

0.1

�0.05

�1200

�900 �600 �300 0A

B C

D

E

D

C B

A

1200900600300
z, m

(d)
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P3.26.

P3.29. (a) (b) 1, (c) 0; (a) (b) 

P3.31. (a) Elliptical; (b) 

P3.33.

P3.34. (a) Right circular; (b) left circular; (c) left elliptical;
(d) right elliptical

P3.37. (a) (b) 

P3.39. (a) (b) 

CHAPTER 4

P4.2. (b)

P4.4.

P4.7. (a) (b) (c) 

P4.9.

P4.12.
P4.14. (a) 21.224 m, 3.10;

(b) 

P4.17. (a) (b) 
P4.20.
P4.21.

P4.25.
P4.27. 98m0

2e0

 1217.66 + j0.6532 Æ; 9.189 km
1.0883 * 10-4 m-1; 0.036276 rad>m; 1.732 * 108 m>s; 173.21 m;
2.25m0, 16e0

1.3654H0
2 W1.5791H0

2 e-2z W>m2;

91.82e-0.0533z cos 12p * 106t - 0.074z + 0.1988p2 ax V>m
3km0

vQa2

4
 az

D
2e0

2e0 E;2e0 E012ax + 2ay + az2;

rL0

2pe0
 e 1x - d2 ax + yay

1x - d22 + y2 -
1x + d2 ax + yay

1x + d22 + y2 f
0.431 * 1013 Hz; 1>12

1.08a, 0.4763r00.0233 

r0
2a5

e0
;

1
2

 V0 I0
V0 I0

2pr2 ln 1b>a2 cos2 v1t - 2m0e0z2 az, 
V0 I0

4pr2 ln 1b>a2  az;

 + cos a2p * 108t -
2p
3

 z + 0.2048pb  ay d
 H =

E0

96p
 c -sin a2p * 108t -

2p
3

 z + 0.2048pb  ax

 + sin a2p * 108t -
2p
3

 z + 0.2048pb  ay d
 E = 1.25E0 ccos a2p * 108t -

2p
3

 z + 0.2048pb  ax

-2

2
5

 or 
1
4

2
3

,
1
2

 ,
ƒ 1 - k ƒ
ƒ 1 - 3k ƒ

;

 H = <0.1 sin 115p * 107t < 0.5px2 az A>m for x � 0

 E = -37.7 sin 115p * 107t < 0.5px2 ay V>m for x � 0
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P4.30

P4.33.

P4.36.

CHAPTER 5

P5.3. (a) (b) (c) 
P5.5.
P5.7.

P5.9.

P5.15.

P5.18.

(a) 

(b) 
e1e2

e2 t + e11d - t2

e2 x

e2 t + e11d - t2  V0 for 0 6 x 6 t, 
e2 t + e11x - t2
e2 t + e11d - t2  V0 for t 6 x 6 d;

r0

2e
 adx - x2 +

x3

3d
b  for 0 6 x 6 d; 

r0 d2

6e
 for x 7 d

-  

r0 d2

6e
 for x 6 -d; 

r0

2e
 adx + x2 +

x3

3d
b  for -d 6 x 6 0;

1c - 122
4c

 a r
a
b2

+ a c - 1
c + 1

b2

 a z
a
b2

= 1, where c is a constant

V =
rL0

4pe
  ln  
2r2 + 1z + a22 + 1z + a22r2 + 1z - a22 + 1z - a2;  equipotential surfaces are

Direction lines are 1x2 - y22 = constant
16x + 32y + z = 24

-  
cos u

r2r cos f;e-y sin x;

[JS]z = 0 =
2E0

h
  cos vt ax

 Hr =
E0

h
  cos 1vt + bz2 ay; H =

2E0

h
  cos vt cos bz ay

 Er = -E0 cos 1vt + bz2 ax; E = 2E0 sin vt sin bz ax

 - 22.504 * 10-3pz + 0.0772p2 ax] V>m
 + 0.1476p2 ax + 0.1433E0 e-7.894 * 10-3z cos 19p * 105t

 Et = [0.3354E0 e-6.283 * 10-3z cos 13p * 105t - 9.425 * 10-3pz

 + 0.1161E0 cos 19p * 105t + 3 * 10-3pz + 0.9043p2 ax] V>m
 Er = [0.4744E0 cos 13p * 105t + 10-3pz + 0.8976p2 ax

 H =   

0.0384 cos a2p * 106t -
p

150
 z + 0.163pb  ay for z 7 0

0.1675e0.05334z cos 12p * 106t + 0.07401z + 0.964p2 ay for z 6 0

 E =   

14.493 cos a2p * 106t -
p

150
 z + 0.163pb  ax for z 7 0

14.493e0.05334z cos 12p * 106t + 0.07401z + 0.163p2 ax for z 6 0
c

c
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P5.21.

P5.22. 2.03365

P5.24.

P5.26.

P5.29. (a) (b) 

P5.31. (a) (b) (c) 

P5.33. Inductor of value in parallel with a series combination of
and where 

P5.35. 534.881 A-t
P5.37.

P5.39.

P5.42. (a) for
otherwise;

(b) 

CHAPTER 6

P6.2.
P6.6.

P6.10.
125 V, 25 Æ, 60 Æ, 2ms

1
15 m0 H>m, 60e0 F>m; 4p Æ

3
4 N2I0

2pa2b1m - m02 from mechanical to electrical form

l 6 x 6 1l + b2, 0
1
2 N2I2pa21m - m02ax for 0 6 x 6 b, -1

2 N2I2pa21m - m02 ax

V2w

2d
 1e - e02ax

8.4 * 104 Wb

C = ewL>d1
3 C,1

5 L
L = mdl>w

2vmsl � 1 and 
s

ve
� 1sAme  l � 1;sAme  l = 3;

-65.285 sin 109pt V-0.0395 sin 106pt V;

m

16p

2pmN2a2c ln 
2a + b

2a - b

V01r - b2
a - b

; 
2pe0 b

b - a

z/l
0 0.8

18

54

1.0
z/l

0 0.8

�0.3
(b)(a)

0.3

1.0

[V ]t � 1.2 �s, V [I ]t � 1.2 �s, A

P6.13.
P6.15. 150 m, 4e0; A = 8>15

V- = -0.2V+, I- = 0.002V+; V+
 
+ = 0.2V+, I+

 
+ = 0.004V+
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P6.17.

P6.19. (a) 

(b) 

P6.21. (a) L; (b) 
P6.23. (a)

1
3

V0

2
-

V0

2
 e-11>2CZ02 1t - T2 for t 7 T

dV-

dt
+

1
2CZ0

 V- =
V0

4CZ0
 for t 7 T;

(b) 
P6.27.

62.5 * 10-6 J

V, V

t, ns

1

0 10 40 50
100

�9/16

110

1/4

160 170

9/64

1 3 50
t, �s

[V]150 �, V

75
37.5

18.75
9.375

1.5

0
2l

�0.8 �0.4

0.5

vp

t
4l
vp

6l
vp

10

0
l

�7
�4.4

5.4 3.6

vp

t
3l
vp

7l
vp

5l
vp

[V ]z � 0, V [V ]z � l, V
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CHAPTER 7

P7.2.
d V A

0 0

l

P7.5.

P7.7. 4.7746 cm
P7.9. 0.3229 GHz; 0.7920 GHz; 1.2698 GHz

P7.12.
P7.14. 20 cm
P7.17. 30 W
P7.20.
P7.22. 1.53
P7.26. (a) 1,562 MHz; (b) 4.0
P7.28.
P7.30. (a) 2.0; (b) 1.56; (c) 2.24
P7.32.
P7.34. to 
P7.36. or 
P7.39. or 
P7.41.
P7.43. (a) 20.01 W; (b) 11.77 W; (c) 8.24 W

CHAPTER 8

P8.2. (a) Yes;

(b) 
1

12p
 1-4ax + 5ay + 3az2 cos [3p * 107t - 0.02p13x + 4z2]

1144.23 - j32.592 Æ; 11.035 + j4.5612 * 10-4 m-1
1l1 = 0.168l, l2 = 0.364l21l1 = 0.313l, l2 = 0.136l2

10.496l, 0.042l210.328l, 0.458l2
0.159l0.093l

0.126l; 0.094l

1r - 222 + x2 = 1

0.4119l;
30 Æ; 75 Æ
140 - j302 Æ;

159.78 + j75.802 Æ

nvp

l
, n = 1, 2, 3, Á

0.0071V00.3536V0

0.0061V00.5V0
1
2 l

0.0047V00.6374V0
1
3 l

0.7906V0

Irms,Vrms,

0.9l0

KbV0
0.82 KbV0

�0.2 KbV0

l
z

V2 (z, 1.1T)

P6.29. (a) (b)
P6.32. (c)

48.4 Æ38.4 Æ;
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Answers to Selected Problems 809

P8.5. (a) 47.7465 MHz; (b) along 

(c) (d) left-elliptical;

(e) 0.1658 W
P8.6. 1 cm

P8.9.

P8.11. (a) 0.25; (b) 0.4307; (c) 0.221

P8.15. (a) (b) (c)

P8.17. (a) (b)
P8.20.

P8.22. (a) 
(b) 

P8.25. (a) 23; (b)
P8.28.

P8.30.

P8.34.

P8.36.

CHAPTER 9

P9.2.
P9.4. (a) 1.70; (b) 0.366 cm,
P9.7. 4472.1 MHz 5385.2 MHz 5656.9 MHz 

6403.1 MHz 6708.2 MHz 
P9.10. 6.096 GHz 6.685 GHz 
P9.12. 0.4442 cm, 1.2726 cm

P9.14. (a) 

(b) 3.479 GHz

=
2e1>e221 - 1l1>lc2221e2>e12 - 1l1>lc22 ;

tan  
2pt

l1 B1 - al1

lc
b2

 tan  
2p1d - t2
l1 Be2

e1
- al1

lc
b2

1TE3,121TE0,12;
1TE1,1,1, TM1,1,121TE0,1,2, TM1,1,02;

1TE1,0,22;1TE0,1,12;1TE1,0,12;
4.9e0

4.24 cm … a … 4.47 cm

xa = c312m + 12l0

16n02a d2>3, m = 0, 1, 2, Á

z =
1
a

  ln  
ax - 1 + 2a2x2 - 2ax + d2

0

d0 - 1
; 
d2

0

2a
, 

2d0

a

tan apd2er1

l0
  cos uib = -  

1e2>e12 cos ui2sin2 ui - 1e2>e12

0.9152 1TE02; 0.9130 1TE12; 0.9090 1TE22
2>15

 + 0.5E0 ay sin [6p * 109t - 10p13x + 13z2]
 Et = E010.2887ax - 0.5az2 cos [6p * 109t - 10p13x + 13z2]
 Er = -0.5E0 ay sin [6p * 109t + 10p1x - 13z2]
3e0;

 Et = 0.6863E01ax - 12 az2 cos [6p * 108t - 12p112x + z2]
 Er = 0.0294E01ax + az2 cos [6p * 108t + 12p1x - z2]

1.7321 * 108 m>s1.7047 * 108 m>s;

0.6495
k

0.6378
k

;
0.866

k
;

- sin 60px cos 12 * 1010pt - 91.293z26ay

E0

8
53 sin 20px [cos 11010pt - 83.776z2 + cos 12 * 1010pt - 199.793z2]

1
12p

 1-j0.5ax + 0.8ay + 0.6az2ej10.6y - 0.8z2;
1-0.6ay + 0.8az2;
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810 Answers to Selected Problems

P9.16.
P9.17. (c) 9276
P9.24. 0.7108
P9.25.
P9.27. (a) (b) 106 ps
P9.32. 101.5°

P9.34.

P9.35. (a) 1.25 cm; (b) (c) 2.5 cm

CHAPTER 10

P10.4. 3.2038 V/m; 2.2503 V/m;
P10.6.
P10.8. 6.075

P10.10. 2.1932 W
P10.12. 0.0167 A, 0.01 W

P10.14. (a) 

(b) 

P10.16.

P10.18. (a) (b) 

P10.22. Five elements spaced apart, current amplitudes in the ratio 1:2:3:2:1,
and progressive phase shift of 180°

P10.25.
P10.27. (a) 0.8284; (b) 4; (c) 0

ƒ sin u sin 1bd1 sin u2 cos 1bd2 cos u2 ƒ

2l

ƒ cos c ƒ  cos ap
4

  cos c -
p

4
bƒ cos c ƒ ` sin ap

2
  cos cb ` ;

ph

6
 a2pa

l
b4

, 1.5

20p2
 aL

l
b2

, 1.5

 H = -  

bI0 L sin u
8pr

  sin 1vt - br2 af

 E = -  

hbI0 L sin u
8pr

  sin 1vt - br2 au

0.2024l
4.133 * 10-3 A>m

-0.6E0 cos 16p * 109t + 20pz2 ax;

 +
4E0

15h0
 12ax + ay2 cos 16p * 109t - 40pz2

 Ht = -  

3E0

5h0
 1ax - 2ay2 cos 16p * 109t - 60pz2

 Hr = -  

E0

15h0
 1ax - 7ay2 cos 16p * 109t + 20pz2

 +
2E0

15
 1ax - 2ay2 cos 16p * 109t - 40pz2

 Et = -  

E0

5
 12ax + ay2 cos 16p * 109t - 60pz2

 Er = -  

E0

15
 17ax + ay2 cos 16p * 109t + 20pz2

4.89ms;
T0 = 22bz

122z; 12T0

0.882 * 10-3 Np>m
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Answers to Selected Problems 811

P10.29.

(a) (b) (c) (d)

P10.33. 12.543°; 71.973°; 91.368°; 110.928°; 133.672°

CHAPTER 11

P11.2. (a) (b) 

P11.5. 0.4337, 0.7981, 1.0347, 1.1058;

P11.7. (a) 

(b) (c) 

P11.10.
P11.13.
P11.15.
P11.18.
P11.20. 227.8 pF/m; 38.2 pF/m;
P11.22.
P11.24.
P11.27.
P11.31.

V14, 62 = 1.24 V
V14, 22 = V14, 102 = 4.38 V; V14, 42 = V14, 82 = 3.245 V;
V2 = 3.871 V; V4 = 3.226 V; V5 = 6.452 V
43.5 Æ

1
9 h

35.7331 Æ; 1.2285 * 108 m>s160.55 Æ
3.873e0 a
12.536e0 a
0.9242e0 C

;61.25e0 C>mƒ EB ƒ =
6.1033

d
 V>m;VF = 2.75 V;

VE = 7 V,VA = 12 V, VB = 5.25 V, VC = 2 V, VD = 14.75 V,

sin 2x

sin 2

0.1517V0
3V0

4
  

sinh 1px>b2
sinh 1pa>b2   sin  

py

b
-

V0

4
  

sinh 13px>b2
sinh 13pa>b2   sin  

3py

b

8p
3

  
ab

l21.44 
l

a
2l
b

4l
a

* D sin a ba

2
  sin u cos fb

ba

2
  sin u cos f

T D sin a bb

2
  sin u sin fb

bb

2
  sin u sin f

T ;

a jbE0 abe-jbr

4pr
b C p2

p2 - a ba

2
  sin u cos fb2 S
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Index

A

A. See Magnetic vector potential.
Addition

of complex numbers, 782
of sine functions, 784
of vectors, 5, 6

Air gap, 336, 337
Alternated line transformer, 517, 666, 667
AM radio, 176
Ampère, definition of, 795
Ampère turns, 334
Ampère’s circuital law

analogy with Faraday’s law, 137
illustration of, 103
in differential form, 137, 191
in integral form, 101, 120, 137
statement of, 102, 120, 191

Ampère’s law of force, 46–47
experimental demonstration of, 99

Amplitude modulated signal, 554, 640
group velocity for, 554–55
with Gaussian envelope, 640

Anisotropic crystals
biaxial, 657
uniaxial, 657

Anisotropic dielectric
effective permittivity of, 226
permittivity tensor for, 226
wave propagation in, 655–57

Anisotropic dielectric materials, 225, 655
characteristic polarizations for, 226, 655,

658
effective permittivity, 226

Anisotropic magnetic materials, 235
Annealed sheet steel, B-H curve for, 335
Antenna

aperture. See Aperture antenna.
directivity of, 686
effective area of, 713
half-wave dipole. See Half-wave dipole.
Hertzian dipole. See Hertzian dipole.
image, 702
linear. See Linear antenna.
loop. See Loop antenna.
radiation from, 105
radiation pattern, 684
radiation resistance of, 684
short dipole, 721

Antenna array
broadband, 700
group pattern for, 696
log-periodic dipole, 700–02
of two current sheets, 177–78
of two Hertzian dipoles, 694–96
principle of, 177–78
resultant pattern for, 696
uniform linear, 698

Antiferromagnetic materials, 228
Aperture antenna

circular, 722
examples of, 706
far-field determination of, 706–07
rectangular. See Rectangular aperture

antenna.
Apparent phase velocities, 532, 587
Apparent wavelengths, 532, 587
Array. See Antenna array.

Raoindv3.qxd  12/18/03  5:53 PM  Page 812



Index 813

Array factor, 696
Atom, classical model of, 207
Attenuation constant, 241

for good conductor, 252
for imperfect dielectric, 251
for parallel-plate waveguide, 668
for rectangular waveguide, 625–28
units of, 241

B

B. See Magnetic flux density.
Bandwidth, for transmission-line matched

system, 469
Bessel functions, 616, 634

modified, 635
roots of, 618
roots of derivatives of, 620

B-H curve, 236, 335
Bilinear transformation, 485
Biot-Savart law, 50, 66
Bounce diagram, 377
Bounce diagram technique

for arbitrary voltage source, 381–84
for constant voltage source, 377–81
for initially charged line, 400–03
for system of three lines, 387–89

Bound electrons, 207
Boundary condition

at transmission line short circuit, 441
explained, 255
for normal component of B, 259
for normal component of D, 258–59
for tangential component of E, 256–57
for tangential component of H, 257–58

Boundary conditions
at dielectric interface, 260, 270
at transmission line junction, 386
on perfect conductor surface, 260–61,

270
summary of, 259, 270

Brewster angle, 563, 589
Broadband array, example of, 700
Broadside radiation pattern, 696

C

Cable
coaxial. See Coaxial cable.
noninductive, leakage-free, 501

Candela, definition of, 796

Capacitance, for concentric spheres, 307
Capacitance per unit area, for parallel-

plate capacitor, 306, 307
Capacitance per unit length

for arbitrary line, 748–50
for coaxial cylinders, 306, 307, 309, 311
for parallel-cylindrical wire

arrangement, 311–15
for parallel-plate line, 363
for parallel-strip line, 744–46
for some structures, 311
related to conductance per unit length,

310, 347
related to inductance per unit length,

310, 347, 364
Capacitor, current-to-voltage relationship

for, 139
Capacitor circuit, 104
Cartesian coordinate system

arbitrary curve in, 19
arbitrary surface in, 19
coordinates for, 13
curl in, 136, 192
differential length vector in, 15, 64
differential surface vectors in, 18, 64
differential volume in, 19, 64
divergence in, 146, 192
gradient in, 284, 345
Laplacian of scalar in, 287, 346
Laplacian of vector in, 288, 346
orthogonal surfaces, 12
unit vectors, 13

Cathode ray tube, 34–35
Cavity resonator

cylindrical, 622
frequencies of oscillation, 612, 622, 662
rectangular. See Rectangular cavity

resonator.
Characteristic impedance, 368

experimental determination of, 491–94
for arbitrary line, 750
for coaxial cable, 370
for enclosed microstrip line, 746–48
for lossy line, 490
for low-loss line, 491
for microstrip line, 369–70
for parallel-plate line, 368
for parallel-strip line, 744–46
for parallel-wire line, 370
for shielded parallel-wire line, 370
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814 Index

Characteristic polarizations, 226, 655, 658
Charge, 3, 32

conservation of, 110
line, 41
of an electron, 32
point. See Point charge.
surface, 41
unit of, 32

Charge density
line, 41
surface, 41
volume, 41

Charge distributions, types of, 41
Charged particle motion

in electric and magnetic fields, 61–63
in uniform magnetic field, 57–58

Circuit
distributed. See Distributed equivalent

circuit.
magnetic. See Magnetic circuit.

Circuit theory
distributed, 140
lumped, 139

Circular aperture, diffraction by, 652–54
Circular polarization, 180, 181–82

clockwise, 183
counterclockwise, 183
left-handed, 183
right-handed, 183

Circulation, 81
per unit area, 151

Cladding, of optical fiber, 633
Closed path, line integral around, 81
Closed surface, 88
Closed surface integral, 88
Coaxial cable, characteristic impedance

of, 370
Coercivity, 237
Communication, underwater, 253
Commutative property of vector dot

product, 7
Complete standing waves, 442
Complex number

conjugate of, 782
conversion to exponential or polar

form, 781
exponential form, 780
polar form, 781
rectangular form, 779

Complex numbers, review of, 779–83

Conductance per unit area, for parallel-
plate arrangement, 306

Conductance per unit length
for coaxial cylinders, 309, 311
for parallel-cylindrical wire

arrangement, 311
for some structures, 311
related to capacitance per unit length,

310, 347
Conduction, 208, 267
Conduction current, 211
Conduction current density, 211

relationship with E, 211, 267
Conductivities, table of, 213
Conductivity

definition of, 211
units of, 212

Conductor
good. See Good conductor.
in a static electric field, 213
perfect. See Perfect conductor.

Conductors, 208, 267
good, 251, 269
perfect, 254, 270

Conservation of charge, 110
law of, 110

Conservative fields
examples of, 83
versus nonconservative fields, 83

Constant SWR circle, 478
Constitutive relations, 239
Continuity equation, 148, 149, 192
Coordinate system

Cartesian, 12–20
cylindrical, 20–22
spherical, 22–24

Coordinates
Cartesian, 13
cylindrical, 20
relationships between, 64–65
spherical, 22

Core, of optical fiber, 633
Corner reflector, 704
Coulomb, as unit of charge, 32
Coulomb’s law, 33
Critical angle, for total internal reflection,

561, 566
Cross product of vectors, 8

distributive property of, 9, 10
normal vector to a surface from, 16
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Crosstalk
explained, 411
modeling for capacitive coupling, 412–13
modeling for inductive coupling,

413–14
weak coupling analysis for, 412

Crosstalk coefficient
backward, 415
forward, 414

Crosstalk voltage
backward, 415
forward, 414–15

Crosstalk voltages, example of
determination of, 415–18

Crystals, anisotropic, 657
Cubical cavity resonator, 669
Curl

definition of, 149–51, 192
divergence of, 158–59, 349
in Cartesian coordinates, 136, 192
in cylindrical coordinates, 136, 790
in spherical coordinates, 136, 793
of E, 135, 191
of gradient of scalar, 283, 349
of H, 137, 191
physical interpretation of, 151–52

Curl meter, 151
Current

conduction, 211
displacement, 102
magnetization, 232, 235
polarization, 223
surface, 53
unit of, 795
volume, 53

Current density
conduction, 211
displacement, 138
surface, 53
volume, 53

Current distributions, 53
Current element

magnetic field of, 49–51
magnetic force on, 49, 66

Current enclosed by closed path,
uniqueness of, 114

Current loop. See also Loop antenna.
dipole moment of, 227
vector potential due to, 721

Current reflection coefficient, 376, 421

Current sheet, infinite plane. See Infinite
plane current sheet.

Current transmission coefficient, 387
Curve, equation for, 19
Curvilinear square, 750
Cutoff condition, 540, 601, 602
Cutoff frequencies, determination of,

608–09, 621–22
Cutoff frequency, 541

of dominant mode, 608, 622
Cutoff wavelength, 541
Cylindrical capacitor, 306 
Cylindrical cavity resonator, 622

frequencies of oscillation, 622
Cylindrical coordinate system

coordinates for, 20
curl in, 136, 788–90
differential length vector in, 22, 65
differential surface vectors in, 22, 65
differential volume in, 22, 65
divergence in, 146, 790
gradient in, 284, 790
Laplacian of scalar in, 287, 791
Laplacian of vector in, 350
limits of coordinates, 20
orthogonal surfaces, 20
unit vectors, 21

Cylindrical dielectric rod, 633
Cylindrical waveguide, 613

determination of propagating modes in,
621–22

dominant mode in, 622
TE modes in, 619–20
TM modes in, 616–19

Cylindrical wire of current, H due to, 117–19

D

D. See Displacement flux density.
Del operator, 135
Density

charge. See Charge density.
current. See Current density.

Depletion layer, 301, 302
Derived equation, checking the validity

of, 799
Diamagnetic materials, values of for, 235
Diamagnetism, 228
Dielectric

imperfect. See Imperfect dielectric.
in a static electric field, 219–21

xm
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Dielectric (Continued)
in a uniform plane wave field, 221–24
perfect. See Perfect dielectric.

Dielectric constant, 224
Dielectric interface

boundary conditions at, 260, 270
oblique incidence of uniform plane

waves on, 555
Dielectric slab waveguide

description, 566
even TE modes in, 571–74
graded index. See Graded index guide.
odd TE modes in, 574–75
power confinement factor for, 597
power flow in, 575–76
propagating TE modes in, 570
radiation modes, 577
self-consistency condition for

waveguiding in, 566
TE modes in, 568–69, 571–75, 597
TM modes in, 571, 577, 597

Dielectrics, 208, 267
anisotropic, 225
imperfect, 250, 269
perfect, 250, 269
polarization in, 217–18
table of relative permittivities for, 225

Differential
net longitudinal, 143–44
net right-lateral, 134
right-lateral, 134

Differential equation, solution by phasor
technique, 784–86

Differential length vector
along a curve, 15
in Cartesian coordinates, 15, 64
in cylindrical coordinates, 22, 65
in spherical coordinates, 24, 65

Differential surface, as a vector, 17–18
Differential surface vectors

in Cartesian coordinates, 18, 64
in cylindrical coordinates, 22, 65
in spherical coordinates, 24, 65

Differential volume
in Cartesian coordinates, 19, 64
in cylindrical coordinates, 22, 65
in spherical coordinates, 24, 65

Diffraction
by circular aperture, 652–54
compared to interference, 651, 663
contrasted to geometrical optics, 651

explained, 651
Fraunhofer, 654, 706
Fresnel, 654

Diffusion, 498
Diffusion equation, 502
Dimensions, 796, 798

table of, 796–98
Diode, tunnel, 303
Dipole

electric. See Electric dipole.
half-wave. See Half-wave dipole.
Hertzian. See Hertzian dipole.
magnetic. See Magnetic dipole.
short, 721

Dipole moment
electric, 217
magnetic, 227
of current loop, 227
per unit volume, 218, 228

Dipole moment per unit volume
electric. See Polarization vector.
magnetic. See Magnetization vector.

Directive gain, of an antenna, 687
Direction line, computer generation of,

37–41
Direction lines, 29

finding equations for, 29–30
for electric dipole field, 294
for point charge field, 36

Directivity
definition of, 686
for arbitrary radiation pattern, 686–87
of half-wave dipole, 692, 717
of Hertzian dipole, 686, 717
of rectangular aperture antenna, 710

Discharge tube, in gas lasers, 563
Diskette, 237
Dispersion, 245, 549

in optical waveguides, 643–44
intermodal, 585, 590, 644
material, 644–45
pulse broadening due to, 639–40
waveguide, 644

Dispersion coefficient, 645
Dispersion diagram, 552
Displacement current, 102

emanating from a closed surface, 104
Displacement current density, 138
Displacement flux, 102, 107, 120
Displacement flux density, 102, 267–68

divergence of, 144, 191
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Index 817

due to line charge, 115–16
due to spherical volume charge,

116–17
relationship with E, 102, 120, 224, 268
units of, 102

Displacement vector. See Displacement
flux density.

Distortionless line, 498
characteristic impedance for, 499
propagation constant for, 488–89
pulse propagation along, 499–501

Distortionless transmission, 498
Distributed circuit theory, 140, 359
Distributed equivalent circuit, 364–65

for lossy line, 488
physical interpretation of, 365–66

Distributive property
of vector cross product, 9, 10
of vector dot product, 7

Divergence
definition of, 154–55, 192
in Cartesian coordinates, 146, 192
in cylindrical coordinates, 146, 790
in spherical coordinates, 146, 793
of B, 147, 191
of curl of a vector, 158–59, 349
of D, 144, 191
of J, 148, 192
physical interpretation of, 155

Divergence meter, 155
Divergence theorem, 158, 193
Division of vector by a scalar, 6
Dominant mode, 608, 622, 644, 662

cutoff frequency of, 608, 622, 662
Dot product of vectors, 7

commutative property of, 7
distributive property of, 7
finding angle between vectors from, 8

Double-stub matching, 467–69
by Smith chart, 481–84

Drift velocity, 209

E

E. See Electric field intensity.
Earth-ionosphere waveguide, 543
Effective area, 713

for Hertzian dipole, 713–14
Effective permittivity, of anisotropic

dielectric, 226
Electrets, 218

Electric dipole, 217
dipole moment of, 217
direction lines for the field of, 294
electric field of, 294
equipotential surfaces for, 294
potential field of, 293–94
schematic representation of, 218
torque on, 218, 273

Electric dipole moment, definition of, 217
Electric dipole moment per unit volume.

See Polarization vector.
Electric energy, stored in a line, 403
Electric energy density, 188, 189, 195, 248,

269
Electric field, 32

dielectric in an, 219–21
energy density in, 188, 189, 195, 248, 269
energy storage in, 188
induced, 96
source of, 34
static. See Static electric field.

Electric field intensity
curl of, 135, 191
definition of, 33–34
due to charge distribution, 41
due to dipole, 294
due to line charge, 43–44, 55
due to point charge, 36, 55, 65
due to point charges, 37–41
due to ring charge, 41–43
due to sheet charge, 44–46, 55
relationship with D, 102, 120
unit of, 33

Electric field system, quasistatic, 325–26
Electric flux, See Displacement flux
Electric force

between two point charges, 32–33
on a test charge, 33–34, 65

Electric polarization. See Polarization in
dielectrics.

Electric potential
due to a point charge, 291–92, 346
due to a line charge, 296–98
due to an electric dipole, 293–94

Electric potential difference. See Potential
difference.

Electric scalar potential, 286. See also
Electric potential.

Electric susceptibility, 219
Electrical generator, 339
Electrical motor, 339
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Electrocardiography, 294
Electromagnet, 343
Electromagnetic field

due to current sheet, 168–69, 172, 194,
243, 268

due to Hertzian dipole, 679, 716
power flow density in, 186, 195

Electromagnetic flow meters, 216
Electromagnetic potentials, 286
Electromagnetic waves

guiding of, 359, 527. See also
Transmission line; Waveguide.

propagation of, 105, 129. See also Wave
propagation.

radiation of, 105, 161, 675. See also
Radiation.

Electromechanical energy conversion, 97,
339

example of computation of, 341–42
Electromechanical energy converter,

example of, 97
Electromechanical system

electric field, 342
magnetic field, 342

Electromechanics, 96, 282
Electromotive force, 81, 90

motional, 96
Electron, charge of, 32
Electronic polarization, 217
Electrons

bound, 207
conduction, 208
free, 208
mobility of, 210

Electrostatic separation of minerals, 34
Elliptical polarization, 180, 183
Emf. See Electromotive force.
Enclosed-microstrip line, 746

characteristic impedance for, 747
velocity of propagation for, 747

Endfire radiation pattern, 178, 696
Energy

electric. See Electric energy.
magnetic. See Magnetic energy.
potential. See Potential energy.

Energy band diagrams, 208–09
Energy conversion, 97. See also

Electromechanical energy conversion.
Energy density

in electric field, 188, 189, 195, 248, 269
in magnetic field, 188, 189, 195, 248, 269

Energy storage
in electric field, 188
in magnetic field, 188

Equipotential lines, computer plotting of,
294–96, 737–38

Equipotential surfaces, 291–92
between parallel plates, 305
for electric dipole, 294
for line charge, 297–98
for point charge, 291–92

Etalon, Fabry-Perot, 651, 663, 670
Experimental demonstration

of Ampère’s law of force, 98–99
of Faraday’s law, 99
of magnetic levitation, 99–100
of two-beam interference, 629–31

External inductance, 315

F

Fabry-Perot etalon, 651, 663, 670
Fabry-Perot resonator, 563
Faraday rotation, 659, 663

example of, 659
Faraday’s law

determination of emf using, 94–96
experimental demonstration of, 99
for N-turn coil, 93
illustration of, 91
in differential form, 132, 135, 191
in integral form, 91, 119, 130
statement of, 91, 119, 191

FD-TD method. See Finite-difference
time-domain method.

Fermat’s principle, 597
Ferrimagnetic materials, 228
Ferrites, 237
Ferroelectric materials, 218
Ferromagnetic materials, 228, 235

relative permeability for, 235
Ferromagnetism, theory of, 235–36
Field

definition of, 27
electric. See Electric field.
gravitational, 27, 32, 33
magnetic. See Magnetic field.

Field intensity
electric. See Electric field intensity.
magnetic. See Magnetic field intensity.

Field map, 370
for arbitrary line, 748–50
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Field mapping, determination of line
parameters from, 750

Field mapping technique, 371, 765
Fields

conservative, 83
radiation, 682. See also Radiation fields.
scalar, 27–29. See also Scalar fields.
sinusoidally time-varying, 171
static, 28. See also Static fields.
time-varying, 28–29
vector, 29–30. See also Vector fields.

Finite-difference method, 726, 732, 766
example of illustration of, 735–37
for enclosed-microstrip line, 746–47
for two-dimensional Laplace’s

equation, 734–35
illustration in one dimension, 732–34
iteration technique, 737

Finite-difference time-domain method,
726, 760, 767

example of illustration of, 762–65
for one-dimensional wave equation, 760
leap-frog scheme of solution, 762, 767

Finite-element method, 726, 751, 766
compared to finite-difference method, 751
element coefficient matrix, 755, 766–67
example of solution of, 758–59
for two-dimensional Laplace’s

equation, 754
global coefficient matrix, 755, 767
shape functions, 753
solution procedure, 751

Floppy disk, 237–38
Flux

displacement, 102, 107
magnetic, 84, 108

Flux density
displacement. See Displacement flux

density.
magnetic. See Magnetic flux density.

Flux lines, 29
FM radio, 176
Force

Ampère’s law of, 46–48
electric. See Electric force.
gravitational, 27, 32
magnetic. See Magnetic force.
unit of, 752

Fraunhofer diffraction, 654, 706
boundary with Fresnel diffraction, 671

Free electrons, 208

Free space
intrinsic impedance of, 167, 176, 193
permeability of, 47
permittivity of, 33
velocity of light in, 166

Free space reduction, of field from
physical antenna, 187

Frequencies of oscillation, for cavity
resonator, 612, 622, 662

Frequency, 172
cutoff, 541
times wavelength, 175

Frequency ranges, designations for, 175
Frequency response, from unit impulse

response, 390
Fresnel coefficients

for parallel polarization, 560
for perpendicular polarization, 559
reflection, 559, 560
transmission, 559, 560

Fresnel diffraction, 654
boundary with Fraunhofer diffraction,

671
Friis transmission formula, 715

G

Gas lasers, 563
Gauss’ law for the electric field

illustration of, 108
in differential form, 144, 191
in integral form, 107, 108, 120, 142
statement of, 107, 120, 191

Gauss’ law for the magnetic field
analogy with Gauss’ law for the electric

field, 108
illustration of, 109
in differential form, 147, 191
in integral form, 108, 120, 146
physical significance of, 108
statement of, 108, 120

Geometrical optics
contrasted to diffraction, 651
explained, 578

Good conductor
attenuation constant for, 252
definition of, 251–52
intrinsic impedance for, 252
phase constant for, 252
skin effect in, 252–53
wave propagation in, 251–54
wavelength in, 252
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Good conductors, 251, 269
Graded-index guide, 576, 578

description, 578
guidance condition, 582–84
parabolic index profile, 584–85, 590
solution of guidance condition, 585

Gradient, 283
curl of, 283, 349
in Cartesian coordinates, 284, 345
in cylindrical coordinates, 284, 790
in spherical coordinates, 284, 793–94
physical interpretation of, 284–85

Gravitational field, 27, 32, 33
Gravitational force, 27, 32
Ground, effect on antenna, 702
Group pattern, 696

for uniform linear array, 699
Group patterns, determination of, 696–98
Group refractive index, 644
Group velocity

concept of, 549
for a pair of frequencies, 552
for amplitude modulated signal, 554–55
for narrowband signal, 553
in parallel-plate waveguide, 553

Guide characteristic impedance, 545
compared to line characteristic

impedance, 546, 547
for TE waves, 547, 588
for TM waves, 547, 588

Guide wavelength, 541, 588, 621

H

H. See Magnetic field intensity.
Half-wave dipole, 688

directivity of, 692, 717
evolution of, 668–69
radiation fields for, 689–91, 717
radiation patterns for, 692
radiation resistance for, 691–92, 717
time-average radiated power, 691

Hall effect, 216
Heart, electrical activity of, 294
Helmhotz’s theorem, 288
Hertzian dipole, 675

above perfect conductor surface, 702–04
charges and current associated with,

676, 677
directivity of, 686, 717
effective area of, 713–14

electromagnetic field for, 679, 716
radiation fields for, 682, 716
radiation patterns for, 684–85
radiation resistance for, 684, 716
receiving properties of, 771
retarded potential for, 678
time-average radiated power, 684, 716

Hertzian dipoles, array of, 694–96
Holes, 208

mobility of, 211
Huygens-Fresnel principle, 652, 663, 706
Hybrid modes, in optical fiber, 633, 636,

663
Hysteresis, 235
Hysteresis curve, 236
Hysteresis effect, development of,

236–37
Hysteresis phenomenon, use of, 237

I

Image antennas, concept of, 702
Image charge, 273
Imperfect dielectric

attenuation constant for, 251
definition of, 250
intrinsic impedance for, 251
phase constant for, 251
wave propagation in, 251
wavelength in, 250–51

Imperfect dielectrics, 250, 269
Induced electric field, 96
Induced emf, determination of, 93
Inductance per unit length

for coaxial cylinders, 310
for parallel-cylindrical wire

arrangement, 311
for parallel-plate line, 363
for some structures, 311
related to capacitance per unit length,

310, 347, 364
Inductor

quasistatic field analysis for, 320–25
voltage-to-current relationship for, 139

Infinite plane current sheet
as an idealized source, 161
electromagnetic field due to, 168–69,

172, 193, 194, 242, 268
magnetic field due to, 53–55

Infinite plane sheet of charge, electric
field due to, 44–46, 55
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Infinitely long line charge, electric field
due to, 43–44, 55

Infinitely long wire of current, magnetic
field due to, 51–52, 55

Input impedance
for line with arbitrary load, 460
for lossy line, 492
of short-circuited line, 446–447, 507

Input reactance, of short-circuited line, 447
Insulators, 208
Integral

closed line. See Circulation.
closed surface, 88
line, 77
surface, 84
volume, 107

Integrated optics, 566
Interference

compared to diffraction, 651, 663
experimental demonstration, 647
explained, 646
multiple-beam, 648–51, 663
two-beam, 647–48, 663

Interferometer, 724
Fabry-Perot, 651

Intermodal dispersion, 585, 590, 644
Internal inductance, 315

example of determination of, 315–17
general expression for, 317

International system of units, 32, 795
Intrinsic impedance

for copper, 253
for good conductor, 252
for imperfect dielectric, 251
for material medium, 242, 246, 268
for perfect dielectric, 250
of free space, 167, 176, 193

Ionic polarization, 218
Ionosphere, 543

and earth as waveguide, 543–44
Isotropic materials, 112, 225, 268
Iteration technique, 737

J

J. See Volume current density.
Jc. See Conduction current density.
Joule, definition of, 796
Junction

between transmission lines, 385
p-n, 300

K

Kelvin, definition of, 795–96
Kilogram, definition of, 795
Kirchhoff’s current law, 365
Kirchhoff’s voltage law, 364

L

Laplace’s equation, 304, 347
analytical solution of, 726–28
in one dimension, 304–06
in two dimensions, 726, 734, 765
numerical solution of, 734–35, 766
for steady current condition, 304

Laplacian of a scalar, 287
in Cartesian coordinates, 287, 346
in cylindrical coordinates, 287, 791
in spherical coordinates, 288, 794

Laplacian of a vector, 288
in Cartesian coordinates, 288, 346
in cylindrical coordinates, 350

Lasers, gas, 563
Law of conservation of charge

for static case, 113
illustration of, 111
in differential form, 148, 192
statement of, 110, 120, 192

Law of reflection, 556, 589
Law of refraction, 556, 589
Lenz’s law, 93, 94, 96
Light, velocity of. See Velocity of light.
Line admittance, 462

from the Smith chart, 479
normalized, 462

Line charge, 41
D due to, 115–16
electric field of, 43–44, 55
equipotential surfaces for, 297–98
potential field of, 296–98

Line charge density, 41
units of, 41

Line current, magnetic field due to,
51–52

Line impedance, 459, 492
from the Smith chart, 478
normalized, 462
properties of, 459–60

Line integral, 77
around closed path, 81
evaluation of, 80–81, 82–83
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Line integral of E, physical meaning of, 81
Linear antenna

half-wave dipole. See Half-wave dipole.
of arbitrary length, 692–94

Linear polarization, 180–81
Load-line technique, 405

example of, 405–07
for interconnection between two TTL

inverters, 408–11
for initially charged line, 407–08

Logic gates, interconnection between, 408
Log-periodic dipole array, 700–02
Longitudinal differential, net, 143–44
Loop antenna, 96, 711

application of, 96–97, 713
magnetic vector potential for, 721
principle of, 96–97
radiation fields of, 721
receiving properties of, 711–12

Lorentz force equation, 59, 66
applications based on, 60–61

Lorenz condition, 289
Loss tangent, 245
Lossy line

characteristic impedance for, 490
distributed equivalent circuit for, 488
input impedance of, 492
power flow along, 495
propagation constant for, 481
transmission line equations for, 488–89

Lossy lines, pulses on, 498–506
Loudspeaker, principle of, 49
Low frequency approximation, lumped

circuit theory as, 139
Low frequency behavior, of a resistor,

326–30
Low-loss line, 490–91
LP modes, in optical fiber, 639, 663
Lumped circuit theory, 139, 359

distinction with distributed circuit
theory, 374

M

Magic time step, in FD-TD method, 765
Magnetic circuit, 333, 347

analysis of, 336–38
equivalent circuit for, 338
reluctance of, 334

Magnetic circuits, applications of, 333

Magnetic dipole, 227
dipole moment of, 227
schematic representation of, 227
torque on, 228, 274

Magnetic dipole moment, definition of, 227
Magnetic dipole moment per unit volume.

See Magnetization vector.
Magnetic domains, 235
Magnetic energy, stored in a line, 404
Magnetic energy density, 188, 189, 195,

248, 269
Magnetic field

energy density in, 188, 189, 195, 248, 269
energy storage in, 188
inside a good conductor, 254
magnetic material in a, 229–31
realizability of, 147
source of, 57

Magnetic field intensity, 102, 267–68
curl of, 137, 191
due to cylindrical wire of current,

117–19
relationship with B, 102, 120, 233–34, 268
units of, 102

Magnetic field system, quasistatic,
325–26

Magnetic flux, crossing a surface, 84–85
Magnetic flux density

definition of, 56–57
divergence of, 147, 191
due to current element, 49–51, 55, 66
due to current sheet, 53–55
due to straight wire, 51–52, 55
in terms of A, 282–83, 345
relationship with H, 102, 120
units of, 49

Magnetic force
between two current elements, 47–49
on a current element, 48–49, 66
on a moving charge, 55–57, 66

Magnetic levitation, 98
experimental demonstration of, 98–100

Magnetic material
in a static magnetic field, 229–31
in a uniform plane-wave field, 231–34

Magnetic materials, 227, 267
anisotropic, 235

Magnetic memories, 237
Magnetic susceptibility, 228

values of, 235
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Magnetic vector potential, 283
due to current element, 298–99, 346
for circular loop antenna, 721
for Hertzian dipole, 678
relationship with B, 282–83, 345
retarded, 678

Magnetization, 227–28, 267
Magnetization current, 232, 235
Magnetization current density, 232

relationship to magnetization vector,
233

Magnetization surface currents, 230
Magnetization vector

definition of, 228
relationship with B, 228
units of, 228

Magnetization volume current, 235
Magnetomotive force, 102
Magneto-optical switch, 659–61, 664
Magnitude of vector, 6
Malignant tissues, heating of, 253
Mass, 3, 55

unit of, 752
Matching, transmission line. See

Transmission-line matching.
Material dispersion, 644–45

in fused silica, 645, 663
Material parameters, from propagation

parameters, 246
Materials

anisotropic, 225, 235
antiferromagnetic, 228
classification of, 207
conductive. See Conductors.
constitutive relations for, 239
diamagnetic. See Diamagnetic

materials.
dielectric. See Dielectrics.
ferrimagnetic, 228
ferroelectric, 218
ferromagnetic. See Ferromagnetic

materials.
isotropic, 225, 268
magnetic. See Magnetic materials.
paramagnetic. See Paramagnetic

materials.
Maxwell’s equations

as a set of laws, 77
for static fields, 113
in differential form, 149, 286

in integral form, 113
independence of, 120

Mechanical force of electric origin, 339
computation of, 339–41, 342–44

Metallic waveguide
compared to transmission line, 527
cylindrical. See Cylindrical waveguide.
parallel-plate. See Parallel-plate

waveguide.
rectangular. See Rectangular waveguide.

Meter, definition of, 795
Method of moments technique, 739, 766

for thin straight wire, 740–42
for parallel-plate capacitor, 742–44
for parallel-strip line, 744–46
procedure explained, 739

Microstrip line, 369, 419
Microwave ovens, 176
MKSA system of units, 795
Mmf. See Magnetomotive force.
Mobility, 210
Mode, dominant. See Dominant mode.
Modes

hybrid, 633, 636, 663
LP, 639, 663
TE. See TE modes.
TM. See TM modes.

Modified Bessel functions, 635
Motional emf concept, 96
Moving charge, magnetic force on, 55–56,

66
Multiple-beam interference, 648–51, 663
Multiplication of vector, by a scalar, 6
Mutual inductance, 317

example of computation of, 318–19

N

Natural frequencies of oscillation, 446
Natural oscillations, 445
Newton, definition of, 795
Newton’s law of gravitation, 32
Newton’s third law, 48
Nonconservative field, example of, 83
Nonconservative fields, conservative

fields versus, 83
Noninductive, leakage-free cable, 501

diffusion along, 501–06
Normal component of B, boundary

condition for, 259

Raoindv3.qxd  12/18/03  5:53 PM  Page 823



824 Index

Normal component of D, boundary
condition for, 258–59

Normalized line admittance, 462
Normalized line impedance, 462
Nucleus, 207
Numerical aperture, 637, 663, 669

O

Ohm’s law, 215
diagram, 552

Operator, del, 135
Optical fiber

description, 633
field solutions, 634–36
guidance condition, 636–37
hybrid modes, 633, 637, 663
LP modes, 639, 663
numerical aperture, 637, 663, 669
single-mode operation, 638, 663
step-index, 633
TE modes, 636, 637
TM modes, 636, 637

Optical waveguides, principle of, 562
Orientational polarization, 218
Origin, 12

P

Paddle wheel, 151
Parabolic index guide, 584

paraxial modes in, 585
Parabolic index profile, paraxial rays in,

581–82
Parallel-plate capacitor, 304–06

capacitance by method of moments,
742–44

with a movable plate, 339
Parallel-plate resonator, 512, 513, 515

Q factor for, 669
Parallel-plate transmission line, 360

capacitance per unit length for, 363
characteristic impedance of, 368
inductance per unit length for, 363
power flow along, 362
voltage and current along, 361–62

Parallel-plate waveguide, 539
attenuation constant for, 668
cutoff frequencies for, 541
cutoff wavelengths for, 541
discontinuity in, 545

group velocity in, 553
guide wavelength in, 541
phase velocity along, 542
TE mode fields in, 542
TE modes in, 539–42
TM mode fields in, 543
TM modes in, 543

Parallel polarization, 559
Fresnel coefficients for, 560

Parallel-strip line, 744
capacitance per unit length of, 744–46
characteristic impedance of, 744–46

Parallel-wire line
capacitance per unit length of, 311–15
characteristic impedance of, 370

Parallelepiped, volume of, 10
Paraxial modes, in parabolic index guide,

585
Paraxial rays, 581, 590

in parabolic index profile, 581–82
Paramagnetic materials, 228

for, 235
Paramagnetism, 228
Partial standing waves, 454
Pattern multiplication, 678
Perfect conductor

boundary conditions, 260–61, 270
definition of, 254

Perfect conductors, 254, 270
Perfect dielectric

boundary conditions, 260, 270
definition of, 250
intrinsic impedance for, 250
phase constant for, 250
phase velocity in, 250
wave propagation in, 250
wavelength in, 250

Perfect dielectrics, 250, 269
Permanent magnetization, 228
Permeability

of free space, 47
of magnetic material, 234
relative, 234
units of, 47

Permittivity
effective, 226
of dielectric material, 224
of free space, 33
relative, 224
units of, 33

Permittivity tensor, 226

xm

v - bz
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Perpendicular polarization, 557
Fresnel coefficients for, 559

Personal computers, secondary memory
in, 237

Phase, 172
Phase constant, 174

for good conductor, 252
for imperfect dielectric, 251
for material medium, 245
for perfect dielectric, 250

Phase velocity, 174
along guide axis, 542, 588, 621
in free space, 175
in good conductor, 252
in imperfect dielectric, 251
in material medium, 245
in perfect dielectric, 250

Phased array, 700
Phasor, 783
Phasor technique, review of, 783–86

example using, 786–87
Plane surface, equation for, 19
Plane wave, uniform. See Uniform plane

wave.
p-n junction semiconductor, 300

analysis of, 300–03
Point charge

electric field of, 36, 55, 65
equipotential surfaces for, 291–92
potential field of, 291–92, 346

Point charges, 32
electric field of, 37–41

Poisson’s equation, 300, 346
application of, 300–03

Polarization current, 223
Polarization current density, 223

relationship to polarization vector,
224

Polarization in dielectrics, 217–18, 267
electronic, 217
ionic, 218
orientational, 218

Polarization of sinusoidally time-varying
fields, 178

circular, 180–82. See also Circular
polarization.

clockwise, 183
counterclockwise, 183 
elliptical, 180, 183
in reception of radio waves, 183
left-handed, 183

linear, 180, 181
right-handed, 183

Polarization surface charges, 219
Polarization vector

definition of, 218
relationship with E, 219
units of, 219

Polarization volume charge, 225
Polarizing angle, 563
Police traffic radars, 176
Position vector, 13, 26
Potential

electric. See Electric potential.
magnetic vector. See Magnetic vector

potential.
Potential difference, 290–91

compared to voltage, 291
Potential field. See Electric potential.
Potential function equations, 288
Power

carried by an electromagnetic wave, 185
radiated by half-wave dipole, 691
radiated by Hertzian dipole, 684
radiated by rectangular aperture, 710
time-average, 190

Power density, associated with an
electromagnetic field, 186

Power dissipation density, 248, 269
Power flow

along lossy line, 495
along short-circuited line, 442
along transmission line, 362, 373, 460–62
in dielectric slab guide, 576
in rectangular waveguide, 627

Power gain, of an antenna, 687
Poynting vector, 186, 195

complex, 190
surface integral of, 186, 248
time-average, 190
units of, 185

Poynting’s theorem, 188–89, 248, 269
Propagation constant

experimental determination of, 491–94
for lossy line, 481
for low loss line, 491
for material medium, 241, 268

Propagation parameters
for enclosed microstrip line, 746–47
for line with homogeneous dielectric,

368–69
for line with multiple dielectrics, 369–70
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Propagation parameters (Continued)
from material parameters, 247
techniques for determination of, 370–71

Propagation vector, 531
Pulse broadening

analysis, 640–43
due to dispersion, 639–40
heuristic explanation, 639

Pulse broadening parameter, 642, 645, 663

Q

Q factor
definition of, 628
for parallel-plate resonator, 669
for rectangular cavity resonator, 629–32

Quarter-wave dielectric coating, 517
Quarter-wave transformer matching,

464–65
in waveguide, 610–11

Quasistatic approximation
condition for validity, 325
equivalent circuit beyond, 330–31
explained, 320

Quasistatic approximations, 320
Quasistatic electric field system, 325–26
Quasistatic extension

explained, 320
of static field, 320, 323

Quasistatic field analysis
for a resistor, 326–30
for an inductor, 320–25

Quasistatic magnetic field system,
325–26

R

Radiation
from aperture antennas, 706
from physical antennas, 675
principle of, 161
simplified explanation of, 105

Radiation fields
definition of, 682
for half-wave dipole, 689–91, 717
for Hertzian dipole, 682, 716
for loop antenna, 721

Radiation modes, 577
Radiation pattern, 686

broadside, 696
endfire, 178, 696

Radiation patterns
for antenna above perfect conductor, 704
for half-wave dipole, 692
for Hertzian dipole, 684–85

Radiation resistance
definition of, 684
for half-wave dipole, 691–92, 717
for Hertzian dipole, 684, 718

Radio transmitter, location of, 97
Radome, 390
Rationalized MKSA units, 795
Ray tracing, 578

for linear profile of permittivity, 580–81
for spherical geometry, 598

Receiving properties
of Hertzian dipole, 771
of loop antenna, 711–12

Reciprocity, 710
Rectangular aperture antenna, 707

beamwidth between first nulls, 709
directivity, 710
radiation characteristics, 708–09

Rectangular cavity resonator, 611
analysis for losses, 624–25
determination of Q factor, 629–32
frequencies of oscillation, 612, 662

Rectangular coordinate system. See
Cartesian coordinate system.

Rectangular waveguide, 600
analysis for losses, 624–25
determination of attenuation constant,

625–28
determination of propagating modes in,

608–09
dominant mode in, 608
field expressions and parameters for, 607
TE modes in, 600–07
TM modes in, 607–08

Reflection coefficient, 264
at waveguide discontinuity, 546
current, 376, 421
for oblique incidence, 558–59, 560
from the Smith chart, 477
voltage. See Voltage reflection

coefficient.
Reflection diagram, 377
Reflection of plane waves

normal incidence, 263
oblique incidence, 555

Refraction of plane waves, 555
Refractive index, 556, 578

Raoindv3.qxd  12/18/03  5:53 PM  Page 826



Index 827

Relative permeability, 234
for ferromagnetic materials, 235

Relative permittivity, 224
table of values of, 225

Reluctance, 334
analogy with resistance, 334

Remanence, 237
Resistance, 215
Resistor

low frequency behavior of, 326–30
voltage-to-current relationship for,

139–40
Resonant system

at microwave frequencies, 448–50
condition for resonance, 449

Resonator, cavity. See Cavity resonator.
Resultant pattern, 696
Retardation plates. See Wave plates.
Retarded magnetic vector potential, 678
Retentivity, 237
R.H.S. rule. See Right-hand screw rule.
Right-hand screw rule, 91, 103

illustration of, 91
Right-handed coordinate system, 13
Right-lateral differential, net, 134
Ring charge, electric field due to, 41–43
Rotating generator, principle of, 97–98

S

Scalar
definition of, 3
gradient of. See Gradient.
Laplacian of. See Laplacian of a scalar.

Scalar fields, 27
graphical representation of, 27–29

Scalar product. See Dot product of vectors.
Scalar triple product, 10
Scalars

examples of, 4–5
vectors versus, 3–4

Second, definition of, 795
Self-inductance, 317
Semiconducting material, Hall effect in, 216
Semiconductor

extrinsic, 209
intrinsic, 209
p-n junction, 315

Semiconductors, 209, 267
conductivity of, 212

Separation of variables technique, 603–04,
615, 727

Shielded parallel wire line, characteristic
impedance of, 370

Shielded strip line, 774
Shielding, 253
Short circuit, location of, 447–48
Short-circuited line

input impedance of, 446–47, 507
instantaneous power flow down, 442
standing wave patterns for, 444
voltage and current on, 441

Short dipole, 721
Signal with Gaussian envelope, pulse

broadening analysis, 640–43
Sine functions, addition of, 784
Single-stub matching, 465–67

by Smith chart, 480–81
Sinusoidal waves

classification of, 175–76
frequency, 172
polarization of, 178
properties and parameters, 172–76, 194

Sinusoidally time-varying fields, 171
polarization of. See Polarization of

sinusoidally time-varying fields.
Skin depth, 252

for copper, 253
Skin effect, 252–53
Slotted line, 456
Smith chart

applications of, 479–87
basic procedures, 476–79
construction of, 473–76
double-stub matching solution, 481–84
single-stub matching solution, 480–81
use as admittance chart, 479

Snell’s law, 556, 589
Space charge layer, 300
Space-time diagram, 377
Spherical capacitor, 306–07
Spherical coordinate system

coordinates for, 22
curl in, 136, 791–93
differential length vector in, 24, 65
differential surface vectors, 24, 65
differential volume, 24, 65
divergence in, 146, 793
gradient in, 284, 793–94
Laplacian of scalar in, 288, 794
limits of coordinates, 22
orthogonal surfaces, 22
unit vectors, 23
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Spherical volume charge, D due to, 116–17
Standing wave measurements, 456–57
Standing wave parameters, 454–55

application of, 456
Standing wave patterns, 444

for partial standing wave, 454
for short-circuited line, 444

Standing wave ratio
definition of, 454
from the Smith chart, 477–78

Standing waves
complete, 442
partial, 454

Static electric field
conductor in a, 213
conservative property of, 83
in terms of potential, 291, 299, 346
of electric dipole, 294
realizability of, 135

Static fields, Maxwell’s equations for,
113

Steady current condition, 304
Step-index fiber, 633
Stokes’ theorem, 156–57, 193
Stream lines, 29
Strip line

parallel, 744
shielded, 774

Stub, 465
Stub matching

double. See Double-stub matching.
single. See Single-stub matching.

Subtraction of vectors, 6
Surface

differential. See Differential surface.
equation for, 19

Surface charge density, 41
units of, 41

Surface charges, 41
Surface current density, 53

units of, 53
Surface currents, 53
Surface integral, 84

closed, 88
evaluation of, 87, 88–90
of , 186

Susceptibility
electric, 219
magnetic, 228

SWR. See Standing wave ratio.

T

Table
of conductivities, 213
of dimensions, 753–55
of relative permittivities, 225
of units, 796–98

Tangential component of E, boundary
condition for, 256–57

Tangential component of H, boundary
condition for, 257–58

TE modes
cutoff frequencies for, 541, 606, 607, 620
cutoff wavelengths for, 541, 606,

607, 620
field expressions for, 542, 607, 620
guide characteristic impedance for, 547,

607, 621
in cavity resonator, 612, 622
in cylindrical waveguide, 620
in dielectric slab guide, 568–69, 571–75,

597
in optical fiber, 636, 637
in parallel-plate waveguide, 539–42
in rectangular waveguide, 600–07

TE wave, 538
TE waves, 536
TEM waves, 366
Thin film waveguides, 566
Time-average power

radiated by half-wave dipole, 691
radiated by Hertzian dipole, 684, 716

Time-average power flow
along short-circuited line, 442
down a lossless line, 460
down a lossy line, 495
for TE wave, 538

Time-average Poynting vector, 190, 248
Time-domain reflectometry, 390

application of, 391–93
TM modes

cutoff frequencies for, 607, 620
cutoff wavelengths for, 607, 620
field expressions for, 543, 607, 618
guide characteristic impedance for, 547,

607, 621
in cavity resonator, 612, 622
in cylindrical waveguide, 618
in dielectric slab guide, 571, 577, 597
in optical fiber, 636, 637

E � H
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in parallel-plate waveguide, 543
in rectangular waveguide, 607–08

TM waves, 543
Toroidal conductor, 332

resistance of, 333–34
Toroidal magnetic core, 332

reluctance of, 334
Torque

on electric dipole, 218, 273
on magnetic dipole, 228, 274

Total internal reflection, 561, 566, 589
Transmission coefficient, 264–65

current, 387
for oblique incidence, 558–59, 560
voltage, 387

Transmission line, 360
characteristic impedance of, 368, 490
coaxial. See Coaxial cable.
compared to waveguide, 515
distortionless, See Distortionless line.
enclosed microstrip. See Enclosed

microstrip line.
field mapping, 748–50
location of short circuit in, 447–48
lossy. See Lossy line.
microstrip, 369, 419
parallel-plate. See Parallel-plate

transmission line.
parallel-strip. See Parallel-strip line.
parallel-wire, See Parallel-wire line.
propagation constant for, 481
shielded strip, 774
short-circuited. See Short-circuited line.

Transmission-line admittance. See Line
admittance.

Transmission-line analogy, 609
Transmission-line discontinuity

boundary conditions at, 386
current transmission coefficient, 387, 421
reflection coefficient, 386
voltage transmission coefficient, 387, 420

Transmission-line equations, 363, 364,
419

analogy with field equations, 367
circuit representation of, 364–65
for lossy line, 488–89
general solution, 367–68, 372, 419, 440,

506–07
Transmission-line equivalent, for

waveguide discontinuity, 547

Transmission-line impedance. See Line
impedance.

Transmission-line matching
bandwidth, 469
by double-stub, 467–69, 481–84
by quarter-wave transformer, 464–65
by single-stub, 465–67, 480–81
principle behind, 463–64

Transmission-line parameters
for arbitrary line, 748–50
for parallel-plate line, 363–64

Transmission-line system
unit impulse response of, 387–89
with a capacitive discontinuity, 397–98

Transmission-line theory, 140, 359
Transmission lines, crosstalk on, 411 See

also Crosstalk.
Transverse electric waves. See TE waves.
Transverse electromagnetic waves. See

TEM waves.
Transverse magnetic waves. See TM waves.
Traveling wave, 166

velocity of, 166
Triple cross product, 9
TTL inverters, interconnection between, 408
Tunnel diode, 303
Two-beam interference, 647

experimental demonstration of, 647–48
Two-dimensional Laplace’s equation 

analytical solution of, 726–28
examples of solution of, 728–32, 735–37
numerical solution of, 734–35

U

UHF TV channels, 176
Underwater communication, 253
Uniform linear array, 698

group pattern for, 699
Uniform plane wave

defined, 160
guided between perfect conductors, 360
oblique incidence on a dielectric, 555
parameters associated with, 172–76

Uniform plane wave in three dimensions
apparent phase velocities, 532, 587
apparent wavelengths, 532, 587
electric field vector of, 531, 586
magnetic field vector of, 531–32, 586
propagation vector for, 531, 586
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830 Index

Uniform plane wave propagation. See
Wave propagation.

Uniform plane waves
bouncing obliquely of, 539
normal incidence of, 263
superposition of, 537

Unit conductance circle, 479
Unit impulse response

frequency response from, 390
of transmission-line system, 387–89

Unit pattern, 696
Unit vector, 4, 6

along line between two points, 14
Unit vector normal to a surface

from cross product, 16
from gradient, 285

Unit vectors
cross products of, 8
dot products of, 7, 25
in Cartesian coordinates, 13
in cylindrical coordinates, 21
in spherical coordinates, 23
left-handed system of, 4
right-handed system of, 4

Units
International system of, 32, 795
MKSA rationalized, 795
table of, 796–98

V

V. See Electric potential; Voltage.
Vector

circulation of, 81
curl of. See Curl.
definition of, 3
divergence of. See Divergence.
division by a scalar, 6
graphical representation of, 4
joining two points, 13–14
Laplacian of. See Laplacian of 

a vector.
magnitude of, 6
multiplication by a scalar, 6
position, 13, 26
unit, 4, 6

Vector algebra, summary of rules of, 64
Vector fields

graphical description of, 29–31
sinusoidally time-varying, 178–84

Vector potential. See Magnetic vector
potential.

Vector product. See Cross product of
vectors.

Vectors
addition of, 5, 6
conversions between coordinate

systems, 24–25
cross product of, 8
dot product of, 7
examples of, 4–5
scalar triple product of, 10
subtraction of, 6
triple cross product of, 9
unit. See Unit vectors.
versus scalars, 3–4

Velocity
drift, 209
group. See Group velocity.
phase. See Phase velocity.

Velocity of light, in free space, 166
Velocity of propagation, 166, 367. See also

Phase velocity.
VHF TV channels, 176
Volt, definition of, 34, 796
Voltage, 81

around closed path, 81
compared to potential difference, 291

Voltage reflection coefficient, 375, 420
for some special cases, 377
generalized, 452

Voltage transmission coefficient, 387
Volume, differential. See Differential

volume.
Volume charge density, 41

units of, 41
Volume current density, 53

units of, 53
Volume integral, evaluation of, 107

W

Watt, definition of, 796
Wave

traveling. See Traveling wave.
uniform plane. See Uniform plane wave.

Wave equation
for material medium, 240
one-dimensional, 163
solution of, 163–64, 240–41
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Index 831

Wave plates, 657, 663
full-wave, 657
half-wave, 657
quarter-wave, 657

Wave propagation
in anisotropic dielectric, 655–57
in free space, 160–178
in good conductor, 251–54
in imperfect dielectric, 251
in material medium, 239–49
in perfect dielectric, 250
in terms of voltage and current, 363

Waveguide
compared to transmission line, 527
cylindrical. See Cylindrical waveguide.
dielectric slab. See Dielectric slab

waveguide.
graded-index. See Graded-index guide.
metallic. See Metallic waveguide.
optical. See Optical fiber.
parallel-plate. See Parallel-plate

waveguide.

rectangular. See Rectangular
waveguide.

Wavelength, 174
guide, 541, 588, 621
in good conductor, 252
in imperfect dielectric, 250–51
in material medium, 246
in perfect dielectric, 250
times frequency, 175

Waveguide dispersion, 644
Waveguides, optical. See Optical

waveguides.
Waves

classification of, 175
electromagnetic. See Electromagnetic

waves.
sinusoidal. See Sinusoidal waves.
standing. See Standing waves.
TE, 536
TEM, 366
TM, 543

Work, in moving a test charge, 77–78
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